How to cite this paper
Maciel, I., Prata, B., Nagano, M & Abreu, L. (2022). A hybrid genetic algorithm for the hybrid flow shop scheduling problem with machine blocking and sequence-dependent setup times.Journal of Project Management, 7(4), 201-216.
Refrences
Abreu, L. R., Cunha, J. O., Prata, B. A., & Framinan, J. M. (2020). A genetic algorithm for scheduling open shops with sequence-dependent setup times. Computers & Operations Research, 113, 104793.
Allahverdi, A., Ng, C. T., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European journal of operational research, 187(3), 985-1032. https,//doi.org/10.1016/j.ejor.2006.06.060.
Behnamian, J., Fatemi Ghomi, S. M. T., & Zandieh, M. (2012). Hybrid flowshop scheduling with sequence‐dependent setup times by hybridizing max–min ant system, simulated annealing and variable neighbourhood search. Expert systems, 29(2), 156-169. https,//doi.org/10.1111/j.1468-0394.2010.00569.x.
Bozorgirad, M. A., & Logendran, R. (2016). A comparison of local search algorithms with population-based algorithms in hybrid flow shop scheduling problems with realistic characteristics. The international journal of advanced manu-facturing technology, 83(5), 1135-1151. https,//doi.org/10.1007/s00170-015-7650-9.
Candan, G., & Yazgan, H. R. (2015). Genetic algorithm parameter optimisation using Taguchi method for a flexible manufacturing system scheduling problem. International Journal of Production Research, 53(3), 897-915.
Chamnanlor, C., Sethanan, K., Gen, M., & Chien, C. F. (2017). Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints. Journal of Intelligent Manufacturing, 28(8), 1915-1931.
Dios, M., Fernandez-Viagas, V., & Framinan, J. M. (2018). Efficient heuristics for the hybrid flow shop scheduling problem with missing operations. Computers & Industrial Engineering, 115, 88-99. https,//doi.org/10.1016/j.cie.2017.10.034.
Ebrahimi, M., Fatemi Ghomi, S. M. T., & Karimi, B. (2014). Hybrid Flow Shop Scheduling with Sequence Dependent Family Setup Time and Uncertain Due Dates. Applied Mathematical Modelling, 38(9), 2490–2504. https,//doi.org/10.1016/j.apm.2013.10.061.
Elmi, A., & Topaloglu, S. (2013). A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots. Computers & operations research, 40(10), 2543-2555. https,//doi.org/10.1016/j.cor.2013.01.024.
Feo, T. A., & Resende, M.G.C. (1995). Greedy Randomized Adaptive Search Procedures. Journal of Global Optimiza-tion, 6(2), 109–33.
Garavito-Hernández, E. A., Peña-Tibaduiza, E., Perez-Figueredo, L. E., & Moratto-Chimenty, E. (2019). A meta-heuristic based on the Imperialist Competitive Algorithm (ICA) for solving Hybrid Flow Shop (HFS) scheduling problem with unrelated parallel machines. Journal of Industrial and Production Engineering, 36(6), 362-370.
Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of operations research, 1(2), 117-129. https,//doi.org/10.1287/moor.1.2.117.
Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2009). Scheduling hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. The International Journal of Advanced Manufacturing Technology, 42(1), 189-201. https,//doi.org/10.1007/s00170-008-1577-3.
Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2009b). Scheduling Hybrid Flow Shop with Sequence-Dependent Setup Times and Machines with Random Breakdowns. The International Journal of Advanced Manufacturing Technology, 42 (1-2), 189–201.
González-Neira, E. M., & Montoya-Torres, J. R. (2017). A GRASP meta-heuristic for the hybrid flowshop scheduling problem. Journal of Decision systems, 26(3), 294-306.
Gupta, J. ND. (1988). Two-Stage, Hybrid Flowshop Scheduling Problem. Journal of the Operational Research Society, 39 (4), 359–64.
Hall, N. G., & Sriskandarajah, C. (1996). A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process. Operations Research, 44(3), 510–25. https,//doi.org/10.1287/opre.44.3.510.
Hidri, L., & Haouari, M. (2011). Bounding strategies for the hybrid flow shop scheduling problem. Applied Mathematics and Computation, 217(21), 8248-8263. https,//doi.org/10.1016/j.amc.2011.02.108.
Kahraman, C., Engin, O., Kaya, I., & Kerim Yilmaz, M. (2008). An application of effective genetic algorithms for solv-ing hybrid flow shop scheduling problems. International Journal of Computational Intelligence Systems, 1(2), 134-147.
Kurdi, M. (2019). Ant colony system with a novel Non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop. Swarm and evolutionary computation, 44, 987-1002.
Li, J. Q., & Pan, Q. K. (2015). Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Information Sciences, 316, 487-502. https,//doi.org/10.1016/j.ins.2014.10.009.
Liu, C. Y. (1996, December). Scheduling flexible flow shops with sequence-dependent setup effect. In Proceedings of 35th IEEE Conference on Decision and Control (Vol. 2, pp. 1757-1762). IEEE. https,//doi.org/10.1109/70.864235.
Maccarthy, B. L., & Liu, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. The International Journal of Production Research, 31(1), 59-79.
Misevičius, A., & Kilda, B. (2005). Comparison of crossover operators for the quadratic assignment problem. Infor-mation Technology and Control, 34(2).
Moccellin, J. V., Nagano, M. S., Pitombeira Neto, A. R., & de Athayde Prata, B. (2018). Heuristic algorithms for sched-uling hybrid flow shops with machine blocking and setup times. Journal of the Brazilian Society of Mechanical Sci-ences and Engineering, 40(2), 1-11. https,//doi.org/10.1007/s40430-018-0980-4.
Nagano, M. S., Komesu, A. S., & Miyata, H. H. (2019). An evolutionary clustering search for the total tardiness block-ing flow shop problem. Journal of Intelligent Manufacturing, 30(4), 1843-1857.
Nejati, Mohsen, Iraj Mahdavi, Reza Hassanzadeh, and Nezam Mahdavi-Amiri. (2016). Lot Streaming in a Two-Stage Assembly Hybrid Flow Shop Scheduling Problem with a Work Shift Constraint. Journal of Industrial and Produc-tion Engineering 33 (7), 459–71. https,//doi.org/10.1080/21681015.2015.1126653.
Pan, Q. K., Gao, L., Li, X. Y., & Gao, K. Z. (2017). Effective metaheuristics for scheduling a hybrid flowshop with se-quence-dependent setup times. Applied Mathematics and Computation, 303, 89-112. https,//doi.org/10.1016/j.amc.2017.01.004.
Pessoa, R., Maciel, I., Moccellin, J., Pitombeira-Neto, A., & Prata, B. (2021). Hybrid Flow Shop Scheduling Problem with Machine Blocking, Setup Times and Unrelated Parallel Machines Per Stage. Investigacion Operacional.
de Athayde Prata, B., Rodrigues, C. D., & Framinan, J. M. (2022). A differential evolution algorithm for the customer order scheduling problem with sequence-dependent setup times. Expert Systems with Applications, 189, 116097.
Ramezani, P., Rabiee, M., & Jolai, F. (2015). No-wait flexible flowshop with uniform parallel machines and sequence-dependent setup time: a hybrid meta-heuristic approach. Journal of Intelligent Manufacturing, 26(4), 731-744.
https,//doi.org/10.1007/s10845-013-0830-2.
Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37(8), 1439-1454. https,//doi.org/10.1016/j.cor.2009.11.001.
Ruiz, R., & Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence dependent setup times and ma-chine eligibility. European journal of operational research, 169(3), 781-800.
Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European journal of opera-tional research, 205(1), 1-18.
Salvador, M. S. (1973). A solution to a special class of flow shop scheduling problems. In Symposium on the theory of scheduling and its applications (pp. 83-91). Springer, Berlin, Heidelberg.
Shahvari, O., & Logendran, R. (2018). A comparison of two stage-based hybrid algorithms for a batch scheduling prob-lem in hybrid flow shop with learning effect. International Journal of Production Economics, 195, 227-248. https,//doi.org/10.1016/j.ijpe.2017.10.015.
Tang, P. H., & Tseng, M. H. (2013). Adaptive directed mutation for real-coded genetic algorithms. Applied Soft Compu-ting, 13(1), 600-614.
Tate, D. M., & Smith, A. E. (1995). A genetic approach to the quadratic assignment problem. Computers & Operations Research, 22(1), 73-83.
Zandieh, M., Ghomi, S. F., & Husseini, S. M. (2006). An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times. Applied Mathematics and Computation, 180(1), 111-127.
https,//doi.org/10.1016/j.amc.2005.11.136.
Allahverdi, A., Ng, C. T., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European journal of operational research, 187(3), 985-1032. https,//doi.org/10.1016/j.ejor.2006.06.060.
Behnamian, J., Fatemi Ghomi, S. M. T., & Zandieh, M. (2012). Hybrid flowshop scheduling with sequence‐dependent setup times by hybridizing max–min ant system, simulated annealing and variable neighbourhood search. Expert systems, 29(2), 156-169. https,//doi.org/10.1111/j.1468-0394.2010.00569.x.
Bozorgirad, M. A., & Logendran, R. (2016). A comparison of local search algorithms with population-based algorithms in hybrid flow shop scheduling problems with realistic characteristics. The international journal of advanced manu-facturing technology, 83(5), 1135-1151. https,//doi.org/10.1007/s00170-015-7650-9.
Candan, G., & Yazgan, H. R. (2015). Genetic algorithm parameter optimisation using Taguchi method for a flexible manufacturing system scheduling problem. International Journal of Production Research, 53(3), 897-915.
Chamnanlor, C., Sethanan, K., Gen, M., & Chien, C. F. (2017). Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints. Journal of Intelligent Manufacturing, 28(8), 1915-1931.
Dios, M., Fernandez-Viagas, V., & Framinan, J. M. (2018). Efficient heuristics for the hybrid flow shop scheduling problem with missing operations. Computers & Industrial Engineering, 115, 88-99. https,//doi.org/10.1016/j.cie.2017.10.034.
Ebrahimi, M., Fatemi Ghomi, S. M. T., & Karimi, B. (2014). Hybrid Flow Shop Scheduling with Sequence Dependent Family Setup Time and Uncertain Due Dates. Applied Mathematical Modelling, 38(9), 2490–2504. https,//doi.org/10.1016/j.apm.2013.10.061.
Elmi, A., & Topaloglu, S. (2013). A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots. Computers & operations research, 40(10), 2543-2555. https,//doi.org/10.1016/j.cor.2013.01.024.
Feo, T. A., & Resende, M.G.C. (1995). Greedy Randomized Adaptive Search Procedures. Journal of Global Optimiza-tion, 6(2), 109–33.
Garavito-Hernández, E. A., Peña-Tibaduiza, E., Perez-Figueredo, L. E., & Moratto-Chimenty, E. (2019). A meta-heuristic based on the Imperialist Competitive Algorithm (ICA) for solving Hybrid Flow Shop (HFS) scheduling problem with unrelated parallel machines. Journal of Industrial and Production Engineering, 36(6), 362-370.
Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of operations research, 1(2), 117-129. https,//doi.org/10.1287/moor.1.2.117.
Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2009). Scheduling hybrid flow shop with sequence-dependent setup times and machines with random breakdowns. The International Journal of Advanced Manufacturing Technology, 42(1), 189-201. https,//doi.org/10.1007/s00170-008-1577-3.
Gholami, M., Zandieh, M., & Alem-Tabriz, A. (2009b). Scheduling Hybrid Flow Shop with Sequence-Dependent Setup Times and Machines with Random Breakdowns. The International Journal of Advanced Manufacturing Technology, 42 (1-2), 189–201.
González-Neira, E. M., & Montoya-Torres, J. R. (2017). A GRASP meta-heuristic for the hybrid flowshop scheduling problem. Journal of Decision systems, 26(3), 294-306.
Gupta, J. ND. (1988). Two-Stage, Hybrid Flowshop Scheduling Problem. Journal of the Operational Research Society, 39 (4), 359–64.
Hall, N. G., & Sriskandarajah, C. (1996). A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process. Operations Research, 44(3), 510–25. https,//doi.org/10.1287/opre.44.3.510.
Hidri, L., & Haouari, M. (2011). Bounding strategies for the hybrid flow shop scheduling problem. Applied Mathematics and Computation, 217(21), 8248-8263. https,//doi.org/10.1016/j.amc.2011.02.108.
Kahraman, C., Engin, O., Kaya, I., & Kerim Yilmaz, M. (2008). An application of effective genetic algorithms for solv-ing hybrid flow shop scheduling problems. International Journal of Computational Intelligence Systems, 1(2), 134-147.
Kurdi, M. (2019). Ant colony system with a novel Non-DaemonActions procedure for multiprocessor task scheduling in multistage hybrid flow shop. Swarm and evolutionary computation, 44, 987-1002.
Li, J. Q., & Pan, Q. K. (2015). Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm. Information Sciences, 316, 487-502. https,//doi.org/10.1016/j.ins.2014.10.009.
Liu, C. Y. (1996, December). Scheduling flexible flow shops with sequence-dependent setup effect. In Proceedings of 35th IEEE Conference on Decision and Control (Vol. 2, pp. 1757-1762). IEEE. https,//doi.org/10.1109/70.864235.
Maccarthy, B. L., & Liu, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. The International Journal of Production Research, 31(1), 59-79.
Misevičius, A., & Kilda, B. (2005). Comparison of crossover operators for the quadratic assignment problem. Infor-mation Technology and Control, 34(2).
Moccellin, J. V., Nagano, M. S., Pitombeira Neto, A. R., & de Athayde Prata, B. (2018). Heuristic algorithms for sched-uling hybrid flow shops with machine blocking and setup times. Journal of the Brazilian Society of Mechanical Sci-ences and Engineering, 40(2), 1-11. https,//doi.org/10.1007/s40430-018-0980-4.
Nagano, M. S., Komesu, A. S., & Miyata, H. H. (2019). An evolutionary clustering search for the total tardiness block-ing flow shop problem. Journal of Intelligent Manufacturing, 30(4), 1843-1857.
Nejati, Mohsen, Iraj Mahdavi, Reza Hassanzadeh, and Nezam Mahdavi-Amiri. (2016). Lot Streaming in a Two-Stage Assembly Hybrid Flow Shop Scheduling Problem with a Work Shift Constraint. Journal of Industrial and Produc-tion Engineering 33 (7), 459–71. https,//doi.org/10.1080/21681015.2015.1126653.
Pan, Q. K., Gao, L., Li, X. Y., & Gao, K. Z. (2017). Effective metaheuristics for scheduling a hybrid flowshop with se-quence-dependent setup times. Applied Mathematics and Computation, 303, 89-112. https,//doi.org/10.1016/j.amc.2017.01.004.
Pessoa, R., Maciel, I., Moccellin, J., Pitombeira-Neto, A., & Prata, B. (2021). Hybrid Flow Shop Scheduling Problem with Machine Blocking, Setup Times and Unrelated Parallel Machines Per Stage. Investigacion Operacional.
de Athayde Prata, B., Rodrigues, C. D., & Framinan, J. M. (2022). A differential evolution algorithm for the customer order scheduling problem with sequence-dependent setup times. Expert Systems with Applications, 189, 116097.
Ramezani, P., Rabiee, M., & Jolai, F. (2015). No-wait flexible flowshop with uniform parallel machines and sequence-dependent setup time: a hybrid meta-heuristic approach. Journal of Intelligent Manufacturing, 26(4), 731-744.
https,//doi.org/10.1007/s10845-013-0830-2.
Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37(8), 1439-1454. https,//doi.org/10.1016/j.cor.2009.11.001.
Ruiz, R., & Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence dependent setup times and ma-chine eligibility. European journal of operational research, 169(3), 781-800.
Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European journal of opera-tional research, 205(1), 1-18.
Salvador, M. S. (1973). A solution to a special class of flow shop scheduling problems. In Symposium on the theory of scheduling and its applications (pp. 83-91). Springer, Berlin, Heidelberg.
Shahvari, O., & Logendran, R. (2018). A comparison of two stage-based hybrid algorithms for a batch scheduling prob-lem in hybrid flow shop with learning effect. International Journal of Production Economics, 195, 227-248. https,//doi.org/10.1016/j.ijpe.2017.10.015.
Tang, P. H., & Tseng, M. H. (2013). Adaptive directed mutation for real-coded genetic algorithms. Applied Soft Compu-ting, 13(1), 600-614.
Tate, D. M., & Smith, A. E. (1995). A genetic approach to the quadratic assignment problem. Computers & Operations Research, 22(1), 73-83.
Zandieh, M., Ghomi, S. F., & Husseini, S. M. (2006). An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times. Applied Mathematics and Computation, 180(1), 111-127.
https,//doi.org/10.1016/j.amc.2005.11.136.