How to cite this paper
Obidat, A., Alziyadat, Z & Alabaddi, Z. (2023). Assessing the effect of business intelligence on supply chain agility. A perspective from the Jordanian manufacturing sector.Uncertain Supply Chain Management, 11(1), 61-70.
Refrences
Ahmad, H., & Mustafa, H. (2022). The impact of artificial intelligence, big data analytics and business intelligence on transforming capability and digital transformation in Jordanian telecommunication firms. International Journal of Data and Network Science, 6(3), 727-732. http://dx.doi.org/10.5267/j.ijdns.2022.3.009
Ajibade, P., Ondari-Okemwa, E., & Matlhako, M. (2019). Information technology integration for accelerated knowledge sharing practices: challenges and prospects for small and medium enterprises. Problems and Perspectives in Management, 17(4), 131-140. http://dx.doi.org/10.21511/ppm.17(4).2019.11
Al-Maaitah, M. A. (2018). Impact of business intelligence competencies on the organizational capabilities in Jordanian banks. Journal of Computer Science, 14(8), 1144-1154. https://doi.org/10.3844/jcssp.2018.1144.1154
Al-Nazer, N. (2022). A study on the relationship between supply chain integration and firm performance. Uncertain Supply Chain Management, 10(2), 295-302. http://dx.doi.org/10.5267/j.uscm.2022.2.003
Al Humdan, E., Shi, Y., Behnia, M., & Najmaei, A. (2020). Supply chain agility: A systematic review of definitions, enablers and performance implications. International Journal of Physical Distribution & Logistics Management, 50(2), 287-312. https://doi.org/10.1108/IJPDLM-06-2019-0192
Asghari, P., Salehi, M., & Niaz Azari, K. (2018). Modeling competency management for organizational agility at Islamic Azad University of Tehran. Iranian journal of educational sociology, 1(9), 79-90.
Awan, U., Bhatti, S. H., Shamim, S., Khan, Z., Akhtar, P., & Balta, M. E. (2022). The role of big data analytics in manufacturing agility and performance: Moderation–mediation analysis of organizational creativity and of the involvement of customers as data analysts. British Journal of Management, 33(3), 1200-1220. https://doi.org/10.1111/1467-8551.12549
Awawdeh, H., Abulaila, H., Alshanty, A., & Alzoubi, A. (2022). Digital entrepreneurship and its impact on digital supply chains: The mediating role of business intelligence applications. International Journal of Data and Network Science, 6(1), 233-242. http://dx.doi.org/10.5267/j.ijdns.2021.9.005
Bag, S., Wood, L. C., Mangla, S. K., & Luthra, S. (2020). Procurement 4.0 and its implications on business process performance in a circular economy. Resources, Conservation and Recycling, 152, 104502. https://doi.org/10.1016/j.resconrec.2019.104502
Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99-120. https://doi.org/10.1177/014920639101700108
Basten, D., & Haamann, T. (2018). Approaches for organizational learning: A literature review. SAGE Open, 8(3), 1-20. https://doi.org/10.1177/2158244018794224
Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International Journal of Research in Marketing, 13(2), 139-161. https://doi.org/10.1016/0167-8116(95)00038-0
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological bulletin, 88(3), 588–606. https://doi.org/10.1037/0033-2909.88.3.588
Bicocchi, N., Cabri, G., Mandreoli, F., & Mecella, M. (2019). Dynamic digital factories for agile supply chains: An architectural approach. Journal of Industrial Information Integration, 15, 111-121. https://doi.org/10.1016/j.jii.2019.02.001
Burin, A., Perez-Arostegui, M. N., & Llorens-Montes, J. (2020). Ambidexterity and IT competence can improve supply chain flexibility? A resource orchestration approach. Journal of Purchasing and Supply Management, 26(2), 100610. https://doi.org/10.1016/j.pursup.2020.100610
Campos, D. F., Lima Jr, J. T. d. A., Silva, A. B. d., & Fernandes, A. J. (2019). Professional competencies in supply chain management in the mid-sized supermarket sector in Brazil. Supply Chain Management: An International Journal, 24(3), 405-416. https://doi.org/10.1108/SCM-02-2018-0081
Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of business intelligence technology. Communications of the ACM, 54(8), 88-98. http://doi.acm.org/10.1145/1978542.1978562
Chen, C.-J. (2019). Developing a model for supply chain agility and innovativeness to enhance firms’ competitive advantage. Management Decision, 57(7), 1511-1534. 10.1108/MD-12-2017-1236
Costa, R., Dias, Á., Pereira, L., Santos, J., & Capelo, A. (2020). The impact of artificial intelligence on commercial management. Problems and Perspectives in Management, 17(4), 441-452. http://dx.doi.org/10.21511/ppm.17(4).2019.36
Craighead, C. W., Ketchen Jr., D. J., & Darby, J. L. (2020). Pandemics and supply chain management research: toward a theoretical toolbox. Decision Sciences, 51(4), 838-866. https://doi.org/10.1111/deci.12468
Dedić, N., & Stanier, C. (2017). Measuring the success of changes to Business Intelligence solutions to improve Business Intelligence reporting. Journal of Management Analytics, 4(2), 130-144. https://doi.org/10.1080/23270012.2017.1299048
Dehgani, R., & Jafari Navimipour, N. (2019). The impact of information technology and communication systems on the agility of supply chain management systems. Kybernetes, 48(10), 2217-2236. https://doi.org/10.1108/MD-12-2017-1236
Derwik, P., & Hellström, D. (2017). Competence in supply chain management: A systematic review. Supply Chain Management: An International Journal, 22(2), 200-218. https://doi.org/10.1108/SCM-09-2016-0324
Du, Y., Hu, X., & Vakil, K. (2021). Systematic literature review on the supply chain agility for manufacturer and consumer. International Journal of Consumer Studies, 45(4), 581-616. https://doi.org/10.1111/ijcs.12645
Duche-Pérez, A. B., Marallano-Povis, A. O., Gálvez-Galarza, P. V., Andia-Gonzales, B. G., Jaime-Zavala, M. K., Montesinos-Torres, M. C., & Tomaylla-Quispe, Y. S. (2022). Information and communication technology in the application of strategies for supply chain management in business: A systematic review of the literature. Paper presented at the Innovation and Research - A Driving Force for Socio-Econo-Technological Development, Cham. https://doi.org/10.1007/978-3-031-11438-0_40
Elgendy, A. (2021). The mediating effect of big data analysis on the process orientation and information system software to improve supply chain process in Saudi Arabian industrial organizations. International Journal of Data and Network Science, 5(2), 135-142. http://dx.doi.org/10.5267/j.ijdns.2021.1.003
Ellram, L. M., Tate, W. L., & Feitzinger, E. G. (2013). Factor-market rivalry and competition for supply chain resources. Journal of Supply Chain Management, 49(1), 29-46. https://doi.org/10.1111/jscm.12001
Fayezi, S., Zutshi, A., & O'Loughlin, A. (2017). Understanding and development of supply chain agility and flexibility: A structured literature review. International Journal of Management Reviews, 19(4), 379-407. https://doi.org/10.1111/ijmr.12096
Ganguly, A., Talukdar, A., & Chatterjee, D. (2019). Evaluating the role of social capital, tacit knowledge sharing, knowledge quality and reciprocity in determining innovation capability of an organization. Journal of Knowledge Management, 23(6), 1105-1135. https://doi.org/10.1108/JKM-03-2018-0190
Gligor, D., Gligor, N., Holcomb, M., & Bozkurt, S. (2019). Distinguishing between the concepts of supply chain agility and resilience. The International Journal of Logistics Management, 30(2), 467-487. https://doi.org/10.1108/IJLM-10-2017-0259
Hair, J., Babin, B., Anderson, R., & Black, W. (2018). Multivariate data analysis (8th ed.). India: Cengage.
Hamid, A., Sami, W., & Sidek, M. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series, 890 (1), 012163. https://doi.org/10.1088/1742-6596/890/1/012163
Hou, C.-K. (2020). The effects of IT infrastructure integration and flexibility on supply chain capabilities and organizational performance: An empirical study of the electronics industry in Taiwan. Information Development, 36(4), 576-602. https://doi.org/10.1177/0266666919884352
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Irfan, M., Wang, M., & Akhtar, N. (2019). Impact of IT capabilities on supply chain capabilities and organizational agility: A dynamic capability view. Operations Management Research, 12(3), 113-128. https://doi.org/10.1007/s12063-019-00142-y
Ivanov, D., Sokolov, B., & Kaeschel, J. (2010). A multi-structural framework for adaptive supply chain planning and operations control with structure dynamics considerations. European Journal of Operational Research, 200(2), 409-420. https://doi.org/10.1016/j.ejor.2009.01.002
Jayakrishnan, M., Mohamad, A. K., & Yusof, M. M. (2022). Railway supply chain excellence through the mediator role of business intelligence: Knowledge management approach towards information system. Uncertain Supply Chain Management, 10(1), 125-136. http://dx.doi.org/10.5267/j.uscm.2021.10.003
Jermsittiparsert, K., Sutduean, J., Sriyakul, T., & Khumboon, R. (2019). The role of customer responsiveness in improving the external performance of an agile supply chain. Polish journal of management studies, 19(2), 206-217. https://doi.org/10.17512/pjms.2019.19.2.17
Kaur, K. (2021). Business intelligence on supply chain responsiveness and agile performance: empirical evidence from Malaysian logistics industry. International Journal of Supply Chain Management, 6(2), 31-63. https://doi.org/10.47604/ijscm.1351
Kline, R. (2015). Principles and practice of structural equation modeling (4th ed.). New York: The Guilford Press.
Koberg, E., & Longoni, A. (2019). A systematic review of sustainable supply chain management in global supply chains. Journal of Cleaner Production, 207, 1084-1098. https://doi.org/10.1016/j.jclepro.2018.10.033
Kostic, Z. (2018). Innovation and digital transformation as a competition catalyst. Ekonomika, Journal for Economic Theory and Practice and Social Issues, 64(1), 13-24. http://dx.doi.org/10.22004/ag.econ.290212
Leighton, K., Kardong-Edgren, S., Schneidereith, T., & Foisy-Doll, C. (2021). Using social media and snowball sampling as an alternative recruitment strategy for research. Clinical Simulation in Nursing, 55, 37-42. https://doi.org/10.1016/j.ecns.2021.03.006
Lennerholt, C., Van Laere, J., & Söderström, E. (2021). User-related challenges of self-service business intelligence. Information Systems Management, 38(4), 309-323. https://doi.org/10.1080/10580530.2020.1814458
Li, X., Chung, C., Goldsby, T. J., & Holsapple, C. W. (2008). A unified model of supply chain agility: The work‐design perspective. The International Journal of Logistics Management, 19(3), 408-435. https://doi.org/10.1108/09574090810919224
Miller, G. J. (2019). Quantitative comparison of big data analytics and business intelligence project success factors. Paper presented at the Information Technology for Management: Emerging Research and Applications, Cham. https://doi.org/10.1007/978-3-030-15154-6_4
Mudzana, T., & Maharaj, M. (2017). Prioritizing the factors influencing the success of business intelligence systems: A Delphi study. Indian Journal of Science and Technology, 10(25), 1-6. https://dx.doi.org/10.17485/ijst/2017/v10i25/99981
Mukhsin, M., & Suryanto, T. (2021). The effect of supply agility mediation through the relationship between trust and commitment on supply chain performance. Uncertain Supply Chain Management, 9(3), 555-562. http://dx.doi.org/10.5267/j.uscm.2021.6.006
Norderval, S., Rydningen, M. B., Falk, R. S., Stordahl, A., & Johannessen, H. H. (2019). Strong agreement between interview-obtained and self-administered Wexner and St. Mark’s scores using a single questionnaire. International Urogynecology Journal, 30(12), 2101-2108. https://doi.org/10.1007/s00192-019-03945-6
O’Leary, D. E. (2020). Evolving information systems and technology research issues for COVID-19 and other pandemics. Journal of Organizational Computing and Electronic Commerce, 30(1), 1-8. https://doi.org/10.1080/10919392.2020.1755790
Pasaribu, F., Bulan, T., Muhar, A., & Astuty, W. (2022). Supply chain management of entrepreneurial competence through cultural orientation and cross cultural competence. Uncertain Supply Chain Management, 10(2), 417-424. http://dx.doi.org/10.5267/j.uscm.2021.12.010
Phutthiwat, W., Wissawa, A., Sittichai, P., & Phichitphol, S. (2020). Supply chain business intelligence and the supply chain performance: The mediating role of supply chain agility. International Journal of Supply Chain Management, 9(2), 368-375.
Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., & Rupprecht, L. (2018, 2018//). Process forecasting: Towards proactive business process management. Paper presented at the Business Process Management, Cham. https://doi.org/10.1007/978-3-319-98648-7_29
Pono, M., & Munizu, M. (2021). The role of company competitiveness as mediation variable the impact of supply chain practices on operational performance. Uncertain Supply Chain Management, 9(1), 125-132. http://dx.doi.org/10.5267/j.uscm.2020.11.002
Prahalad, C. K., & Hamel, G. (2009). The core competence of the corporation. In M. Zack (Ed.), Knowledge and strategy (pp. 41-59): Routledge
Richter, L., Lehna, M., Marchand, S., Scholz, C., Dreher, A., Klaiber, S., & Lenk, S. (2022). Artificial intelligence for electricity supply chain automation. Renewable and Sustainable Energy Reviews, 163, 112459. https://doi.org/10.1016/j.rser.2022.112459
Riyadi, S., Munizu, M., & Arif, D. (2021). Supply chain performance as a mediating variable effect of information technology on company competitiveness. Uncertain Supply Chain Management, 9(4), 811-822. http://dx.doi.org/10.5267/j.uscm.2021.8.008
Saidaxmedovna, U. (2022). Cultural competence as a factor of successful professional activities. EPRA International Journal of Research and Development (IJRD), 7(2), 25-27.
Sakas, D., Nasiopoulos, D., & Taratuhina, Y. (Eds.). (2021). Business intelligence and modelling: Springer Cham.
Sakib, N., Ibne Hossain, N. U., Nur, F., Talluri, S., Jaradat, R., & Lawrence, J. M. (2021). An assessment of probabilistic disaster in the oil and gas supply chain leveraging Bayesian belief network. International Journal of Production Economics, 235, 108107. https://doi.org/10.1016/j.ijpe.2021.108107
Sangari, M. S., & Razmi, J. (2015). Business intelligence competence, agile capabilities, and agile performance in supply chain. The International Journal of Logistics Management, 26(2), 356-380. https://doi.org/10.1108/IJLM-01-2013-0012
Sheng, J., Amankwah-Amoah, J., Khan, Z., & Wang, X. (2021). COVID-19 pandemic in the new era of big data analytics: Methodological innovations and future research directions. British Journal of Management, 32(4), 1164-1183. https://doi.org/10.1111/1467-8551.12441
Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual Differences, 42(5), 893-898. https://doi.org/10.1016/j.paid.2006.09.017
Swafford, P. M., Ghosh, S., & Murthy, N. (2008). Achieving supply chain agility through IT integration and flexibility. International Journal of Production Economics, 116(2), 288-297. https://doi.org/10.1016/j.ijpe.2008.09.002
Tallon, P. P., Queiroz, M., & Coltman, T. (2022). Digital-enabled strategic agility: The next frontier. European Journal of Information Systems, 31(6), 641-652. https://doi.org/10.1080/0960085X.2022.2102713
Trinh, T. (2015). Building enterprise systems infrastructure: Flexibility as enabler of organisational agility: Empirical evidence. Paper presented at the Twenty-Third European Conference on Information Systems (ECIS 2015), Münster, Germany. https://doi.org/10.18151/7217506
Wernerfelt, B. (1995). The resource-based view of the firm: Ten years after. Strategic Management Journal, 16(3), 171-174. https://doi.org/10.1002/smj.4250160303
Wieder, B., & Ossimitz, M.-L. (2015). The impact of business intelligence on the quality of decision making – A mediation model. Procedia Computer Science, 64, 1163-1171. https://doi.org/10.1016/j.procs.2015.08.599
Wu, C., & Barnes, D. (2018). Design of agile supply chains including the trade-off between number of partners and reliability. The International Journal of Advanced Manufacturing Technology, 97(9), 3683-3700. https://doi.org/10.1007/s00170-018-2205-5
Yiu, L. M. D., Yeung, A. C. L., & Jong, A. P. L. (2020). Business intelligence systems and operational capability: an empirical analysis of high-tech sectors. Industrial Management & Data Systems, 120(6), 1195-1215. https://doi.org/10.1108/IMDS-12-2019-0659
Ajibade, P., Ondari-Okemwa, E., & Matlhako, M. (2019). Information technology integration for accelerated knowledge sharing practices: challenges and prospects for small and medium enterprises. Problems and Perspectives in Management, 17(4), 131-140. http://dx.doi.org/10.21511/ppm.17(4).2019.11
Al-Maaitah, M. A. (2018). Impact of business intelligence competencies on the organizational capabilities in Jordanian banks. Journal of Computer Science, 14(8), 1144-1154. https://doi.org/10.3844/jcssp.2018.1144.1154
Al-Nazer, N. (2022). A study on the relationship between supply chain integration and firm performance. Uncertain Supply Chain Management, 10(2), 295-302. http://dx.doi.org/10.5267/j.uscm.2022.2.003
Al Humdan, E., Shi, Y., Behnia, M., & Najmaei, A. (2020). Supply chain agility: A systematic review of definitions, enablers and performance implications. International Journal of Physical Distribution & Logistics Management, 50(2), 287-312. https://doi.org/10.1108/IJPDLM-06-2019-0192
Asghari, P., Salehi, M., & Niaz Azari, K. (2018). Modeling competency management for organizational agility at Islamic Azad University of Tehran. Iranian journal of educational sociology, 1(9), 79-90.
Awan, U., Bhatti, S. H., Shamim, S., Khan, Z., Akhtar, P., & Balta, M. E. (2022). The role of big data analytics in manufacturing agility and performance: Moderation–mediation analysis of organizational creativity and of the involvement of customers as data analysts. British Journal of Management, 33(3), 1200-1220. https://doi.org/10.1111/1467-8551.12549
Awawdeh, H., Abulaila, H., Alshanty, A., & Alzoubi, A. (2022). Digital entrepreneurship and its impact on digital supply chains: The mediating role of business intelligence applications. International Journal of Data and Network Science, 6(1), 233-242. http://dx.doi.org/10.5267/j.ijdns.2021.9.005
Bag, S., Wood, L. C., Mangla, S. K., & Luthra, S. (2020). Procurement 4.0 and its implications on business process performance in a circular economy. Resources, Conservation and Recycling, 152, 104502. https://doi.org/10.1016/j.resconrec.2019.104502
Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99-120. https://doi.org/10.1177/014920639101700108
Basten, D., & Haamann, T. (2018). Approaches for organizational learning: A literature review. SAGE Open, 8(3), 1-20. https://doi.org/10.1177/2158244018794224
Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International Journal of Research in Marketing, 13(2), 139-161. https://doi.org/10.1016/0167-8116(95)00038-0
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological bulletin, 88(3), 588–606. https://doi.org/10.1037/0033-2909.88.3.588
Bicocchi, N., Cabri, G., Mandreoli, F., & Mecella, M. (2019). Dynamic digital factories for agile supply chains: An architectural approach. Journal of Industrial Information Integration, 15, 111-121. https://doi.org/10.1016/j.jii.2019.02.001
Burin, A., Perez-Arostegui, M. N., & Llorens-Montes, J. (2020). Ambidexterity and IT competence can improve supply chain flexibility? A resource orchestration approach. Journal of Purchasing and Supply Management, 26(2), 100610. https://doi.org/10.1016/j.pursup.2020.100610
Campos, D. F., Lima Jr, J. T. d. A., Silva, A. B. d., & Fernandes, A. J. (2019). Professional competencies in supply chain management in the mid-sized supermarket sector in Brazil. Supply Chain Management: An International Journal, 24(3), 405-416. https://doi.org/10.1108/SCM-02-2018-0081
Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of business intelligence technology. Communications of the ACM, 54(8), 88-98. http://doi.acm.org/10.1145/1978542.1978562
Chen, C.-J. (2019). Developing a model for supply chain agility and innovativeness to enhance firms’ competitive advantage. Management Decision, 57(7), 1511-1534. 10.1108/MD-12-2017-1236
Costa, R., Dias, Á., Pereira, L., Santos, J., & Capelo, A. (2020). The impact of artificial intelligence on commercial management. Problems and Perspectives in Management, 17(4), 441-452. http://dx.doi.org/10.21511/ppm.17(4).2019.36
Craighead, C. W., Ketchen Jr., D. J., & Darby, J. L. (2020). Pandemics and supply chain management research: toward a theoretical toolbox. Decision Sciences, 51(4), 838-866. https://doi.org/10.1111/deci.12468
Dedić, N., & Stanier, C. (2017). Measuring the success of changes to Business Intelligence solutions to improve Business Intelligence reporting. Journal of Management Analytics, 4(2), 130-144. https://doi.org/10.1080/23270012.2017.1299048
Dehgani, R., & Jafari Navimipour, N. (2019). The impact of information technology and communication systems on the agility of supply chain management systems. Kybernetes, 48(10), 2217-2236. https://doi.org/10.1108/MD-12-2017-1236
Derwik, P., & Hellström, D. (2017). Competence in supply chain management: A systematic review. Supply Chain Management: An International Journal, 22(2), 200-218. https://doi.org/10.1108/SCM-09-2016-0324
Du, Y., Hu, X., & Vakil, K. (2021). Systematic literature review on the supply chain agility for manufacturer and consumer. International Journal of Consumer Studies, 45(4), 581-616. https://doi.org/10.1111/ijcs.12645
Duche-Pérez, A. B., Marallano-Povis, A. O., Gálvez-Galarza, P. V., Andia-Gonzales, B. G., Jaime-Zavala, M. K., Montesinos-Torres, M. C., & Tomaylla-Quispe, Y. S. (2022). Information and communication technology in the application of strategies for supply chain management in business: A systematic review of the literature. Paper presented at the Innovation and Research - A Driving Force for Socio-Econo-Technological Development, Cham. https://doi.org/10.1007/978-3-031-11438-0_40
Elgendy, A. (2021). The mediating effect of big data analysis on the process orientation and information system software to improve supply chain process in Saudi Arabian industrial organizations. International Journal of Data and Network Science, 5(2), 135-142. http://dx.doi.org/10.5267/j.ijdns.2021.1.003
Ellram, L. M., Tate, W. L., & Feitzinger, E. G. (2013). Factor-market rivalry and competition for supply chain resources. Journal of Supply Chain Management, 49(1), 29-46. https://doi.org/10.1111/jscm.12001
Fayezi, S., Zutshi, A., & O'Loughlin, A. (2017). Understanding and development of supply chain agility and flexibility: A structured literature review. International Journal of Management Reviews, 19(4), 379-407. https://doi.org/10.1111/ijmr.12096
Ganguly, A., Talukdar, A., & Chatterjee, D. (2019). Evaluating the role of social capital, tacit knowledge sharing, knowledge quality and reciprocity in determining innovation capability of an organization. Journal of Knowledge Management, 23(6), 1105-1135. https://doi.org/10.1108/JKM-03-2018-0190
Gligor, D., Gligor, N., Holcomb, M., & Bozkurt, S. (2019). Distinguishing between the concepts of supply chain agility and resilience. The International Journal of Logistics Management, 30(2), 467-487. https://doi.org/10.1108/IJLM-10-2017-0259
Hair, J., Babin, B., Anderson, R., & Black, W. (2018). Multivariate data analysis (8th ed.). India: Cengage.
Hamid, A., Sami, W., & Sidek, M. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series, 890 (1), 012163. https://doi.org/10.1088/1742-6596/890/1/012163
Hou, C.-K. (2020). The effects of IT infrastructure integration and flexibility on supply chain capabilities and organizational performance: An empirical study of the electronics industry in Taiwan. Information Development, 36(4), 576-602. https://doi.org/10.1177/0266666919884352
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Irfan, M., Wang, M., & Akhtar, N. (2019). Impact of IT capabilities on supply chain capabilities and organizational agility: A dynamic capability view. Operations Management Research, 12(3), 113-128. https://doi.org/10.1007/s12063-019-00142-y
Ivanov, D., Sokolov, B., & Kaeschel, J. (2010). A multi-structural framework for adaptive supply chain planning and operations control with structure dynamics considerations. European Journal of Operational Research, 200(2), 409-420. https://doi.org/10.1016/j.ejor.2009.01.002
Jayakrishnan, M., Mohamad, A. K., & Yusof, M. M. (2022). Railway supply chain excellence through the mediator role of business intelligence: Knowledge management approach towards information system. Uncertain Supply Chain Management, 10(1), 125-136. http://dx.doi.org/10.5267/j.uscm.2021.10.003
Jermsittiparsert, K., Sutduean, J., Sriyakul, T., & Khumboon, R. (2019). The role of customer responsiveness in improving the external performance of an agile supply chain. Polish journal of management studies, 19(2), 206-217. https://doi.org/10.17512/pjms.2019.19.2.17
Kaur, K. (2021). Business intelligence on supply chain responsiveness and agile performance: empirical evidence from Malaysian logistics industry. International Journal of Supply Chain Management, 6(2), 31-63. https://doi.org/10.47604/ijscm.1351
Kline, R. (2015). Principles and practice of structural equation modeling (4th ed.). New York: The Guilford Press.
Koberg, E., & Longoni, A. (2019). A systematic review of sustainable supply chain management in global supply chains. Journal of Cleaner Production, 207, 1084-1098. https://doi.org/10.1016/j.jclepro.2018.10.033
Kostic, Z. (2018). Innovation and digital transformation as a competition catalyst. Ekonomika, Journal for Economic Theory and Practice and Social Issues, 64(1), 13-24. http://dx.doi.org/10.22004/ag.econ.290212
Leighton, K., Kardong-Edgren, S., Schneidereith, T., & Foisy-Doll, C. (2021). Using social media and snowball sampling as an alternative recruitment strategy for research. Clinical Simulation in Nursing, 55, 37-42. https://doi.org/10.1016/j.ecns.2021.03.006
Lennerholt, C., Van Laere, J., & Söderström, E. (2021). User-related challenges of self-service business intelligence. Information Systems Management, 38(4), 309-323. https://doi.org/10.1080/10580530.2020.1814458
Li, X., Chung, C., Goldsby, T. J., & Holsapple, C. W. (2008). A unified model of supply chain agility: The work‐design perspective. The International Journal of Logistics Management, 19(3), 408-435. https://doi.org/10.1108/09574090810919224
Miller, G. J. (2019). Quantitative comparison of big data analytics and business intelligence project success factors. Paper presented at the Information Technology for Management: Emerging Research and Applications, Cham. https://doi.org/10.1007/978-3-030-15154-6_4
Mudzana, T., & Maharaj, M. (2017). Prioritizing the factors influencing the success of business intelligence systems: A Delphi study. Indian Journal of Science and Technology, 10(25), 1-6. https://dx.doi.org/10.17485/ijst/2017/v10i25/99981
Mukhsin, M., & Suryanto, T. (2021). The effect of supply agility mediation through the relationship between trust and commitment on supply chain performance. Uncertain Supply Chain Management, 9(3), 555-562. http://dx.doi.org/10.5267/j.uscm.2021.6.006
Norderval, S., Rydningen, M. B., Falk, R. S., Stordahl, A., & Johannessen, H. H. (2019). Strong agreement between interview-obtained and self-administered Wexner and St. Mark’s scores using a single questionnaire. International Urogynecology Journal, 30(12), 2101-2108. https://doi.org/10.1007/s00192-019-03945-6
O’Leary, D. E. (2020). Evolving information systems and technology research issues for COVID-19 and other pandemics. Journal of Organizational Computing and Electronic Commerce, 30(1), 1-8. https://doi.org/10.1080/10919392.2020.1755790
Pasaribu, F., Bulan, T., Muhar, A., & Astuty, W. (2022). Supply chain management of entrepreneurial competence through cultural orientation and cross cultural competence. Uncertain Supply Chain Management, 10(2), 417-424. http://dx.doi.org/10.5267/j.uscm.2021.12.010
Phutthiwat, W., Wissawa, A., Sittichai, P., & Phichitphol, S. (2020). Supply chain business intelligence and the supply chain performance: The mediating role of supply chain agility. International Journal of Supply Chain Management, 9(2), 368-375.
Poll, R., Polyvyanyy, A., Rosemann, M., Röglinger, M., & Rupprecht, L. (2018, 2018//). Process forecasting: Towards proactive business process management. Paper presented at the Business Process Management, Cham. https://doi.org/10.1007/978-3-319-98648-7_29
Pono, M., & Munizu, M. (2021). The role of company competitiveness as mediation variable the impact of supply chain practices on operational performance. Uncertain Supply Chain Management, 9(1), 125-132. http://dx.doi.org/10.5267/j.uscm.2020.11.002
Prahalad, C. K., & Hamel, G. (2009). The core competence of the corporation. In M. Zack (Ed.), Knowledge and strategy (pp. 41-59): Routledge
Richter, L., Lehna, M., Marchand, S., Scholz, C., Dreher, A., Klaiber, S., & Lenk, S. (2022). Artificial intelligence for electricity supply chain automation. Renewable and Sustainable Energy Reviews, 163, 112459. https://doi.org/10.1016/j.rser.2022.112459
Riyadi, S., Munizu, M., & Arif, D. (2021). Supply chain performance as a mediating variable effect of information technology on company competitiveness. Uncertain Supply Chain Management, 9(4), 811-822. http://dx.doi.org/10.5267/j.uscm.2021.8.008
Saidaxmedovna, U. (2022). Cultural competence as a factor of successful professional activities. EPRA International Journal of Research and Development (IJRD), 7(2), 25-27.
Sakas, D., Nasiopoulos, D., & Taratuhina, Y. (Eds.). (2021). Business intelligence and modelling: Springer Cham.
Sakib, N., Ibne Hossain, N. U., Nur, F., Talluri, S., Jaradat, R., & Lawrence, J. M. (2021). An assessment of probabilistic disaster in the oil and gas supply chain leveraging Bayesian belief network. International Journal of Production Economics, 235, 108107. https://doi.org/10.1016/j.ijpe.2021.108107
Sangari, M. S., & Razmi, J. (2015). Business intelligence competence, agile capabilities, and agile performance in supply chain. The International Journal of Logistics Management, 26(2), 356-380. https://doi.org/10.1108/IJLM-01-2013-0012
Sheng, J., Amankwah-Amoah, J., Khan, Z., & Wang, X. (2021). COVID-19 pandemic in the new era of big data analytics: Methodological innovations and future research directions. British Journal of Management, 32(4), 1164-1183. https://doi.org/10.1111/1467-8551.12441
Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual Differences, 42(5), 893-898. https://doi.org/10.1016/j.paid.2006.09.017
Swafford, P. M., Ghosh, S., & Murthy, N. (2008). Achieving supply chain agility through IT integration and flexibility. International Journal of Production Economics, 116(2), 288-297. https://doi.org/10.1016/j.ijpe.2008.09.002
Tallon, P. P., Queiroz, M., & Coltman, T. (2022). Digital-enabled strategic agility: The next frontier. European Journal of Information Systems, 31(6), 641-652. https://doi.org/10.1080/0960085X.2022.2102713
Trinh, T. (2015). Building enterprise systems infrastructure: Flexibility as enabler of organisational agility: Empirical evidence. Paper presented at the Twenty-Third European Conference on Information Systems (ECIS 2015), Münster, Germany. https://doi.org/10.18151/7217506
Wernerfelt, B. (1995). The resource-based view of the firm: Ten years after. Strategic Management Journal, 16(3), 171-174. https://doi.org/10.1002/smj.4250160303
Wieder, B., & Ossimitz, M.-L. (2015). The impact of business intelligence on the quality of decision making – A mediation model. Procedia Computer Science, 64, 1163-1171. https://doi.org/10.1016/j.procs.2015.08.599
Wu, C., & Barnes, D. (2018). Design of agile supply chains including the trade-off between number of partners and reliability. The International Journal of Advanced Manufacturing Technology, 97(9), 3683-3700. https://doi.org/10.1007/s00170-018-2205-5
Yiu, L. M. D., Yeung, A. C. L., & Jong, A. P. L. (2020). Business intelligence systems and operational capability: an empirical analysis of high-tech sectors. Industrial Management & Data Systems, 120(6), 1195-1215. https://doi.org/10.1108/IMDS-12-2019-0659