How to cite this paper
Shitole, B., Shitole, N., Shingare, M & Kakde, G. (2016). An efficient one pot three-component synthesis of dihydropyrano[3,2-c] chromenes using ammonium metavanadate as catalyst.Current Chemistry Letters, 5(4), 137-144.
Refrences
1. (a) Orru R. V. A., de Greef, M. (2003) Recent Advances in Solution-Phase Multicomponent Methodology for the Synthesis of Heterocyclic Compounds. Synthesis, 10, 1471-1499; (b) Balme G., Bossharth E., Monteiro N. (2003) Pd-Assisted Multicomponent Synthesis of Heterocycles. Eur. J. Org. Chem., 21 4101-4111; (c) Brase S., Gil, C., Knepper K. (2002) The recent impact of solid-phase synthesis on medicinally relevant benzoannelated nitrogen heterocycles. Bioorg. Med. Chem. 10(8), 2415-2437.
2. (a) Weber L. (2002) Multi-component reactions and evolutionary chemistry. Drug Discovery. Today, 7(2), 143-147. (b) Domling A. (2002) Recent advances in isocyanide-based multicomponent chemistry. Curr. Opin. Chem. Biol., 6(3), 306-313.
3. Boumoud A., Yahiaoui A., Boumoud T.,Debache A. A. (2012) Novel Catalyst for One-pot Synthesis of Tetrahydrobenzo[b]pyran derivatives. J. Chem. Pharm. Res., 4(1), 795-799.
4. Bhargavaand D. and Garg G. (2011) Design, synthesis and insilico pharmacokinetic studies of some coumarinan alogues. J. Chem. Pharm. Res., 3(2), 50-57.
5. Faidallah H., Khan K., and Asiri A. (2011) Synthesis and characterization of anovel series of benzene sulfonylurea and thiourea derivatives of 2H-pyran and 2H-pyridine-2-ones as antibacterial, antimycobacterial and antifungalagents. Eur. J. Chem., 2(2), 243-250.
6. Hafez E. A. A., Elnagdi M. H., Elagamey A. G. A., and E. L-Taweel F. M. A. A. (1987) Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]-Coumarinand of Benzo[c]Pyrano[3,2-c]Quinoline Derivatives. Heterocycles. 26(4), 903-907.
7. Foye W. O. (1991) Principi di Chimica Farmaceutica, Piccin: Padova, Italy.
8. Tanabe A., Nakashima H., Yoshida O., Yamamoto N., Tenmyo O., and Oki T. (1988) Inhibitory Effect of New Antibiotic, Pradimicin A on Infectivity, Cytopathic Effect and Replication of Human Immunodeficiency Virus in Vitro. J. Antibiot., 41(11), 1708-1710.
9. Shijay G., Cheng H. T., Chi T., and Ching-Fa Y. (2008) FluorideIon Catalyzed Multicomponet Reactions for Efficient Synthesis of 4H-Chromene and N-Arylquinoline Derivates in Aqueous Media, Tetrahedron, 64(38), 9143-9149.
10. Bolognese A., Correale G., Manfra M., Lavecchia A., Mazzoni O., Novellino E., La colla P., Sanna G., and Loddo R. (2004) Antitumor Agents, Design, Synthesis, and Biological Evaluation of New Pyridoisoquinolindione and Dihydrothieno quinolindione Derivatives with Potent Cytotoxic Activity. J. Med. Chem. 47(4), 849-858.
11. Bayer T. A., Schafer S., Breyh H., Breyhan O., Wirths C., and Treiber G. A. (2006) A Vicious Circle: Role of Oxidative Stress, Intraneuronal Aβ and Cu in Alzheimer's Disease Multhaup. Clin Neuropathol., 25(4), 163-171.
12. Fokialakis N., Magiatis P., Chinou L., Mitaka S., and Tillequin F. (2002) Megistoquinones I II, Two Quinoline Alkaloids with Antibacterial Activity from the Bark of Sarcomelicope megistophylla. Chem. Pharm. Bull., 50(3), 413-414.
13. Beagley P., Blackie M. A. L., Chibale K., Clarkson C., Meijboom R., Moss J. R., Smith P., and Su, H. (2003) Synthesis and Antiplasmodial Activity in Vitro of New Ferrocene-Chloroquine Analogues, Dalton Trans, 3046-3051.
14. Morgan L. R., Jursic B. S., Hooper C. L., NeumannD. M., Thangaraj K., and Leblance B. (2002) Anticancer Activity for 4,4_-Dihydroxybenzophenone-2,4-Dinitrophenylhydrazone (A-007) Analogues and Their Abilities to Iinteract with Lymphoendothelial Cell Surface Markers. Bioorg. Med. Chem. Lett., 12(23), 3407-3411.
15. Biot C., Glorian G., Maciejewski L. A., BrocardJ. S., Domarle O., Blampain G., Blampain G., Blampain P., Georges A. J., Abessolo H., Dive D., and Lebibi J. (1997) Synthesis and Antimalarial Activity in Vitro and in Vivo of a New Ferrocene-Chloroquine Analogue. J. Med. Chem., 40(23) , 3715-3718.
16. Abdolmohammadi S., and Balalaie S. (2007) Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Tetrahedron Lett. 48(18) 3299–3303.
17. Heravi M. M., Jani B. A. Derikvand F., Bamohar-ram F. F., and OskooieH. A., (2008) Three component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives in the presence of H6P2W18O62•18H2O as a green and recyclable catalyst. Catal. Commun. 10(3), 272–275.
18. Khurana, J. M., and Kumar, S. (2009) Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett. 50(28), 4125–4127.
19. Wang H. J., Lu, J., and Zhang Z. H. (2010) Highly efficient three component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives. Monatsh. Chem. 141(10), 1107–1112.
20. Khurana J. M., Nand, B., and Saluja, P. (2010) DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H-benzo[g]chromenes inaqueous medium. Tetrahedron, 66(30), 5637–5641.
21. Mehrabi H., and Abusaidi H. (2010) Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by sodiumdodecyl sulfate (SDS) in neat water. J. Iran. Chem. Soc., 7(4), 890–894.
22. Zheng, J., and Li, Y. (2011) Basic ionic liquid-catalyzed multicomponentsynthesis of tetrahydrobenzo[b]pyrans and pyrano[c]chromenes, Mendeleev Commun. 21(5), 280–281.
23. Nagabhushana H., Saundalkar S. S., Muralidhar L., Nagab-hushana B. M., Girija C.R., Nagaraja D., Pasha M. A., and Jayashankara V. P. (2011) α-Fe2O3nanoparticles: an efficient, inexpensive catalyst for theone-pot preparation of 3,4-dihydropyrano[c]chromenes. Chin. Chem. Lett., 22(2), 143–146.
24. Khan A. T., Lal M., Ali S., and Khan M. M. (2011) One-pot three-component reaction for the synthesis of pyran annulated heterocyclic com-pounds using DMAP as a catalyst, Tetrahedron Lett. 52(41), 5327–5332.
25. Mehrabi H., and Kazemi-Mireki M. (2011) CuO nanoparticles: an efficient and recyclable nanocatalyst for the rapid and green synthesisof 3,4-dihydropyrano[c]chromenes, Chin. Chem. Lett. 22(12), 1419–1422.
26. Niknam K., and Jamali, A. (2012) Silica-bonded N-propylpiperazine sodiumn-propionate as recyclable basic catalyst for synthesis of 3,4-dihydropyrano[c]chromene derivatives and biscoumarins, Chin. J. Catal. 33(11), 1840–1849.
27. Niknam, K., and Piran, A. (2013) Silica-grafted ionic liquids as recyclable catalysts for the synthesis of 3,4-dihydropyrano[c]chromenes and pyrano[2,3-c]pyrazoles, Green Sustain. Chem. 3, 1–8.
28. Kiyani H., and Ghorbani F. (2015)Potassium phthalimide: an effi-cient and simple organocatalyst for the one-pot synthesis of dihydropyrano[3,2-c]chromenes in aqueous media, Res. Chem. Intermed 41(6), 4031-4046
29. Wang Y., Luo, J., Xing, T., and Liu, Z. (2013) Synthesis of a novel piperidine-functionalized poly(ethylene glycol) bridged dicationic ionicliquid and its application in one-pot synthesis of substituted 2-amino-2-chromenes and 3,4-dihydropyrano[3,2-c]chromenes inaqueous media, Monatsh. Chem., 144(12), 1871–1876.
30. Patel J. P., Avalani J. R., and Raval D. K. (2013) Polymer supported sulphanilic acid: a highly efficient and recyclable green heteroge-neous catalyst for the construction of 4,5-dihydropyrano[3,2-c]chromenes under solvent-free conditions, J. Chem. Sci. 125(3), 531–536.
31. Patel D. S., Avalani J. R., and Raval D. K. (2013) One-pot solvent-free rapid and green synthesis of 3,4-dihydropyrano[c]chromenesusing grindstone chemistry. J. Saudi Chem. Soc. http://dx.doi.org/10.1016/j.jscs.2012.12.008
32. Kanakaraju S., Prasanna B., Basavoju S., and Chandramouli G. V. P. (2013) Ammonium acetate catalyzed an efficient one-pot three com-ponent synthesis of pyrano[3,2-c]chromene derivatives. Arab. J. Chem. http://dx.doi.org/10.1016/j.arabjc.2013.10.014
33. Shaterian H. R., and Rigi F. (2014) New applications of cellulose-SO3H as a bio-supported and biodegradable catalyst for the one-pot synthesis of some three-component reactions, Res. Chem. Intermed. 40(8), 2983–2999
34. Vafajoo Z., Veisi H., Maghsoodlou M. T., and Ahmadian H. (2014) Electrocatalytic multicomponent assembling of aldehydes,4-hydroxycoumarin and malononitrile: an efficient approach to 2-amino-5-oxo-4,5-dihydropyrano [3,2-c]chromene-3-carbonitrilederivatives, C. R. Chim. 17(4), 301–304.
35. Brahmachari G., and Banerjee B. (2014) Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyransand pyran-annulated heterocyclic scaffolds via an eco-friendly multi component reaction at room temperature using urea as anovel organo-catalyst. Sustain. Chem. Eng., 2(3), 411–422.
36. Synecek V., and Hanic F. (1954) J. Phys., 4, 120-130.
37. Stellman, J. M. (1998) In Encyclopaedia of Occupational Health and Safety, Fourth Edition, Geneva. vol III, 63.43
38. (a) Garcia T., Solsona B., Murphy D. M., Antcliff K. L., and Taylor S. H. (2005) Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts. J. of Catalysis, 229(1), 1-11. (b) Reddy, B. M., Ratnam, K. J., Saikia, P. (2006) Characterization of CaO–TiO2 and V2O5/CaO–TiO2 catalysts and their activity for cyclohexanol conversion. J. Mol. Catal. A: Chemical, 252(1), 238-244. (c) Reddy B. M., Rao K. N., Reddy G. K,. Bharali, P. (2006) Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole. J. Mol. Catal. A: Chemical, 253(1), 44-51.
2. (a) Weber L. (2002) Multi-component reactions and evolutionary chemistry. Drug Discovery. Today, 7(2), 143-147. (b) Domling A. (2002) Recent advances in isocyanide-based multicomponent chemistry. Curr. Opin. Chem. Biol., 6(3), 306-313.
3. Boumoud A., Yahiaoui A., Boumoud T.,Debache A. A. (2012) Novel Catalyst for One-pot Synthesis of Tetrahydrobenzo[b]pyran derivatives. J. Chem. Pharm. Res., 4(1), 795-799.
4. Bhargavaand D. and Garg G. (2011) Design, synthesis and insilico pharmacokinetic studies of some coumarinan alogues. J. Chem. Pharm. Res., 3(2), 50-57.
5. Faidallah H., Khan K., and Asiri A. (2011) Synthesis and characterization of anovel series of benzene sulfonylurea and thiourea derivatives of 2H-pyran and 2H-pyridine-2-ones as antibacterial, antimycobacterial and antifungalagents. Eur. J. Chem., 2(2), 243-250.
6. Hafez E. A. A., Elnagdi M. H., Elagamey A. G. A., and E. L-Taweel F. M. A. A. (1987) Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]-Coumarinand of Benzo[c]Pyrano[3,2-c]Quinoline Derivatives. Heterocycles. 26(4), 903-907.
7. Foye W. O. (1991) Principi di Chimica Farmaceutica, Piccin: Padova, Italy.
8. Tanabe A., Nakashima H., Yoshida O., Yamamoto N., Tenmyo O., and Oki T. (1988) Inhibitory Effect of New Antibiotic, Pradimicin A on Infectivity, Cytopathic Effect and Replication of Human Immunodeficiency Virus in Vitro. J. Antibiot., 41(11), 1708-1710.
9. Shijay G., Cheng H. T., Chi T., and Ching-Fa Y. (2008) FluorideIon Catalyzed Multicomponet Reactions for Efficient Synthesis of 4H-Chromene and N-Arylquinoline Derivates in Aqueous Media, Tetrahedron, 64(38), 9143-9149.
10. Bolognese A., Correale G., Manfra M., Lavecchia A., Mazzoni O., Novellino E., La colla P., Sanna G., and Loddo R. (2004) Antitumor Agents, Design, Synthesis, and Biological Evaluation of New Pyridoisoquinolindione and Dihydrothieno quinolindione Derivatives with Potent Cytotoxic Activity. J. Med. Chem. 47(4), 849-858.
11. Bayer T. A., Schafer S., Breyh H., Breyhan O., Wirths C., and Treiber G. A. (2006) A Vicious Circle: Role of Oxidative Stress, Intraneuronal Aβ and Cu in Alzheimer's Disease Multhaup. Clin Neuropathol., 25(4), 163-171.
12. Fokialakis N., Magiatis P., Chinou L., Mitaka S., and Tillequin F. (2002) Megistoquinones I II, Two Quinoline Alkaloids with Antibacterial Activity from the Bark of Sarcomelicope megistophylla. Chem. Pharm. Bull., 50(3), 413-414.
13. Beagley P., Blackie M. A. L., Chibale K., Clarkson C., Meijboom R., Moss J. R., Smith P., and Su, H. (2003) Synthesis and Antiplasmodial Activity in Vitro of New Ferrocene-Chloroquine Analogues, Dalton Trans, 3046-3051.
14. Morgan L. R., Jursic B. S., Hooper C. L., NeumannD. M., Thangaraj K., and Leblance B. (2002) Anticancer Activity for 4,4_-Dihydroxybenzophenone-2,4-Dinitrophenylhydrazone (A-007) Analogues and Their Abilities to Iinteract with Lymphoendothelial Cell Surface Markers. Bioorg. Med. Chem. Lett., 12(23), 3407-3411.
15. Biot C., Glorian G., Maciejewski L. A., BrocardJ. S., Domarle O., Blampain G., Blampain G., Blampain P., Georges A. J., Abessolo H., Dive D., and Lebibi J. (1997) Synthesis and Antimalarial Activity in Vitro and in Vivo of a New Ferrocene-Chloroquine Analogue. J. Med. Chem., 40(23) , 3715-3718.
16. Abdolmohammadi S., and Balalaie S. (2007) Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Tetrahedron Lett. 48(18) 3299–3303.
17. Heravi M. M., Jani B. A. Derikvand F., Bamohar-ram F. F., and OskooieH. A., (2008) Three component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives in the presence of H6P2W18O62•18H2O as a green and recyclable catalyst. Catal. Commun. 10(3), 272–275.
18. Khurana, J. M., and Kumar, S. (2009) Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett. 50(28), 4125–4127.
19. Wang H. J., Lu, J., and Zhang Z. H. (2010) Highly efficient three component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives. Monatsh. Chem. 141(10), 1107–1112.
20. Khurana J. M., Nand, B., and Saluja, P. (2010) DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4H-benzo[h]chromenes and 2-amino-4H-benzo[g]chromenes inaqueous medium. Tetrahedron, 66(30), 5637–5641.
21. Mehrabi H., and Abusaidi H. (2010) Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by sodiumdodecyl sulfate (SDS) in neat water. J. Iran. Chem. Soc., 7(4), 890–894.
22. Zheng, J., and Li, Y. (2011) Basic ionic liquid-catalyzed multicomponentsynthesis of tetrahydrobenzo[b]pyrans and pyrano[c]chromenes, Mendeleev Commun. 21(5), 280–281.
23. Nagabhushana H., Saundalkar S. S., Muralidhar L., Nagab-hushana B. M., Girija C.R., Nagaraja D., Pasha M. A., and Jayashankara V. P. (2011) α-Fe2O3nanoparticles: an efficient, inexpensive catalyst for theone-pot preparation of 3,4-dihydropyrano[c]chromenes. Chin. Chem. Lett., 22(2), 143–146.
24. Khan A. T., Lal M., Ali S., and Khan M. M. (2011) One-pot three-component reaction for the synthesis of pyran annulated heterocyclic com-pounds using DMAP as a catalyst, Tetrahedron Lett. 52(41), 5327–5332.
25. Mehrabi H., and Kazemi-Mireki M. (2011) CuO nanoparticles: an efficient and recyclable nanocatalyst for the rapid and green synthesisof 3,4-dihydropyrano[c]chromenes, Chin. Chem. Lett. 22(12), 1419–1422.
26. Niknam K., and Jamali, A. (2012) Silica-bonded N-propylpiperazine sodiumn-propionate as recyclable basic catalyst for synthesis of 3,4-dihydropyrano[c]chromene derivatives and biscoumarins, Chin. J. Catal. 33(11), 1840–1849.
27. Niknam, K., and Piran, A. (2013) Silica-grafted ionic liquids as recyclable catalysts for the synthesis of 3,4-dihydropyrano[c]chromenes and pyrano[2,3-c]pyrazoles, Green Sustain. Chem. 3, 1–8.
28. Kiyani H., and Ghorbani F. (2015)Potassium phthalimide: an effi-cient and simple organocatalyst for the one-pot synthesis of dihydropyrano[3,2-c]chromenes in aqueous media, Res. Chem. Intermed 41(6), 4031-4046
29. Wang Y., Luo, J., Xing, T., and Liu, Z. (2013) Synthesis of a novel piperidine-functionalized poly(ethylene glycol) bridged dicationic ionicliquid and its application in one-pot synthesis of substituted 2-amino-2-chromenes and 3,4-dihydropyrano[3,2-c]chromenes inaqueous media, Monatsh. Chem., 144(12), 1871–1876.
30. Patel J. P., Avalani J. R., and Raval D. K. (2013) Polymer supported sulphanilic acid: a highly efficient and recyclable green heteroge-neous catalyst for the construction of 4,5-dihydropyrano[3,2-c]chromenes under solvent-free conditions, J. Chem. Sci. 125(3), 531–536.
31. Patel D. S., Avalani J. R., and Raval D. K. (2013) One-pot solvent-free rapid and green synthesis of 3,4-dihydropyrano[c]chromenesusing grindstone chemistry. J. Saudi Chem. Soc. http://dx.doi.org/10.1016/j.jscs.2012.12.008
32. Kanakaraju S., Prasanna B., Basavoju S., and Chandramouli G. V. P. (2013) Ammonium acetate catalyzed an efficient one-pot three com-ponent synthesis of pyrano[3,2-c]chromene derivatives. Arab. J. Chem. http://dx.doi.org/10.1016/j.arabjc.2013.10.014
33. Shaterian H. R., and Rigi F. (2014) New applications of cellulose-SO3H as a bio-supported and biodegradable catalyst for the one-pot synthesis of some three-component reactions, Res. Chem. Intermed. 40(8), 2983–2999
34. Vafajoo Z., Veisi H., Maghsoodlou M. T., and Ahmadian H. (2014) Electrocatalytic multicomponent assembling of aldehydes,4-hydroxycoumarin and malononitrile: an efficient approach to 2-amino-5-oxo-4,5-dihydropyrano [3,2-c]chromene-3-carbonitrilederivatives, C. R. Chim. 17(4), 301–304.
35. Brahmachari G., and Banerjee B. (2014) Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyransand pyran-annulated heterocyclic scaffolds via an eco-friendly multi component reaction at room temperature using urea as anovel organo-catalyst. Sustain. Chem. Eng., 2(3), 411–422.
36. Synecek V., and Hanic F. (1954) J. Phys., 4, 120-130.
37. Stellman, J. M. (1998) In Encyclopaedia of Occupational Health and Safety, Fourth Edition, Geneva. vol III, 63.43
38. (a) Garcia T., Solsona B., Murphy D. M., Antcliff K. L., and Taylor S. H. (2005) Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts. J. of Catalysis, 229(1), 1-11. (b) Reddy, B. M., Ratnam, K. J., Saikia, P. (2006) Characterization of CaO–TiO2 and V2O5/CaO–TiO2 catalysts and their activity for cyclohexanol conversion. J. Mol. Catal. A: Chemical, 252(1), 238-244. (c) Reddy B. M., Rao K. N., Reddy G. K,. Bharali, P. (2006) Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole. J. Mol. Catal. A: Chemical, 253(1), 44-51.