How to cite this paper
Zirak, M., Azinfar, M & Khalili, M. (2017). Three-component reactions of kojic acid: Efficient synthesis of Dihydropyrano[3,2-b]chromenediones and aminopyranopyrans catalyzed with Nano-Bi2O3-ZnO and Nano-ZnO.Current Chemistry Letters, 6(3), 105-116.
Refrences
1 Domling A. (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 106 (1) 17-89.
2 Pratap R., and Ram V. J. (2014) Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev., 114 (20) 10476-10526.
3 Kumar D., Reddy V. B., Sharad S., Dube U., and Kapur S. (2009) A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur. J. Med. Chem., 44 (9) 3805-3809.
4 Shestopalov A. M., Litvinov Y. M., Rodinovskaya L. A., Malyshev O. R., Semenova M. N., and Semenov V. V. (2012) Polyalkoxy substituted 4H-chromenes: Synthesis by domino reaction and anticancer activity. ACS Comb. Sci., 14 (8) 484-490.
5 Bonsignore L., Loy G., Secci D., and Calignano A. (1993) Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem., 28 (6) 517-520.
6 El-Nagger A. M., Abdel-El-Salam A. M., Latif M. S. A., and Ahmed F. S. M. (1981) Synthesis of some biologically active visnagin‐9‐sulfonylamino acid and dipeptide derivatives. Chemischer Informationsdienst. Pol. J. Chem., 55 793-797.
7 Evidente A., Andolfi A., Maddau L., Franceschini A., and Marras F. (2005) Biscopyran, a Phytotoxic Hexasubstituted Pyranopyran Produced by Biscogniauxia mediterranea, a Fungus Pathogen of Cork Oak. J. Nat. Prod., 68 (4) 568-571.
8 Sheldrake H. M., Jamieson C., and Burton J. W. (2006) The Changing Faces of Halogenated Marine Natural Products: Total Synthesis of the Reported Structures of Elatenyne and an Enyne from Laurencia majuscula. Angew. Chem. Int. Ed., 45 (43) 7199-7202.
9 Cakir S. P., Stokes S., Sygula A., and Mead K. T. (2009) Evidence for π-Stacking as a Source of Stereocontrol in the Synthesis of the Core Pyranochromene Ring System common to Calyxin I, Calyxin J, and Epicalyxin J. J. Org. Chem., 74 (19) 7529-7532.
10 Li Y., Meng X., Cai G., Du B., and Zhao B. (2014) CAN-catalyzed synthesis of 10-arylpyrano[3,2-b]chromene-4,9-diones under solvent-free conditions. Res. Chem. Intermed., 40 (2) 699-709.
11 Subba Reddy B. V., Ramana Reddy M., Narasimhulu G. and Yadav J. S. (2010) InCl3-catalyzed three-component reaction: a novel synthesis of dihydropyrano[3,2-b]chromenediones under solvent-free conditions. Tetrahedron Lett., 51 (43) 5677-5679.
12 Li W. L., Wu L. Q., and Yan F. L. (2011) Alum-catalyzed one-pot synthesis of dihydropyrano[3,2-b]chromenediones. J. Braz. Chem. Soc., 22 (11) 2202-2205.
13 Pourshahrestani S. Mohammadpoor‑Baltork I., Moghadam M., Tangestaninejad S., Khosropour A. R., and Mirkhani V. (2015) Bismuth triflate, Bi(OTf)3, as an efficient and reusable catalyst for synthesis of dihydropyrano[3,2-b]chromenediones. J. Iran. Chem. Soc., 12 (4) 573-580.
14 Zhang G., and Qu Y. (2013) CeCl3⋅7H2O/SiO2 as an efficient and recyclable catalyst for the synthesis of dihydropyrano[3,2- b]chromenediones. J. Chem., 1-4.
15 Li W. L., Liang J. Y., Wang T. B. and Yang Y. Q. (2011) FeCl3–SiO2 as heterogeneous catalysts for the preparation of dihydropyrano[3,2-b]chromenediones. Collect. Czech. Chem. Commun., 76 (12) 1791-1797.
16 Maleki A., and Azadegan S. (2017) Preparation and characterization of silica-supported magnetic nanocatalyst and application in the synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives. Inorg. Nano-Met. Chem., 47 (6) 917-924.
17 Banitaba S. H., Safari J., and Dehghan Khalili S. (2013) Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: A complementary ‘green chemistry’ tool to organic synthesis. Ultrasonics Sonochem., 20 (1) 401-407.
18 Nasim Khan M. D., Pal S., Karamthulla S. and Choudhury L. H. (2014) Imidazole as organocatalyst for multicomponent reactions: diversity oriented synthesis of functionalized hetero- and carbocycles using in situ-generated benzylidenemalononitrile derivatives. RSC Adv., 4, 3732-3741.
19 Piaot M. Z., and Imafuku K. (1997) Convenient synthesis of amino-substituted pyranopyranones. Tetrahedron Lett., 38 (30) 5301-5302.
20 Shestopalov A. A., Rodinovskaya L. A., Shestopalov A. M. and Litvinov V. P. (2004) One-step synthesis of substituted 4,8-dihydropyrano[3,2-b]pyran-4-ones. Russ. Chem. Bull. Int. Ed., 53 (3) 724-725.
21 Shitole B., Shitole N., Shingare M., and Kakde G. (2016) An efficient one pot three-component synthesis of dihydropyrano[3,2-c]chromenes using ammonium metavanadate as catalyst. Curr. Chem. Lett., 5 (4) 137-144.
22 Lin C. H., Wu H. L. and Huang Y. L. (2007) Combining high-performance liquid chromatography with on-line microdialysis sampling for the simultaneous determination of ascorbyl glucoside, kojic acid, and niacinamide in bleaching cosmetics. Anal. Chim. Acta., 581 (1) 102-107.
23 Brtko J., Rondah L., Fickova M., Hudecova D., Eyb V., and Uher M. (2004) Kojic acid and its derivatives: history and present state of art. Cent. Eur. J. Pub. Health., 12, S16-S18.
24 Son S. M., Moon K. D. and Lee C. Y. (2001) Inhibitory effects of various antibrowning agents on apple slices. Food Chem., 73 (1) 23-30
25 Chen J. S., Wei C., Rolle R. S., Steven Otwell W., Balaban M. O. and Marshall M. R. (1991) Inhibitory effect of kojic acid on some plant and crustacean polyphenol oxidases. J. Agric. Food Chem., 39 (8) 1396-1401.
26 Buchta K. (1982) Organic acids of minor importance in biotechnology biomass, microorganisms for special application, microbial products, energy from renewable resources. Bioehringer, Ingelheim Federal Republic of Germany, 447.
27 Cao J., Zhu Y., Shi L., Zhu L., Bao K., Liu S., and Qian Y. (2010) Double-Shelled Mn2O3 Hollow Spheres and Their Application in Water Treatment. Eur. J. Inorg. Chem., 2010 (8) 1172-1176
28 Shinde S. S., Bhosale C. H., and Rajpure K. Y. (2011) Photocatalytic activity of sea water using TiO2 catalyst under solar light. J. Photochem. Photobiol. B: Biol., 103 (2) 111-117.
29 Maleki A., Aghaei M., Hafizi-Atabak H. R., and Ferdowsi M. (2017) Ultrasonic treatment of CoFe2O4@B2O3-SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones. Ultrason. Sonochem., 37, 260-266.
30 Bao J., Zimmler M. A., and Capasso F. (2006) Broadband ZnO Single-Nanowire Light-Emitting Diode. Nano Lett., 6 (8) 1719-1722.
31 Eftekhari-sis B., and Zirak M. (2015) Chemistry of α-Oxoesters: A Powerful Tool for the Synthesis of Heterocycles. Chem. Rev., 115 (1) 151-264.
32 Eftekhari-sis B., Zirak M., and Akbari A. (2013) Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 113 (5) 2958-3043
33 Zirak M., and Eftekhari-sis B. (2015) Kojic acid in organic synthesis. Turk. J. Chem., 39, 439-496.
34 Amini M., and Ashrafi M. (2016) Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles. Nano. Chem. Res., 1 (1) 79-86.
35 Cerva H., and Russwurm W. (1988) Microstructure and crystal structure of bismuth oxide phases in zinc oxide varistor ceramics. J. Am. Ceram. Soc., 71 (7) 522-530.
36 Sarrafi Y., Mehrasbi E., and Mashalchi S. Z. (2015) MCM-41-SO3H: an efficient, reusable, heterogeneous catalyst for the one-pot, three-component synthesis of pyrano[3,2-b]pyrans. Res. Chem. Intermed., published online; doi: 10.1007/s11164-015-2275-z.
37 Khan M. N., Pal S., Karamthulla S., and Choudhury L. H. (2014) Imidazole as organocatalyst for multicomponent reactions: diversity oriented synthesis of functionalized hetero-and carbocycles using in situ-generated benzylidenemalononitrile derivatives. RSC Adv., 4 (8) 3732-3741.
2 Pratap R., and Ram V. J. (2014) Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev., 114 (20) 10476-10526.
3 Kumar D., Reddy V. B., Sharad S., Dube U., and Kapur S. (2009) A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur. J. Med. Chem., 44 (9) 3805-3809.
4 Shestopalov A. M., Litvinov Y. M., Rodinovskaya L. A., Malyshev O. R., Semenova M. N., and Semenov V. V. (2012) Polyalkoxy substituted 4H-chromenes: Synthesis by domino reaction and anticancer activity. ACS Comb. Sci., 14 (8) 484-490.
5 Bonsignore L., Loy G., Secci D., and Calignano A. (1993) Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem., 28 (6) 517-520.
6 El-Nagger A. M., Abdel-El-Salam A. M., Latif M. S. A., and Ahmed F. S. M. (1981) Synthesis of some biologically active visnagin‐9‐sulfonylamino acid and dipeptide derivatives. Chemischer Informationsdienst. Pol. J. Chem., 55 793-797.
7 Evidente A., Andolfi A., Maddau L., Franceschini A., and Marras F. (2005) Biscopyran, a Phytotoxic Hexasubstituted Pyranopyran Produced by Biscogniauxia mediterranea, a Fungus Pathogen of Cork Oak. J. Nat. Prod., 68 (4) 568-571.
8 Sheldrake H. M., Jamieson C., and Burton J. W. (2006) The Changing Faces of Halogenated Marine Natural Products: Total Synthesis of the Reported Structures of Elatenyne and an Enyne from Laurencia majuscula. Angew. Chem. Int. Ed., 45 (43) 7199-7202.
9 Cakir S. P., Stokes S., Sygula A., and Mead K. T. (2009) Evidence for π-Stacking as a Source of Stereocontrol in the Synthesis of the Core Pyranochromene Ring System common to Calyxin I, Calyxin J, and Epicalyxin J. J. Org. Chem., 74 (19) 7529-7532.
10 Li Y., Meng X., Cai G., Du B., and Zhao B. (2014) CAN-catalyzed synthesis of 10-arylpyrano[3,2-b]chromene-4,9-diones under solvent-free conditions. Res. Chem. Intermed., 40 (2) 699-709.
11 Subba Reddy B. V., Ramana Reddy M., Narasimhulu G. and Yadav J. S. (2010) InCl3-catalyzed three-component reaction: a novel synthesis of dihydropyrano[3,2-b]chromenediones under solvent-free conditions. Tetrahedron Lett., 51 (43) 5677-5679.
12 Li W. L., Wu L. Q., and Yan F. L. (2011) Alum-catalyzed one-pot synthesis of dihydropyrano[3,2-b]chromenediones. J. Braz. Chem. Soc., 22 (11) 2202-2205.
13 Pourshahrestani S. Mohammadpoor‑Baltork I., Moghadam M., Tangestaninejad S., Khosropour A. R., and Mirkhani V. (2015) Bismuth triflate, Bi(OTf)3, as an efficient and reusable catalyst for synthesis of dihydropyrano[3,2-b]chromenediones. J. Iran. Chem. Soc., 12 (4) 573-580.
14 Zhang G., and Qu Y. (2013) CeCl3⋅7H2O/SiO2 as an efficient and recyclable catalyst for the synthesis of dihydropyrano[3,2- b]chromenediones. J. Chem., 1-4.
15 Li W. L., Liang J. Y., Wang T. B. and Yang Y. Q. (2011) FeCl3–SiO2 as heterogeneous catalysts for the preparation of dihydropyrano[3,2-b]chromenediones. Collect. Czech. Chem. Commun., 76 (12) 1791-1797.
16 Maleki A., and Azadegan S. (2017) Preparation and characterization of silica-supported magnetic nanocatalyst and application in the synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives. Inorg. Nano-Met. Chem., 47 (6) 917-924.
17 Banitaba S. H., Safari J., and Dehghan Khalili S. (2013) Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: A complementary ‘green chemistry’ tool to organic synthesis. Ultrasonics Sonochem., 20 (1) 401-407.
18 Nasim Khan M. D., Pal S., Karamthulla S. and Choudhury L. H. (2014) Imidazole as organocatalyst for multicomponent reactions: diversity oriented synthesis of functionalized hetero- and carbocycles using in situ-generated benzylidenemalononitrile derivatives. RSC Adv., 4, 3732-3741.
19 Piaot M. Z., and Imafuku K. (1997) Convenient synthesis of amino-substituted pyranopyranones. Tetrahedron Lett., 38 (30) 5301-5302.
20 Shestopalov A. A., Rodinovskaya L. A., Shestopalov A. M. and Litvinov V. P. (2004) One-step synthesis of substituted 4,8-dihydropyrano[3,2-b]pyran-4-ones. Russ. Chem. Bull. Int. Ed., 53 (3) 724-725.
21 Shitole B., Shitole N., Shingare M., and Kakde G. (2016) An efficient one pot three-component synthesis of dihydropyrano[3,2-c]chromenes using ammonium metavanadate as catalyst. Curr. Chem. Lett., 5 (4) 137-144.
22 Lin C. H., Wu H. L. and Huang Y. L. (2007) Combining high-performance liquid chromatography with on-line microdialysis sampling for the simultaneous determination of ascorbyl glucoside, kojic acid, and niacinamide in bleaching cosmetics. Anal. Chim. Acta., 581 (1) 102-107.
23 Brtko J., Rondah L., Fickova M., Hudecova D., Eyb V., and Uher M. (2004) Kojic acid and its derivatives: history and present state of art. Cent. Eur. J. Pub. Health., 12, S16-S18.
24 Son S. M., Moon K. D. and Lee C. Y. (2001) Inhibitory effects of various antibrowning agents on apple slices. Food Chem., 73 (1) 23-30
25 Chen J. S., Wei C., Rolle R. S., Steven Otwell W., Balaban M. O. and Marshall M. R. (1991) Inhibitory effect of kojic acid on some plant and crustacean polyphenol oxidases. J. Agric. Food Chem., 39 (8) 1396-1401.
26 Buchta K. (1982) Organic acids of minor importance in biotechnology biomass, microorganisms for special application, microbial products, energy from renewable resources. Bioehringer, Ingelheim Federal Republic of Germany, 447.
27 Cao J., Zhu Y., Shi L., Zhu L., Bao K., Liu S., and Qian Y. (2010) Double-Shelled Mn2O3 Hollow Spheres and Their Application in Water Treatment. Eur. J. Inorg. Chem., 2010 (8) 1172-1176
28 Shinde S. S., Bhosale C. H., and Rajpure K. Y. (2011) Photocatalytic activity of sea water using TiO2 catalyst under solar light. J. Photochem. Photobiol. B: Biol., 103 (2) 111-117.
29 Maleki A., Aghaei M., Hafizi-Atabak H. R., and Ferdowsi M. (2017) Ultrasonic treatment of CoFe2O4@B2O3-SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones. Ultrason. Sonochem., 37, 260-266.
30 Bao J., Zimmler M. A., and Capasso F. (2006) Broadband ZnO Single-Nanowire Light-Emitting Diode. Nano Lett., 6 (8) 1719-1722.
31 Eftekhari-sis B., and Zirak M. (2015) Chemistry of α-Oxoesters: A Powerful Tool for the Synthesis of Heterocycles. Chem. Rev., 115 (1) 151-264.
32 Eftekhari-sis B., Zirak M., and Akbari A. (2013) Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 113 (5) 2958-3043
33 Zirak M., and Eftekhari-sis B. (2015) Kojic acid in organic synthesis. Turk. J. Chem., 39, 439-496.
34 Amini M., and Ashrafi M. (2016) Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles. Nano. Chem. Res., 1 (1) 79-86.
35 Cerva H., and Russwurm W. (1988) Microstructure and crystal structure of bismuth oxide phases in zinc oxide varistor ceramics. J. Am. Ceram. Soc., 71 (7) 522-530.
36 Sarrafi Y., Mehrasbi E., and Mashalchi S. Z. (2015) MCM-41-SO3H: an efficient, reusable, heterogeneous catalyst for the one-pot, three-component synthesis of pyrano[3,2-b]pyrans. Res. Chem. Intermed., published online; doi: 10.1007/s11164-015-2275-z.
37 Khan M. N., Pal S., Karamthulla S., and Choudhury L. H. (2014) Imidazole as organocatalyst for multicomponent reactions: diversity oriented synthesis of functionalized hetero-and carbocycles using in situ-generated benzylidenemalononitrile derivatives. RSC Adv., 4 (8) 3732-3741.