How to cite this paper
Abdelhafeez, I., El-Tohamy, S., ul-Malik, M., Abdel-Raheem, S & El-Dars, F. (2022). A review on green remediation techniques for hydrocarbons and heavy metals contaminated soil.Current Chemistry Letters, 11(1), 43-62.
Refrences
(1) Wang Z., Xu Y., Zhao J., Li F., Gao D., and Xing B. (2012) Remediation of petroleum contaminated soils through composting and rhizosphere degradation. J. Hazard. Mater., 190 (1-3) 677–685.
(2) Abioye O. P. (2011) Biological remediation of hydrocarbon and heavy metals contaminated soil. Soil Contamination, 7 127-142.
(3) Gerhardt K. E., Huang X., Glick B. R., and Greenberg B. M. (2009) Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci., 176 (1) 20-30.
(4) Dominguez-Rosado E., and Pichtel J. (2004) Phytoremediation of soil contaminated with used motor oil: II. Greenhouse study. Environ. Engin. Sci., 21 (2) 169–180.
(5) Agarry S. E., and Ogunleye O. O. (2012) Box-Behnken design application to study enhanced bioremediation of soil artificially contaminated with spent engine oil using biostimulation strategy. Inter. J. Energy and Envir. Eng., 3 (1) 31-34.
(6) Tang J., Lu X., Sun Q., and Zhu W. (2012) Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agric. Ecosyst. Environ., 149 109-117.
(7) Nwoko C. O., Okeke P. N., Agwu O. O., and Akpan I. E. (2007) Performance of Phaseolus vulgaris L. in a soil contaminated with spent-engine oil. Afr. j. biotechnol., 6 (16) 1922-1925.
(8) Adenipekin O., Oyetungi O. S., and Kassim C. O. (2008) Effects of spent engine oil on the growth parameters and chlorophyll content of Corchorus olitonus Linn. Environmentalist, 28 (4) 446-450.
(9) Chien Y. C. (2012) Field study of in situ remediation of petroleum hydrocarbon contaminated soil on site using microwave energy. J. Hazard. Mater., 199 457- 461.
(10) Adam G., Gamoh K., Morris D. G., and Duncan H. (2002) Effect of alcohol addition on the movement and petroleum hydrocarbon fuels in soils. Sci. Total Environ., 286 (1-3) 15-25.
(11) Clark C. S. (2003) Field detector evaluation of organic clay soils contaminated with diesel. Environ. Forensics, 4 (3) 167-173.
(12) Wyskowka J., and Kucharski S. (2000) Biochemical properties of soil contaminated by petrol. Pol. J. Environ. Stud., 9 (6) 479-486.
(13) Propst T. L., Lochmiller R. L., Qualis C. W., and Mc Bee K. (1999) In situ (mesocosm) assessment of immune-toxicity risks to small mammals inhabiting petrochemical waste sites. Chemosphere, 38 (5) 1049–1067.
(14) Mishra S. J., Jyot R. C., and Kuhad B. L. (2001) Evaluation of inoculum addition to stimulate in situ Bioremediation of oily–sludge-contaminated soil. Appl. Environ. Microbiol., 67 (4) 1675–1681.
(15) Lloyd C. A., and Cackette T. A. (2001) Diesel engines: Environmental impact and control. J. Air Waste Manag. Assoc., 51 (6) 809–847.
(16) Rhykerd R. L., Crews B., Mclnnes K. J., and Weaver R. W. (1999) Impact of bulking agents, forced aeration and tillage on remediation of oil-contaminated soil. Bioresour. Technol., 67 (3) 279-285.
(17) Das N., and Chandran P. (2011) Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnol. Res. Int., 2011 1-13.
(18) Bumpus J. A. (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol., 55 (1) 154–158.
(19) Clemente A. R., Anazawa T. A., and Durrant L. R. (2001) Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Braz. J. Microbiol., 32 255–261.
(20) Cerniglia C. E., and Sutherland J. B. (2001) Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. Fungi in bioremediation, Cambridge University Press, Cambridge, pp 136–187.
(21) Neff J. M. (1979) Polycyclic aromatic hydrocarbon in the aquatic environment: Sources, fates and biological effects. London, Appl. Sci. Publishers, p. 262.
(22) Plohl K., Leskovsek H., and Bricelj M. (2002) Biological degradation of motor oil in water. Acta Chim. Slov., 49 (2) 279–290.
(23) Kvenvolden K. A., and Cooper C. K. (2003) Natural seepage of crude oil into the marine environment. Geo-Mar. Lett., 23 (3-4) 140–146.
(24) Zand A. D., Bidhendi G. N., and Mehrdadi N. (2010) Phytoremediation of total petroleum hydrocarbons (TPHs) using plant species in Iran. Turk. J. Agric., 34 (5) 429-438.
(25) Edema C. U., Idu T. E., and Edema M. O. (2011) Remediation of soil contaminated with polycyclic aromatic hydrocarbons from crude oil. Afr. J. Biotechnol., 10 (7) 1146-1149.
(26) Molina-Barahona L., Rodriguez-Vazquez R., Hernandez-Velasco M., Vega-Jarqu´ın C., Zapata-Pérez O., Mendoza-Cantú A., and Albores A. (2004) Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Appl. Soil Ecol., 27 (2) 165-175.
(27) Agarry S., and Latinwo G. K. (2015) Biodegradation of diesel oil in soil and its enhancement by application of bioventing and amendment with brewery waste effluents as biostimulation-bioaugmentation agents. J. Ecol. Eng., 16 (2) 82-91.
(28) Abioye O. P., Abdul Aziz A., and Agamuthu P. (2010) Enhanced biodegradation of used engine oil in soil amended with organic wastes. Water Air Soil Pollut., 209 (1) 173–179.
(29) Warmate A. G., Ideriah T. J. K., Tamunobereton I. T., Udonam Inyang U. E., and Ibaraye T. (2011) Concentrations of heavy metals in soil and water receiving used engine oil in Port Harcourt, Nigeria. J. Ecol. Nat. Environ., 3 (2) 54-57.
(30) Husaini A., Roslan H. A., Hii K. S. Y., and Ang C. H. (2008) Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World J. Microbiol. Biotechnol., 24 (12) 2789–2797.
(31) Whisman M. L., Geotzinger J. W., and Cotton F. O. (1974) Waste lubricating oil research: an Investigation of several Re-refining Methods. Bureau of Mines, Bartlesville, Okla. (USA). Bartlesville Energy. Res. Center.
(32) Boonchan S., Britz M. L., and Stanley G. A. (2000) Degradation and mineralization of high-molecular weight polycyclic aromatic hydrocarbons by defined fungal–bacterial co-cultures. Appl. Environ. Microbiol., 66 (3) 1007–1019.
(33) Dike B. U., Okoro B. C., Nwakwasi N. N., and Agbo K. C. (2013) Remediation of Used Motor Engine Oil Contaminated Soil: A Soil Washing Treatment Approach. J. Civil Environ. Eng., 3 (1) 1-3.
(34) Risse L. M. (1998) Opportunities and impediments for establishing pollution prevention programs for crop production. Appl. Eng. Agric., 14 (1) 37-43.
(35) Pasquini R., and Monarca S. (1983) Detection of mutagenic/carcinogenic compounds in unused and used motor oils. Sci. Total Environ., 32 (1) 55-64.
(36) Faboya O. O. P. (1997) Industrial pollution and waste management. In O. Akinjide (Ed.), Dimensions of environmental problems in Nigeria (pp. 12–25). Washington: Friedrich Ebert Foundation.
(37) Adegoroye G. (1997) Environmental considerations in property design, urban development and renewal. In O. Akinjide (Ed.), Dimensions of environmental problems in Nigeria (pp. 12–25). Washington: Friedrich Ebert Foundation.
(38) Environment Protection Agency (EPA) U.S. (1996) Recycling used oil: What can you do? Cooperation Extension Services ENRI, 317 1–2.
(39) Environment Canada (1996) The state of Canada’s environment. Ottawa: Public Works and Government Services Canada.
(40) Rachou J., Gagnon C., and Sauvé S. (2007) Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices. Environ. Chem., 4 (2) 90-97.
(41) Seregin I. V., and Kozhevnikova A. D. (2006) Physiological Role of Nickel and Its Toxic Effects on Higher Plants. Russ. J. Plant Physiol., 53 (2) 257–277.
(42) Das K. K., Das S. N., and Dhundasi S. A. (2008) Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res., 128 (4) 412-425.
(43) Abro R., Chen X., Harijan K., Dhakan A. Z., and Ammar M. (2013) A comparative study of recycling of used engine oil using extraction by composite solvent, single solvent, and acid treatment methods. ISRN Chem. Eng., 2013 1-5.
(44) Hamawand I., Yusaf T., and Rafat S. (2013) Recycling of waste engine oils using a new washing agent. Energies, 6 (2) 1023-1049.
(45) Abu-Elella R., Ossman M. E., Farouq R., and Abd-Elfatah M. (2015) Used motor oil treatment: Turning waste oil into valuable products. Inter. J. Chem. Biochem. Sci., 7 57-67.
(46) Udonne J. D. (2011) A comparative study of recycling of used lubrication oils using distillation, acid and activated charcoal with clay methods. J. Petroleum Gas Eng., 2 (2) 12-19.
(47) Gul S., Irfan M., Bilal H., and Khan U. (2014) Recycling of used engine oil using solvent extraction and distillation. J. Appl. Sci. Eng., 33 (2) 39-46.
(48) Abdulkareem A. S., Afolabi A. S., Ahanonu S. O., and Mokrani T. (2014) Effect of treatment methods on used lubricating oil for recycling purposes. Energy Sources A: Recovery Util. Environ. Eff., 36 (9) 966–973.
(49) Lam S. S., Russell A. D., Lee C. L., and Chase H. A. (2012) Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil. Fuel, 92 (1) 327–339.
(50) Gan S., Lau E. V., and Ng H. K. (2009) Review: Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater., 172 (2-3) 532–549.
(51) Khodadoust A. P., Bagchi R., Suidan M. T., Brenner R. C., and Sellers N. G. (2000) Removal of PAHs from highly contaminated soils found at prior manufactured gas operations. J. Hazard. Mater., B50 (1-3) 159-174.
(52) Silva A., Delerue-Matos C., and Fiuza A. (2005) Use of solvent extraction to remediate soils contaminated with hydrocarbons. J. Hazard. Mater., B124 (1-3) 224–229.
(53) Rababah A., and Matsuzawa S. (2002) Treatment system for solid matrix contaminated with fluoranthene. I—Modified extraction technique. Chemosphere, 46 (1) 39–47.
(54) Ahn C. K., Kim Y. M., Woo S. H., and Park J. M. (2008) Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon. J. Hazard. Mater., 154 (1-3) 153–160.
(55) Deshpande S., Shiau B. J., Wade D., Sabatini D. A., and Harwell J. H. (1999) Surfactant selection for enhancing ex situ soil washing. Water Res., 33 (2) 351–360.
(56) Zhou W., and Zhu L. (2007) Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant PAHs system. Environ. Pollut., 147 (1) 66-73.
(57) Nadim F., Hoag G. E., Liu S., Carley R. J., and Zack P. (2000) Detection and remediation of soil aquifer systems contaminated with petroleum products: an overview. J. Pet. Sci. Eng., 26 (1-4) 169–178.
(58) Sleep B. E., and Ma Y. (1997) Thermal variation of organic fluid properties and impact on thermal remediation feasibility. J. Soil Contam., 6 (3) 281-30.
(59) Marley M. C., Hazebrouck D. J., and Walsh M. T. (1992) The application of in situ air sparging as an innovative soils and groundwater remediation technology. Ground Water Monit. Remediat., 12 (2) 137–144.
(60) Reddy K. R., Kosgi S., and Zhou J. (1995) A review of in situ air sparging for the remediation of VOC-contaminated saturated soils and groundwater. Hazard. Waste Hazard. Mater., 12 (2) 97–118.
(61) U.S. Environment protection agency (EPA) (1991) Survey of Materials-Handling Technologies Used at Hazardous Waste Sites, EPA, ORD, Washington, DC, EPA/540/2-91/010.
(62) Flotron V., Delteil C., Padellec Y., and Camel V. (2005) Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere, 59 (10) 1427–1437.
(63) Kawahara F. K., Davila B., Al-Abed S. R., Vesper S. J., Ireland J. C., and Rock S. (2005) Polynuclear aromatic hydrocarbon (PAH) release from soil during treatment with Fenton’s reagent. Chemosphere, 31 (9) 4131–4142.
(64) Watts R. J., Haller D. R., Jones A. P., and Teel A. L. (2000) A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton’s reactions. J. Hazard. Mater., 76 (1) 73–89.
(65) Ferrarese E., Andreottola G., and Oprea I. A. (2008) Remediation of PAH-contaminated sediments by chemical oxidation. J. Hazard. Mater., 152 (1) 128–139.
(66) Bogan B. W., and Trbovic V. (2003) Effect of sequestration on PAH degradability with Fenton’s reagent: roles of total organic carbon, humin, and soil porosity. J. Hazard. Mater., 100 (1-3) 285–300.
(67) Jonsson S., Persson Y., Frankki S., van Bavel B., Lundstedt S., Haglund P., and Tysklind M. (2007) Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton’s reagent: a multivariate evaluation of the importance of soil characteristics and PAH properties. J. Hazard. Mater., 149 (1) 86–96.
(68) O’Mahony M. M., Dobson A. D. W., Barnes J. D., and Singleton I. (2006) The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere, 63 (2) 307–314.
(69) Masten S. J., and Davies S. H. R. (1997) Efficacy of in-situ ozonation for the remediation of PAH contaminated soils. J. Contam. Hydrol., 28 (4) 327–335.
(70) Jonsson S., Persson Y., Frankki S., Lundstedt S., van Bavel B., Haglund P., and Tysklind M. (2006) Comparison of Fenton’s reagent and ozone oxidation of polycyclic aromatic hydrocarbons in aged contaminated soils. J. Soils Sediments, 6 (4) 208–214.
(71) Achugasim D., Osuji L. C., and Ojinnaka C. M. (2011) Use of activated persulfate in the removal of petroleum hydrocarbons from crude oil polluted soils. Res. J. Chem. Sci., 1 (7) 57-67.
(72) Yen C. H., Chen K. F., Kao C. M., Liang S. H., and Chen T. Y. (2012) Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants. J. Hazar. Mater., 186 (2-3) 2097–2102.
(73) Usman M., Faure P., Ruby C., and Hanna K. (2012) Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils. Chemosphere, 87 (3) 234–240.
(74) Juhasz A. L., Smith E., Waller N., Stewart R., and Weber J. (2010) Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil. Environ. Pollut., 158 (2) 585–591.
(75) Okoh A. I., and Trejo-Hernandez M. R. (2006) Remediation of petroleum polluted systems: Exploiting the bioremediation strategies. Afr. j. biotechnol., 5 (25) 2520–2525.
(76) Perelo L. W. (2010) Review: In situ and bioremediation of organic pollutants in aquatic sediments. J. Hazard. Mater., 177 (1-3) 81-89.
(77) Wang X., Yu X., and Bartha R. (1990) Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environ. Sci. Technol., 24 (7) 1086–1089.
(78) Huang X.-D., El-Alawi Y., Penrose D. M., Glick B. R., and Greenberg B. M. (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut., 130 (3) 465–476.
(79) Sasek V., Bhatt M., Cajthaml T., Malachova K., and Lednicka D. (2003) Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil. Arch. Environ. Contam. Toxicol., 44 (3) 336–342.
(80) Cajthaml T., Bhatt M., Sasek V., and Mateju V. (2002) Bioremediation of PAH contaminated soil by composting: a case study. Folia Microbiol., 47 (6) 696–700.
(81) Abioye O. P., Abdul Aziz A., and Agamuthu P. (2009) Stimulated biodegradation of used lubricating oil in soil using organic wastes. Malaysian J. Sci., 28 (2) 127-133.
(82) Abioye O. P., Alonge O. A., and Ijah U. J. J. (2009) Biodegradation of crude oil in soil amended with melon shell. AU J Technol., 13 (1) 34-38.
(83) Ekperusi O. A., and Aigbodion F. I. (2015) Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus. 3 Biotech, 5 (6) 957-965.
(84) Contreras-Ramos S. M., Alvarez-Bernal D., and Dendooven L. (2006) Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environ. Pollut., 141 (3) 396-401.
(85) Ameh O., Mohammed-Dabo I., Ibrahim S., and Ameh J. B. (2013) Earthworm-assisted bioremediation of petroleum hydrocarbon contaminated soil from mechanic workshop. Afr. J. Environ. Sci. Technol., 7 (6) 531-539.
(86) Ceccanti B., Masciandaro G., Garcia C., Macci C., and Doni S. (2006) Soil bioremediation: Combination of earthworms and compost for the ecological remediation of a hydrocarbon polluted soil. Water Air Soil Pollut., 177 (1) 383-397.
(87) Schaefer M., and Filser J. (2007) The influence of earthworms and organic additives on the biodegradation of oil contaminated soil. Appl. Soil Ecol., 36 (1) 53-62.
(88) Mishra S., Sarma P. M., and Lal B. (2004) Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil-contaminated soil microcosm. FEMS Microbiol. Lett., 235 (2) 323–331.
(89) Das K., and Mukherjee A. K. (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleumoil contaminated soil from North-East India. Bioresour. Technol., 98 (7) 1339–1345.
(90) Hamamura N., Fukui M., Ward D. M., and Inskeep W. (2008) Assessing soil microbial populations responding to crude-oil amendment at different temperatures using phylogenetic, functional gene (alkB) and physiological analyses. Environ. Sci. Technol., 42 (20) 7580–7586.
(91) Sathishkumar M., Binupriya A. R., Baik S. H., and Yun S. E. (2008) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean - Soil Air Water, 36 (1) 92–96.
(92) Mancera-Lopez M. E., Esparza-Garcia F., Chavez-Gomez B., Rodriguez-Vazquez R., Saucedo-Castaneda G., and Barrera-Cortes J. (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation–bioaugmentation with filamentous fungi. Int. Biodeterior. Biodegrad., 61 (2) 151–160.
(93) Hamzah A., Salleh S. N., and Sarmani S. (2014) Enhancing biodegradation of crude oil in soil using fertilizer and empty fruit bunch of oil palm. Sains Malays., 43 (9) 1327–1332.
(94) Lee S. H., Lee W. S., Lee C. H., and Kim J. G. (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J. Hazard. Mater., 153 (1-2) 892–898.
(95) Lloyd J R. (2002) Bioremediation of metals: The application of microorganisms that make and break minerals. Microbiol. Today, 29 67-69.
(96) Thieman W. J., and Palladino M. A. (2009) Introduction to biotechnology, 2nd ed. Pearson, New York, pp 209 – 222.
(97) Liebeg E. W., and Cutright T. J. (1999) The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. Int. Biodeterior. Biodegrad., 44 (1) 55–64.
(98) Chaillan F., Chaineau C. H., Point V., Saliot A., and Oudot J. (2006) Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ. Pollut., 144 (1) 255 - 265.
(99) Oudot J., Merlin F. X., and Pinvidic P. (1998) Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar. Environ. Res., 2 (45) 113-125.
(100) Chaineau C. H., Rougeux G., Yepremian C., and Oudot J. (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol. Biochem., 37 (8) 1490-1497.
(101) Carmichael L. M., and Pfaender F. K. (1997) The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils. Biodegradation, 8 (1) 1-13.
(102) Cutright T. J. (1995) Polycyclic aromatic hydrocarbon biodegradation and kinetics using Cunninghamellaechinulata var. elegans. Int. Biodeterior. Biodegrad., 35 (4) 397–408.
(103) Gentry T. J., Rensing C., and Pepper I. L. (2004) New approaches for bioaugmentation as a remediation technology. Crit. Rev. Environ. Sci. Technol., 34 (5) 447–494.
(104) Bagherzadeh N. A., Shojaosadati S. A., and Hashemi N. S. (2008) Biodegradation of used engine oil using mixed and isolated cultures. Int. J. Environ. Res., 2 (4) 431 – 440.
(105) Vogel T. M. (1996) Bioaugmentation as a soil bioremediation approach. Curr. Opin. Biotechnol., 7 311–316.
(106) Schroder P., Harvey P. J., and Schwitzguébel J. P. (2002) Prospects for the phytoremediation of organic pollutants in Europe. Environ. Sci. Pollut. ResInt., 9 (1) 1–3.
(107) Vidali M. (2001) Bioremediation, An overview. Pure and Appl. Chem., 73 (7) 1163–1172.
(108) Marmiroli N., Marmiroli M., and Maestri E. (2006) Phytoremediation and phytotechnologies: A review for the present and the future. In: Twardowska, I., Allen, H.E, and Haggblom, M.H. (eds). Soil and water pollut. monitoring, protect. and remed,. Springer, Netherland.
(109) Parrish Z. D., Banks M. K., and Schwab A. P. (2005) Effect of root death and decay on dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of yellow sweet clover and tall fescue. J. Environ. Qual., 34 (1) 207–216.
(110) khoramnejadian S., Matinfar F., and khoramnejadian S. (2013) Phytoremediation of petroleum hydrocarbons by native plants of Damavand region. Glob.J. of Medic. Plant Res., 1 (1) 8-11.
(111) Kirkpatrick W. D., White P. M., Wolf D. C., Thoma G. L., and Reynolds C. M. (2006) Selecting plants and nitrogen rates to vegetate crude oil contaminated soil. Int. J. Phytorem., 8 (4) 285-297.
(112) Liste H. H., and Prutz I. (2006) Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere, 62 (9) 1411-1420.
(113) Euliss K., Ho C., Schwab A. P., Rock S., and Banks K. (2007) Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Biores. Technol., 99 1961-1971.
(114) Tu C., Lena Q., Ma L. Q., and Boondade B. (2002) Plant and Environment Interactions–Arsenic Accumulation in the hyperaccumulator Chinese Brake and its utilization potential for phytoremediation. J. Envir. Qual., 31 (5) 1671 – 1675.
(115) Merkl N., Schultze-Kraft R., and Infante C. (2005) Assessment of tropical grasses and legumes for phytoremediation of petroleum contaminated soils. Water, Air, Soil Pollut., 165 (1) 195-209.
(116) Interstate Technology and Regulatory Cooperation (ITRC). (2001) Phytotechnology Technical and Regulatory Guidance Document. Available on Internet at www.itrcweb.org.
(117) Susarla S., Medina V. F., and McCutcheon S. C. (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecolog. Eng., 18 (5) 647–658.
(118) Raskin I., Smith R. D., and Salt D. E. (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol., 8 (2) 221-226.
(119) Schwab P., Banks M. K., and Kyle W. A. (2006) Heritability of phytoremediation potential for the alfalfa cultivar Riley in petroleum contaminated soil. Water Air Soil Pollut., 177 (1-4) 239-249.
(120) Kechavarzi C., Petterson K., Leeds-Harrison P., Ritchie L., and Ledin S. (2007) Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ. Poll., 145 (1) 68-74.
(121) Aprill W., and Sims R. C. (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere, 20 (1) 253-265.
(122) Merkl N., Schultze-Kraft R., and Infante C. (2004) Phytoremediation in the tropics – The effect of crude oil on the growth of tropical plants. Bioremediat J., 8 (3-4) 177-184.
(123) Frick C. M., Farrell R. E., and Germida J. J. (1999) Assessment of Phytoremediation as an in-situ technique for cleaning oil-contaminated sites. Environmental Science, 1 105– 124.
(124) Gunther T., Dornberger U., and Fritsche W. (1996) Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere, 33 (2) 203-15.
(125) Qiu X., Leland W., Shat S., Sorensen D., and Kendall E. (1996) Field study: grass remediation for clay soil contaminated with polycyclic aromatic hydrocarbons :Phytoremediation of Soil and Water Contaminants. Washington, DC 20036, American Chemical Society, 664 186-199.
(126) Karthikeyan R., Kulakow P., Leven B., Pierzynski G., and Erickson L. E. (2000) Vegetated treatment of vehicle wash sediments: A field demonstration. Conf. Hazard. Waste Res., 159–166.
(127) Schwendinger R. B. (1968) Reclamation of soil contaminated with oil. J. Inst. Petrol., 54 182-197.
(128) Gudin C., and Syratt W. J. (1975) Biological aspects of land rehabilitation following hydrocarbon contamination. Environ. Pollut., 8 (2) 107-112.
(129) Fan S., Li P., Gong Z., Ren W., and He N. (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (MedicagosativaL.). Chemosphere, 71 (8) 1593–1598.
(130) Liste H. H., and Alexander M. (2000) Plant-promoted pyrene degradation in soil. Chemosphere, 40 (1) 7–10.
(131) Cheema S. A., Khan M. I., Shen C., Tang X., Farooq M., Chen L., Zhang C., and Chen Y. (2010) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J. Hazard. Mater., 117 (2000) 384–389.
(132) Xuezheng L., Jihong S., Kezhai L., and Xiaohang H. (2005) Study on remediation effects of SuaedasalsaL. planting on coastal saline soil. Adv. Mar. Sci., 23 (1) 65–69.
(133) Hutchinson S. L., Banks M. K., and Schwab A. P. (2001) Phytoremediation of aged petroleum sludge: Effect of inorganic fertilizer. J. Environ. Qual., 30 (2) 395-403.
(134) Agamuthu P., and Dadrasnia A. (2014) Dynamics Phytoremediation of Zn and diesel fuel in co-contaminated soil using Biowastes. J. Bioremed. Biodeg., S4 (006) 1-5.
(135) Singer A. C., Thompson I. P., and Bailey M. J. (2004) The tritrophic trinity: a source of pollutant degrading enzymes and its implication for phytoremediation. Curr. Opin. Microbiol., 7 (3) 239–244.
(136) Chaudhry Q., Blom-Zandstra M., Gupta S., and Joner E. J. (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ. Sc. Pollut. Res Int., 12 (1) 34–48.
(137) Escalante-Espinosa E., Gallegos-Martınez M. E., Favela-Torres E., and Gutierrez-Rojas M. (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperuslaxus Lam. inoculated with a microbial consortium in a model system. Chemosphere, 59 (3) 405-413.
(138) Pierzynski G. M., Sims J. T. and Vance G. F. (2005) Soils and Environmental Quality 3rd ed. CRC press. Boca Raton, Florida.
(139) Jordahl J. L., Foster L., Schnoor J. L., and Alvarez P. J. J. (1997) Effect of hybrid poplar trees on microbial population important to hazardous waste bioremediation. Environ. Toxicol. Chem., 16 (6) 1318-1321.
(140) Muratova A., Hubner T., Narula N., Wand H., Turkovskaya O., Kuschk P., Jahn R., and Merbach W. (2003) Rhizospheremicroflora of plants used for the phytoremediation of bitumen-contaminatedsoil. Microbiol Res., 158 (2) 151-161.
(141) Giddens J. (1976) Spent motor oil effects on soil and crops. J. Environ. Qual., 5 (2) 179-181.
(142) Banks M. K., Lee E., and Schwab A. P. (1999) Evaluation of dissipation mechanisms for benzo[ a]pyrene in the rhizosphere of tall fescue. J. Environ. Qual., 1 (28) 294-298.
(143) Castro S., Davis L. C., and Erickson L. E. (2003) Phytotransformation of benzotriazoles. Int. J. Phytoremed., 5 (3) 245-265.
(144) Chen Y. C., Banks M. K., and Schwab A. P. (2003) Pyrene degradation in the rhizosphere of tall fescue (Festucaarundinacea) and switchgrass (PanicumvirgatumL.). Environ. Sci. Technol., 37 (24) 5778-5782.
(145) Ke L., Wong W. Q., Wong T. W., Wong Y. S., and Tam N. F. (2003) Removal of pyrene from contaminated sediments by mangrove microcosms. Chemosphere, 51 (1) 25-34.
(146) Adam G., and Duncan H. (2003) The effect of diesel fuel on common vetch (Vicia sativa L.) plants. Environ. Geochem. Health, 25 (1) 123-130.
(147) Diab I. A. (2008) Phytoremediation of oil contaminated desert soil using the rhizophere effects of some plants. Res. J. Agric. Biol. Sci., 4 (6) 604-610.
(148) Peng S.W., Zhou Q. X., Zhang H., and Shi R. G. (2009) Responses of seed germination of 8 ornamental plants to petroleum contamination. Chinese J. Environ. Sci., 29 (2) 786-790.
(149) Agamuthu P., Abioye O. P., and Abdul Aziz A. (2010) Phytoremediation of soil contaminated with used lubricating oil using Jatrophacurcas. J. Hazard. Mater., 179 (2000) 891–894.
(150) Izinyon O. and Seghosime A. (2013) Assessment of Show Star Grass (MelampodiumPaludosum) for Phytoremediation of Motor Oil Contaminated Soil. Civil and Environ. Res., 3 (3) 19-28.
(151) Diaz-Ramirez I. J., Saad H. R., Rojas M. G., and Favela T. E. (2003) Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperuslaxusrhizosphere soil in a contaminated site. Canad. J. Microbiol., 49 (12) 755-761.
(152) Harayama S. (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr. Opin. Biotechnol., 8 (3) 268-273.
(153) Garcia-Rivero M., Saucedo-Castaneda G., Flores de Hoyos S., and Gutierrez-Rojas M. (2002) Mass transfer and hydrocarbon biodegradation of aged soil in slurry phase. Biotechnol. Progr., 18 (4) 728-733.
(154) Boodoosingh R., Swan C., Desmarais A. M., and Beckles D. M. (2007) The effect of bulking agent and initial contaminant concentration on the biodegradation of total petroleum hydrocarbons. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, 12 (1) 219-226.
(155) Embar K., Forgacs C., and Sivan A. (2006) The role of indigenous bacterial and fungal soil populations in the biodegradation of crude oil in a desert soil. Biodegr., 17 (4) 369-377.
(156) Chang Z. Z., and Weaver R. W. (1998) Organic bulking agents for enhancing oil bioremediation in soil. Bioremediat. J., 1 (3) 173-180.
(157) Agbor R. B., Ekpo I. A., Udofia U. U., Okpako E. C., and Ekanem E. B. (2012) Potentials of cocoa pod husk and plantain peels in the degradation of total petroleum hydrocarbon content of crude oil polluted soil. Arch. Appl. Sci. Res., 4 (3) 1372-1375.
(158) Morgan P., Lee S. A., Lewis S. T., Sheppard A. N., and Watkinson R. J. (1993) Growth and biodegradation by white-rot fungi in soil. Soil Biol. Biochem., 25 (2) 279-287.
(159) Lo K. V., Lau A. K., and Liao P. H. (1993) Composting of separated solid swine wastes. J. Agric. Engr. Res., 54 (4) 307-317.
(160) Printz H., Burauel P., and Fuhr F. (1995) Effect of organic amendment on degradation and formation of bound residues of methabenz-thiazuron in soil under constant climatic conditions. J. Environ. Sci. Health B., 30 (4) 435-456.
(161) Ibiene A. A., Orji F. A., Ezidi C. O., and Ngwobia C. L. (2011) Bioremediation of hydrocarbon contaminated soil in the Niger delta using spent mushroom compost and other organic wastes. Nig. J. Agric. Food and Environ., 7 (3) 1-7.
(162) Palmroth M. R. T., Pichtel J., and Puhakka J. A. (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour. Technol., 84 (2) 221-228.
(163) Vouillamoz J., and Milke M. W. (2009) Effect of compost in phytoremediation of diesel contaminated soils. Water Sci. Technol., 43 (2) 291–295.
(164) Pala D. M., De Souza J. A., De Carvalho D. D., and Sant’Anna Jr G. L. (2005) Effect of bulking agents and clay content on bioremediation of diesel-contaminated soils. Mercosur congress process system engineering, 2 1-10.
(165) Rhykerd R. L., Sen D., McInnes K. J., and Weaver R. W. (1998) Volatilization of crude oil from soil amended with bulking agent. Soil Sci., 163 (2) 87-92.
(166) Trejo-Hernandez M. R., Ortiz A., Okoh A. I., Morales D., and Quintero R. (2006) Biodegradation of heavy crude oil Maya using spent compost and sugar cane bagasse wastes. Chemosphere, 68 (5) 848-855.
(167) Abdelhamid A. A., Elwassimy M. M., Aref S. A., and Gad M. A. (2019) Chemical design and bioefficacy screening of new insect growth regulators as potential insecticidal agents against Spodoptera littoralis (Boisd.). Biotechnology Reports, 24 (2019) 394-401.
(168) Khodairy A., Mansour E. S., Elhady O. M., and Drar A. M. (2021) Novel N-cyanoguanidyl derivatives: Synthesis and studying their toxicological activity against Spodoptera littoralis and Schizaphis graminum. Curr. Chem. Lett., 10 (4) 363-370.
(169) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2020) Synthesis and biological activity of 2-((3-Cyano-4,6-distyrylpyridin-2-yl)thio)acetamide and its cyclized form. Alger. j. biosciences, 01 (02) 046-050.
(170) Bakhite E. A., Abd-Ella A. A., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2014) Pyridine derivatives as insecticides. Part 1: Synthesis and toxicity of some pyridine derivatives against Cowpea Aphid, Aphis craccivora Koch (Homoptera: Aphididae). J. Agric. Food Chem., 62 (41) 9982–9986.
(171) Abdelhamid A. A., Elsaghier A. M. M., Aref S. A., Gad M. A., Ahmed N. A., and Abdel-Raheem Sh. A. A. (2021) Preparation and biological activity evaluation of some benzoylthiourea and benzoylurea compounds. Curr. Chem. Lett., 10 (4) 371-376.
(172) Bakhite E. A., Abd-Ella A. A., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2017) Pyridine derivatives as insecticides. Part 2: Synthesis of some piperidinium and morpholinium cyanopyridinethiolates and their Insecticidal Activity. J. Saud. Chem. Soc., 21 (1) 95–104.
(173) Kamal El-Dean A. M., Abd-Ella A. A., Hassanien R., El-Sayed M. E. A., Zaki R. M., and Abdel-Raheem Sh. A. A. (2019) Chemical design and toxicity evaluation of new pyrimidothienotetrahydroisoquinolines as potential insecticidal agents. Toxicol. Rep., 6 (2019) 100-104.
(174) Saddik A. A., Hassan K. M., Kamal El-Dean A. M., and Abbady M. S. (2015) Synthesis of new mercaptopyrimidines and thienopyrimidines. Eur. Chem. Bull., 4 (9) 436-441.
(175) Gad M. A., Aref S. A., Abdelhamid A. A., Elwassimy M. M., and Abdel-Raheem Sh. A. A. (2021) Biologically active organic compounds as insect growth regulators (IGRs): introduction, mode of action, and some synthetic methods. Curr. Chem. Lett., 10 (4) 393-412.
(176) Kamal El-Dean A. M., Abd-Ella A. A., Hassanien R., El-Sayed M. E. A., and Abdel-Raheem Sh. A. A. (2019) Design, Synthesis, Characterization, and Insecticidal Bioefficacy Screening of Some New Pyridine Derivatives. ACS Omega, 4 (5) 8406-8412.
(177) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Zaki R. M., Hassanien R., El-Sayed M. E. A., Sayed M., and Abd-Ella A. A. (2021) Synthesis and toxicological studies on distyryl-substituted heterocyclic insecticides. Eur. Chem. Bull., 10 (4) 225-229.
(178) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., and Abd-Ella A. A. (2021) Synthesis and characterization of some distyryl-derivatives for agricultural uses. Eur. Chem. Bull., 10 (1) 35-38.
(179) Tolba M. S., Sayed M., Abdel-Raheem Sh. A. A., Gaber T. A., Kamal El-Dean A. M., and Ahmed M. (2021) Synthesis and spectral characterization of some new thiazolopyrimidine derivatives. Curr. Chem. Lett., 10 (4) 471-478.
(180) Saddik A. A., Kamal El-Dean A. M., El-Sokary G. H., Hassan K. M., Abbady M. S., Ismail I. A., and Saber S. H. (2017) Synthesis and Cytotoxicity of Some Thieno[2,3-d]pyrimidine Derivatives. J. Chin. Chem. Soc., 64 (1) 87-93.
(181) Saddik A. A., Kamal El-Dean A. M., El-Said W. A., Hassan K. M., and Abbady M. S. (2018) Synthesis, Antimicrobial, and Anticancer Activities of a New Series of Thieno[2,3-d] Pyrimidine Derivatives. J. Heterocyclic Chem., 55 (9) 2111-2122.
(182) Al-Taifi E. A., Abdel-Raheem Sh. A. A., and Bakhite E. A. (2016) Some reactions of 3-cyano-4-(p-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydroquinoline-2(1H)-thione; Synthesis of new tetrahydroquinolines and tetrahydrothieno[2,3-b]quinolines. Assiut University Journal of Chemistry (AUJC), 45 (1) 24-32.
(183) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Hassanien R., El-Sayed M. E. A., Sayed M., and Abd-Ella A. A. (2021) Synthesis and spectral characterization of selective pyridine compounds as
bioactive agents. Curr. Chem. Lett., 10 (3) 255-260.
(184) Abdel-Raheem Sh. A. A., Kamal El-Dean A. M., Abd ul-Malik M. A., Abd-Ella A. A., Al-Taifi E. A., Hassanien R., El-Sayed M. E. A., Mohamed S. K., Zawam S. A., and Bakhite E. A. (2021) A concise review on some synthetic routes and applications of pyridine scaffold compounds. Curr. Chem. Lett., 10 (4) 337-362.
(185) Tolba M. S., Kamal El-Dean A. M., Ahmed M., Hassanien R., Sayed M., Zaki R. M., Mohamed S. K., Zawam S. A., Abdel-Raheem Sh. A. A. (2021) Synthesis, reactions, and applications of pyrimidine derivatives. Curr. Chem. Lett., Accepted Manuscript (DOI: 10.5267/j.ccl.2021.8.002).
(186) Saber A. F., Sayed M., Tolba M. S., Kamal A. M., Hassanien R., and Ahmed M. (2021) A Facile Method for Preparation and Evaluation of the Antimicrobial Efficiency of Various Heterocycles Containing Thieno[2,3-d]Pyrimidine. Synth. Commun, 51 (3) 398-409.
(187) Ahmed M., Sayed M., Saber A. F., Hassanien R., Kamal El-Dean A. M., and Tolba M. S. (2020) Synthesis, Characterization, and Antimicrobial Activity of New Thienopyrimidine Derivatives. Polycycl. Aromat. Compd., Accepted Manuscript (DOI: 10.1080/10406638.2020.1852587).
(188) Kamal El-Dean A. M., Zaki R. M., Radwan S. M., and Saber A. F. (2017) Synthesis, Reactions and Spectral Characterization of Novel Thienopyrazole Derivatives. Eur. Chem. Bull., 6 (12) 550–553.
(189) Zaki R. M., Kamal El-Dean A. M., Radwan S. M., and Saber A. F. (2019) Efficient synthesis, reactions and spectral characterization of novel pyrazolo[4’,3’:4,5]thieno[3,2-d]pyrimidine derivatives and their related heterocycles. Heterocycl. Commun., 25 (1) 39–46.
(190) Saber A. F., Zaki R. M., Kamal El-Dean A. M., and Radwan S. M. (2020) Synthesis, reactions and spectral characterization of some new biologically active compounds derived from thieno[2,3-c]pyrazole-5-carboxamide. J. Heterocyclic Chem., 57 (1) 238–247.
(191) Sayed M., Kamal El-Dean A. M., Ahmed M., and Hassanien R. (2017) Synthesis of some new heterocyclic compounds containing indole moiety. Eur. Chem. Bull., 6 (4) 171-176.
(192) Sayed M., Kamal El-Dean A. M., Ahmed M., and Hassanien R. (2018) Synthesis of Some Heterocyclic Compounds Derived from Indole as Antimicrobial Agents. Synth. Commun., 48 (4) 413–421.
(193) Sayed M., Younis O., Hassanien R., Ahmed M., Mohammed A. A. K., Kamal A. M., and Tsutsumi O. (2019) Design and synthesis of novel indole derivatives with aggregation-induced emission and antimicrobial Activity. J. Photochem. Photobiol. A., 383 (2019) 111969–111979.
(194) Kamal El Dean A. M., Zaki R. M., Geies A. A., Radwan S. M., and Tolba M. S. (2013) Synthesis and Antimicrobial Activity of New Heterocyclic Compounds Containing Thieno[3,2-c]Coumarin and Pyrazolo[4,3-c]Coumarin Frameworks. Russ. J. Bioorganic Chem., 39 (5) 553–564.
(195) Ahmed M., Younis O., Orabi E. A., Sayed A. M., Kamal El-Dean A. M., Hassanien R., Davis R. L., Tsutsumi O., and Tolba M. S. (2020) Synthesis of novel thienopyrimidines as biocompatible chromophores with aggregation-induced emission sensitive to molecular aggregation. ACS Omega, 5 (46) 29988-30000.
(196) Tolba M. S., Kamal El-Dean A. M., Ahmed M., Hassanien R., and Farouk M. (2017) Synthesis and Antimicrobial Activity of Some New Thienopyrimidine Derivatives. Arkivoc, 2017 (5) 229–243.
(197) Tolba M. S., Ahmed M., Kamal El-Dean A. M., Hassanien R., and Farouk M. (2018) Synthesis of new fused thienopyrimidines derivatives as anti-inflammatory agents. J. Heterocyclic Chem., 55 (2) 408–418.
(198) Younis O., Tolba M. S., Orabi E. A., Kamal A. M., Hassanien R., Tsutsumi O., and Ahmed M. (2020) Biologically-active heterocyclic molecules with aggregation-induced blue-shifted emission and efficient luminescence both in solution and solid states. J. Photochem. Photobiol. A., 400 (2020) 112642-112653.
(199) Tolba M. S., Kamal El-Dean A. M., Ahmed M., and Hassanien R. (2019) Synthesis, reactions, and biological study of some new thienopyrimidine derivatives as antimicrobial and antiInflammatory agents. J. Chin. Chem. Soc., 66 (5) 548–557.
(200) Hamed M. M., Kamal El-Dean A. M., Abdel-Mohsen Sh. A., and Tolba M. S. (2021) New Diclofenac Derivatives as Anti-Microbial, Anti-Inflammatory Agents: Design, Synthesis, Biological Screening, and Molecular Docking Study. Russ. J. Bioorganic Chem., 47 (1) 208-220.
(201) Abeed A. A. O., and Abdel Mohsen Sh. A. (2013) Synthesis, characterization and antimicrobial activity of new thiadiazoles, thiazolidines, and spiro (indole-azoles) linked to 2-pyrazolin-5-one. Eur. J. Sci. Res., 108 (2) 279-285.
(202) Youssef M. S. K., and Abeed A. A. O. (2014) Synthesis and antimicrobial activity of some novel 2-thienyl substituted heterocycles. Heterocyl. Commun., 20 (1) 25-31.
(203) Youssef M. S. K., and Abeed A. A. O. (2014) Synthesis, characterization and pharmacological activities of pyrimidine derivatives containing 2-pyrazoline-5-one. Int. J. Pharm. Sci. Res., 5 1705-1720.
(204) Abeed A. A. O. (2015) 2-Pyrazolin-5-one based heterocycles: synthesis and characterization. J. Heterocycl. Chem., 52 (4) 1175-1184.
(205) Bakhite E. A., Abeed A. A. O., and Ola E. A. Ahmed (2016) Synthesis and biological activity of some new fused thieno[2,3-b]pyridine derivatives; pyridothienopyrimidinones and pyridothienotriazinones. Assiut University Journal of Chemistry (AUJC), 45 (1) 47-57.
(206) Youssef M. S. K., Abeed A. A. O., and El Emary T. I. (2017) Synthesis and evaluation of chromene-based compounds containing pyrazole moiety as antimicrobial agents. Heterocycl commun., 23 (1) 55-64.
(207) Abeed A. A. O., Youssef M. S. K., and Rehab Hegazy R. (2017) Synthesis, anti-diabetic and renoprotective activity of some new benzazole, thiazolidin-4-one and azetidin-2-one derivatives. J. Braz. Chem. Soc., 28 (11) 2054-2063.
(208) Bakhite E. A., Abeed A. A. O., and Ahmed O. A. (2017) Fused thieno[2,3-b]pyridines: synthesis and characterization of new condensed pyridothienopyrimidines. Arkivoc, 2017 (4) 121-136.
(209) Abeed A. A. O., El-Emary T. I., and Youssef M. S. K. (2019) A Facile Synthesis and Reactions of Some Novel Pyrazole-based Heterocycles. Curr. Org. Synth., 16 (3) 405-412.
(210) Abeed A. A. O., Abdel Jaleel G. A., and Youssef M. S. K. (2019) Novel Heterocyclic Hybrids Based on 2-Pyrazoline: Synthesis and Assessment of Anti-Inflammatory and Analgesic Activities. Curr. Org. Synth., 16 (6) 921- 930.
(211) Youssef M. S. K., and Omar A. A. (2007) Synthesis and reactions of 5-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-7-phenyl-7H-thiazolo[3,2-a]pyrimidine-6-carbonitrile. Monatsh. Chem., 138 (10) 989-995.
(212) Youssef M. S. K., Abbady M. S. A., Ahmed R. A., and Omar A. A. (2008) Reactions of 4-(2-aminothiazole-4-yl)-3-methyl-5-oxo-1-phenyl-2-pyrazo-line. Synthesis of thiazolo[3,2-a]pyrimidine and imidazo[2,1-b]thiazole derivatives. Monatsh. Chem., 139 (5) 553-559.
(213) Youssef M. S. K., Abbady M. S. A., Ahmed R. A., and Omar A. A. (2011) Preparation and reactions of 2-methyl-7-(3-methyl-5-oxo-1-phenyl-2-pyra- zolin-4-yl)-5-arylthiazolo[3,2-a]pyrimido[4,5-d]oxazin-4(5H)-one. Chin. J. Chem., 29 (7) 1473-1482.
(214) Youssef M. S. K., Abbady M. S. A., Ahmed R. A., and Omar A. A. (2013) Synthesis of some new heterocycles derived from ethyl 7-amino-3-(3-meth- yl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate of biological importance. J. Heterocycl. Chem., 50 (2) 179-187.
(215) Yao Q., Zhou X., Xiao S., Chen J., Abdelhafeez I. A., Yu Z., Chu H., and Zhang Y. (2019) Amorphous nickel phosphide as a noble metal-free cathode for electrochemical dechlorination. Water Res., 165 114930.
(216) Abdelhafeez I. A., Chen J., and Zhou X. (2020) Scalable one-step template-free synthesis of ultralight edge-functionalized g-C3N4 nanosheets with enhanced visible light photocatalytic performance. Sep. Purif. Technol., 250 117085.
(217) Abdelhafeez I. A., Yao Q., Wang C., Su Y., Zhou X., and Zhang Y. (2019) Green synthesis of ultrathin edge-activated foam-like carbon nitride nanosheets for enhanced photocatalytic performance under visible light irradiation. Sustain. Energy Fuels, 3 (7) 1764-1775.
(218) Abdelhafeez I. A., Zhou X., Yao Q., Yu Z., Gong Y., and Chen J. (2020) Multifunctional edge-activated carbon nitride nanosheet-wrapped polydimethylsiloxane sponge skeleton for selective oil absorption and photocatalysis. ACS omega, 5 (8) 4181-4190.
(219) Zhua H., Bennania F. E., Bennanid D., Abdelhafeeza I. A., and Zhua Y. (2020) Removal of typical pollutants from water sources of Chouara Tannery by the integration of coagulation–flocculation and activated carbon treatment. Desalination Water Treat., 196 67-75.
(220) Kuany P. B. G., Zhou X., Abdelhafeez I. A., and Abdelhafez A. A. (2019) OIL CONTAMINATED SOIL, GLOBAL ENVIRONMENTAL IMPACT (OVERVIEW). Internat. J. Sci. Eng., 1 (5) 124-129.
(221) Kuany P. B. G., Zhou X., Abdelhafez A. A., and Abdelhafeez I. A. (2019) Wailing of the people of South Sudan from oil contamination (overview of oil production and effects on people health). Int. j. sci. res. publ., 9 (5) 463-469.
(222) El-Dars F. M. S., El-Tohamy S. A., and Abdelhafeez I. A. (2016) Removal of total petroleum hydrocarbons from contaminated soil via phytoremediation and amended with sugarcane bagasse. J. Biol. Chem. Environ. Sci., 11 (2) 283- 293.