How to cite this paper
Mousavi, S & Ilanloo, A. (2023). Nature inspired firefighter assistant by unmanned aerial vehicle (UAV) data.Journal of Future Sustainability, 3(3), 143-166.
Refrences
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statis-tics, 2(4), 433-459.
Alexandrov, D., Pertseva, E., Berman, I., Pantiukhin, I., & Kapitonov, A. (2019, April). Analysis of machine learning methods for wildfire security monitoring with an unmanned aerial vehicles. In 2019 24th conference of open innova-tions association (FRUCT) (pp. 3-9). IEEE.
Almiani, M., Abughazleh, A., Jararweh, Y., & Razaque, A. (2022). Resilient Back Propagation Neural Network Security Model For Containerized Cloud Computing. Simulation Modelling Practice and Theory, 118, 102544.
Attar, A., Shahbahrami, A., & Rad, R. M. (2016). Image quality assessment using edge based features. Multimedia tools and applications, 75(12), 7407-7422.
Barmpoutis, P., Stathaki, T., Dimitropoulos, K., & Grammalidis, N. (2020). Early fire detection based on aerial 360-degree sensors, deep convolution neural networks and exploitation of fire dynamic textures. Remote Sensing, 12(19), 3177.
Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction in speech pro-cessing (pp. 1-4). Springer, Berlin, Heidelberg.
Bergland, G. D. (1969). A guided tour of the fast Fourier transform. IEEE spectrum, 6(7), 41-52.
Bhawarkar, Y., Bhure, K., Chaudhary, V., & Alte, B. (2022). Diabetic Retinopathy Detection From Fundus Images Using Multi-Tasking Model With EfficientNet B5. In ITM Web of Conferences (Vol. 44, p. 03027). EDP Sciences.
Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer.
Bouwmans, T., Javed, S., Sultana, M., & Jung, S. K. (2019). Deep neural network concepts for background subtraction: A systematic review and comparative evaluation. Neural Networks, 117, 8-66.
Bracewell, R. N., & Bracewell, R. N. (1986). The Fourier transform and its applications (Vol. 31999, pp. 267-272). New York: McGraw-Hill.
Busin, L., Vandenbroucke, N., & Macaire, L. (2008). Color spaces and image segmentation. Advances in imaging and electron physics, 151(1), 1.
Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineer-ing, 40(1), 16-28.
Chen, Y., Zhang, Y., Xin, J., Wang, G., Mu, L., Yi, Y., ... & Liu, D. (2019, June). UAV image-based forest fire detection approach using convolutional neural network. In 2019 14th IEEE conference on industrial electronics and applica-tions (ICIEA) (pp. 2118-2123). IEEE.
Cruz, H., Eckert, M., Meneses, J., & Martínez, J. F. (2016). Efficient forest fire detection index for application in un-manned aerial systems (UASs). Sensors, 16(6), 893.
Dezfoulian, M. H., MiriNezhad, Y., Mousavi, S. M. H., Mosleh, M. S., & Shalchi, M. M. (2016, September). Optimiza-tion of the Ho-Kashyap classification algorithm using appropriate learning samples. In 2016 Eighth International Conference on Information and Knowledge Technology (IKT) (pp. 167-169). IEEE.
Dhal, K. G., Das, A., Ray, S., Gálvez, J., & Das, S. (2021). Histogram equalization variants as optimization problems: a review. Archives of Computational Methods in Engineering, 28(3), 1471-1496.
Dragaj, V. (2016). Color Image Segmentation Using the Bee Algorithm in the Markovian Framework.
Francies, M. L., Ata, M. M., & Mohamed, M. A. (2022). A robust multiclass 3D object recognition based on modern YOLO deep learning algorithms. Concurrency and Computation: Practice and Experience, 34(1), e6517.
Estrada, M. A. R., & Ndoma, A. (2019). The uses of unmanned aerial vehicles–UAV’s-(or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383.
FLIR Vue Pro R, (2022), https://www.flir.co.uk/products/vue-pro-r/?vertical=suas&segment=oem, (Access on 3 July 2022).
Frizzi, S., Bouchouicha, M., Ginoux, J. M., Moreau, E., & Sayadi, M. (2021). Convolutional neural network for smoke and fire semantic segmentation. IET Image Processing, 15(3), 634-647.
Ghali, R., Akhloufi, M. A., & Mseddi, W. S. (2022). Deep learning and transformer approaches for UAV-based wildfire detection and segmentation. Sensors, 22(5), 1977.
Global Forest Watch (GFW), (2022). https://www.globalforestwatch.org/, (Access on 18 Jan 2023).
Gonzalez, R. C. (2009). Digital image processing. Pearson education india.
Hanley, J. A. (2014). Receiver operating characteristic (ROC) curves. Wiley StatsRef: Statistics Reference Online.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
Hossain, F. A., Zhang, Y. M., & Tonima, M. A. (2020). Forest fire flame and smoke detection from UAV-captured im-ages using fire-specific color features and multi-color space local binary pattern. Journal of Unmanned Vehicle Sys-tems, 8(4), 285-309.
Hossain, S., & Lee, D. J. (2019). Deep learning-based real-time multiple-object detection and tracking from aerial im-agery via a flying robot with GPU-based embedded devices. Sensors, 19(15), 3371.
INSPIRE 2, (2022), https://www.dji.com/de/inspire-2, (Access on 3 July 2022).
Jazebi, S., De Leon, F., & Nelson, A. (2019). Review of wildfire management techniques—Part I: Causes, prevention, detection, suppression, and data analytics. IEEE Transactions on Power Delivery, 35(1), 430-439.
Jiao, Z., Zhang, Y., Xin, J., Mu, L., Yi, Y., Liu, H., & Liu, D. (2019, July). A deep learning based forest fire detection approach using UAV and YOLOv3. In 2019 1st International conference on industrial artificial intelligence (IAI) (pp. 1-5). IEEE.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., & Bowman, D. M. (2015). Climate-induced variations in global wildfire danger from 1979 to 2013. Nature communications, 6(1), 1-11.
Joshi, K., Yadav, R., & Allwadhi, S. (2016, March). PSNR and MSE based investigation of LSB. In 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT) (pp. 280-285). IEEE.
Khan, A., Hassan, B., Khan, S., Ahmed, R., & Abuassba, A. (2022). DeepFire: A Novel Dataset and Deep Transfer Learning Benchmark for Forest Fire Detection. Mobile Information Systems, 2022.
Lee, W., Kim, S., Lee, Y. T., Lee, H. W., & Choi, M. (2017, January). Deep neural networks for wild fire detection with unmanned aerial vehicle. In 2017 IEEE international conference on consumer electronics (ICCE) (pp. 252-253). IEEE.
Lin, Y., Diao, Y., Du, Y., Zhang, J., Li, L., & Liu, P. (2022). Automatic cell counting for phase‐contrast microscopic im-ages based on a combination of Otsu and watershed segmentation method. Microscopy Research and Tech-nique, 85(1), 169-180.
López-Randulfe, J., Veiga, C., Rodríguez-Andina, J. J., & Farina, J. (2017, March). A quantitative method for selecting denoising filters, based on a new edge-sensitive metric. In 2017 IEEE International Conference on Industrial Tech-nology (ICIT) (pp. 974-979). IEEE.
Malhotra, P., Gupta, S., Koundal, D., Zaguia, A., & Enbeyle, W. (2022). Deep Neural Networks for Medical Image Seg-mentation. Journal of Healthcare Engineering, 2022.
Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lyso-zyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2), 442-451.
Matrice 300 RTK, (2022), https://www.dji.com/de/matrice-300/specs, (Access on 3 July 2022).
Martínez-de Dios, J. R., Merino, L., Caballero, F., Ollero, A., & Viegas, D. X. (2006). Experimental results of automatic fire detection and monitoring with UAVs. Forest Ecology and Management, 234(1), S232.
Meng, X., Liu, Y., Gao, X., & Zhang, H. (2014, October). A new bio-inspired algorithm: chicken swarm optimization. In International conference in swarm intelligence (pp. 86-94). Springer, Cham.
Misra, D. (2019). Mish: A self regularized non-monotonic neural activation function. arXiv preprint arXiv:1908.08681, 4(2), 10-48550.
Mitchell, T. M., & Mitchell, T. M. (1997). Machine learning (Vol. 1, No. 9). New York: McGraw-hill.
Mo, Y., Wu, Y., Yang, X., Liu, F., & Liao, Y. (2022). Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing, 493, 626-646.
Mousavi, S. M. H. (2018). A new way to age estimation for rgb-d images, based on a new face detection and extraction method for depth images. International Journal of Image, Graphics and Signal Processing, 10(11), 10.
Mousavi, S. M. H., Lyashenko, V., & Prasath, V. B. S. (2019). Analysis of a robust edge detection system in different color spaces using color and depth images. Computer Optics, 43(4), 632-646.
Mousavi, S. M. H., & Kharazi, M. (2017). An edge detection system for polluted images by gaussian, salt and pepper, poisson and speckle noises. In 4th National Conference on Information Technology, Computer & TeleCommunica-tion.
Mousavi, S., & Mirinezhad, S. (2022). Weevil damage optimization algorithm and its applications. Journal of Future Sustainability, 2(4), 133-144.
Mousavi, S. M. H., MiriNezhad, S. Y., & Dezfoulian, M. H. (2017, October). Galaxy gravity optimization (GGO) an al-gorithm for optimization, inspired by comets life cycle. In 2017 Artificial Intelligence and Signal Processing Con-ference (AISP) (pp. 306-315). IEEE.
Mousavi, S. M. H., MiriNezhad, S. Y., & Mirmoini, A. (2017, October). A new support vector finder method, based on triangular calculations and K-means clustering. In 2017 9th International Conference on Information and Knowledge Technology (IKT) (pp. 46-53). IEEE.
Mousavi, S. M. H., & Mosavi, S. M. H. (2022, March). A New Edge and Pixel-Based Image Quality Assessment Metric for Colour and Depth Images. In 2022 9th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS) (pp. 1-11). IEEE.
National Interagency Fire Center (NIFC), (2022). https://www.nifc.gov/fire-information/nfn, (Access on 3 July 2022).
Nugrahaeni, R. A., & Mutijarsa, K. (2016, August). Comparative analysis of machine learning KNN, SVM, and random forests algorithm for facial expression classification. In 2016 International Seminar on Application for Technology of Information and Communication (ISemantic) (pp. 163-168). IEEE.
Parrot ANAFI Thermal, (2022), https://www.parrot.com/uk/drones/anafi-thermal, (Access on 3 July 2022).
Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineer-ing, 22(10), 1345-1359.
Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm—a novel tool for complex optimisation problems. In Intelligent production machines and systems (pp. 454-459). Elsevier Science Ltd.
Phantom 4 Pro V2.0, (2022), https://www.dji.com/de/phantom-4-pro-v2, (Access on 3 July 2022).
Polesel, A., Ramponi, G., & Mathews, V. J. (2000). Image enhancement via adaptive unsharp masking. IEEE transac-tions on image processing, 9(3), 505-510.
Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correla-tion. arXiv preprint arXiv:2010.16061.
Rahim, M. A., Azam, M. S., Hossain, N., & Islam, M. R. (2013). Face recognition using local binary patterns (LBP). Global Journal of Computer Science and Technology.
Rostami, O., & Kaveh, M. (2021). Optimal feature selection for SAR image classification using biogeography-based op-timization (BBO), artificial bee colony (ABC) and support vector machine (SVM): a combined approach of optimi-zation and machine learning. Computational Geosciences, 25(3), 911-930.
Sadeghi, M., Tavakkoli-Moghaddam, R., & Babazadeh, R. (2018). AN EFFICIENT ARTIFICIAL BEE COLONY AL-GORITHM FOR A P-HUB COVERING LOCATION PROBLEM WITH TRAVEL TIME RELIABIL-ITY. International Journal of Industrial Engineering, 25(1).
Sazli, M. H. (2006). A brief review of feed-forward neural networks. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 50(01).
SCHIEBEL CAMCOPTER, (2022). https://schiebel.net/wp-content/uploads/downloadBrochures/CC_redesign_ENG/index.html#page=10, (Access on 2 July 2022)
Sebe, N., Cohen, I., Garg, A., & Huang, T. S. (2005). Machine learning in computer vision (Vol. 29). Springer Science & Business Media.
Setiawan, A. W. (2020, November). Image segmentation metrics in skin lesion: accuracy, sensitivity, specificity, dice coefficient, Jaccard index, and Matthews correlation coefficient. In 2020 International Conference on Computer En-gineering, Network, and Intelligent Multimedia (CENIM) (pp. 97-102). IEEE.
Shamsoshoara, A., Afghah, F., Razi, A., Zheng, L., Fulé, P. Z., & Blasch, E. (2021). Aerial imagery pile burn detection using deep learning: The FLAME dataset. Computer Networks, 193, 108001.
Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation, 12(6), 702-713.
Skowronski, M. D., & Harris, J. G. (2006, May). Minimum mean squared error time series classification using an echo state network prediction model. In 2006 IEEE International Symposium on Circuits and Systems (pp. 4-pp). IEEE.
Smoot, E. E., & Gleason, K. E. (2021). Forest fires reduce snow-water storage and advance the timing of snowmelt across the Western US. Water, 13(24), 3533.
Sun, L., Wang, T., Ding, W., Xu, J., & Lin, Y. (2021). Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification. Information Sciences, 578, 887-912.
Srinivas, K., & Dua, M. (2019, August). Fog computing and deep CNN based efficient approach to early forest fire de-tection with unmanned aerial vehicles. In International Conference on Inventive Computation Technologies (pp. 646-652). Springer, Cham.
Tang, Z., Liu, X., Chen, H., Hupy, J., & Yang, B. (2020). Deep learning-based wildfire event object detection from 4K aerial images acquired by UAS. AI, 1(2), 166-179.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
Tkalcic, M., & Tasic, J. F. (2003). Colour spaces: perceptual, historical and applicational background (Vol. 1, pp. 304-308). IEEE.
Valavanis, K. P., & Vachtsevanos, G. J. (Eds.). (2015). Handbook of unmanned aerial vehicles (Vol. 1). Dordrecht: Springer Netherlands.
Vamsidhar, A., Surya Kavitha, T., & Ramesh Babu, G. (2022). Image Enhancement Using Chicken Swarm Optimiza-tion. In Proceedings of the International Conference on Computational Intelligence and Sustainable Technolo-gies (pp. 555-565). Springer, Singapore.
Wang, S. H., & Zhang, Y. D. (2020). DenseNet-201-based deep neural network with composite learning factor and pre-computation for multiple sclerosis classification. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 16(2s), 1-19.
Wang, Z., & Bovik, A. C. (2006). Modern image quality assessment. Synthesis Lectures on Image, Video, and Multime-dia Processing, 2(1), 1-156.
Wang, Z., Wang, E., & Zhu, Y. (2020). Image segmentation evaluation: a survey of methods. Artificial Intelligence Re-view, 53(8), 5637-5674.
World Health Organization (WHO), (2022). https://www.who.int/health-topics/wildfires#tab=tab_1 , (Access on 3 July 2022).
Xiao, J., Li, H., & Jin, H. (2022). Transtrack: Online meta-transfer learning and Otsu segmentation enabled wireless gesture tracking. Pattern Recognition, 121, 108157.
Xu, Q., Zhang, C., & Zhang, L. (2015, August). Denoising convolutional neural network. In 2015 IEEE International Conference on Information and Automation (pp. 1184-1187). IEEE.
Yang, X.-S. (2010). Nature-inspired metaheuristic algorithms. Luniver Press
Yuan, B., Cao, H., & Chu, J. (2012, March). Combining local binary pattern and local phase quantization for face recog-nition. In 2012 International Symposium on Biometrics and Security Technologies (pp. 51-53). IEEE.
Yuan, C., Liu, Z., & Zhang, Y. (2015, June). UAV-based forest fire detection and tracking using image processing tech-niques. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 639-643). IEEE.
Yuan, C., Zhang, Y., & Liu, Z. (2015). A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Canadian journal of forest research, 45(7), 783-792.
Yuan, C., Liu, Z., & Zhang, Y. (2019). Learning-based smoke detection for unmanned aerial vehicles applied to forest fire surveillance. Journal of Intelligent & Robotic Systems, 93(1), 337-349.
Zadeh, L. A. (1988). Fuzzy logic. Computer, 21(4), 83-93.
Zang, H., Zhang, S., & Hapeshi, K. (2010). A review of nature-inspired algorithms. Journal of Bionic Engineering, 7(4), S232-S237.
Zenmuse H20N, (2022), https://www.dji.com/de/zenmuse-h20n/specs, (Access on 3 July 2022).
Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE transactions on image processing, 26(7), 3142-3155.
Zhang, L., Wang, M., Fu, Y., & Ding, Y. (2022). A Forest Fire Recognition Method Using UAV Images Based on Trans-fer Learning. Forests, 13(7), 975.
Zhang, H., & Peng, Q. (2022). PSO and K-means-based semantic segmentation toward agricultural products. Future Generation Computer Systems, 126, 82-87.
Alexandrov, D., Pertseva, E., Berman, I., Pantiukhin, I., & Kapitonov, A. (2019, April). Analysis of machine learning methods for wildfire security monitoring with an unmanned aerial vehicles. In 2019 24th conference of open innova-tions association (FRUCT) (pp. 3-9). IEEE.
Almiani, M., Abughazleh, A., Jararweh, Y., & Razaque, A. (2022). Resilient Back Propagation Neural Network Security Model For Containerized Cloud Computing. Simulation Modelling Practice and Theory, 118, 102544.
Attar, A., Shahbahrami, A., & Rad, R. M. (2016). Image quality assessment using edge based features. Multimedia tools and applications, 75(12), 7407-7422.
Barmpoutis, P., Stathaki, T., Dimitropoulos, K., & Grammalidis, N. (2020). Early fire detection based on aerial 360-degree sensors, deep convolution neural networks and exploitation of fire dynamic textures. Remote Sensing, 12(19), 3177.
Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient. In Noise reduction in speech pro-cessing (pp. 1-4). Springer, Berlin, Heidelberg.
Bergland, G. D. (1969). A guided tour of the fast Fourier transform. IEEE spectrum, 6(7), 41-52.
Bhawarkar, Y., Bhure, K., Chaudhary, V., & Alte, B. (2022). Diabetic Retinopathy Detection From Fundus Images Using Multi-Tasking Model With EfficientNet B5. In ITM Web of Conferences (Vol. 44, p. 03027). EDP Sciences.
Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer.
Bouwmans, T., Javed, S., Sultana, M., & Jung, S. K. (2019). Deep neural network concepts for background subtraction: A systematic review and comparative evaluation. Neural Networks, 117, 8-66.
Bracewell, R. N., & Bracewell, R. N. (1986). The Fourier transform and its applications (Vol. 31999, pp. 267-272). New York: McGraw-Hill.
Busin, L., Vandenbroucke, N., & Macaire, L. (2008). Color spaces and image segmentation. Advances in imaging and electron physics, 151(1), 1.
Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineer-ing, 40(1), 16-28.
Chen, Y., Zhang, Y., Xin, J., Wang, G., Mu, L., Yi, Y., ... & Liu, D. (2019, June). UAV image-based forest fire detection approach using convolutional neural network. In 2019 14th IEEE conference on industrial electronics and applica-tions (ICIEA) (pp. 2118-2123). IEEE.
Cruz, H., Eckert, M., Meneses, J., & Martínez, J. F. (2016). Efficient forest fire detection index for application in un-manned aerial systems (UASs). Sensors, 16(6), 893.
Dezfoulian, M. H., MiriNezhad, Y., Mousavi, S. M. H., Mosleh, M. S., & Shalchi, M. M. (2016, September). Optimiza-tion of the Ho-Kashyap classification algorithm using appropriate learning samples. In 2016 Eighth International Conference on Information and Knowledge Technology (IKT) (pp. 167-169). IEEE.
Dhal, K. G., Das, A., Ray, S., Gálvez, J., & Das, S. (2021). Histogram equalization variants as optimization problems: a review. Archives of Computational Methods in Engineering, 28(3), 1471-1496.
Dragaj, V. (2016). Color Image Segmentation Using the Bee Algorithm in the Markovian Framework.
Francies, M. L., Ata, M. M., & Mohamed, M. A. (2022). A robust multiclass 3D object recognition based on modern YOLO deep learning algorithms. Concurrency and Computation: Practice and Experience, 34(1), e6517.
Estrada, M. A. R., & Ndoma, A. (2019). The uses of unmanned aerial vehicles–UAV’s-(or drones) in social logistic: Natural disasters response and humanitarian relief aid. Procedia Computer Science, 149, 375-383.
FLIR Vue Pro R, (2022), https://www.flir.co.uk/products/vue-pro-r/?vertical=suas&segment=oem, (Access on 3 July 2022).
Frizzi, S., Bouchouicha, M., Ginoux, J. M., Moreau, E., & Sayadi, M. (2021). Convolutional neural network for smoke and fire semantic segmentation. IET Image Processing, 15(3), 634-647.
Ghali, R., Akhloufi, M. A., & Mseddi, W. S. (2022). Deep learning and transformer approaches for UAV-based wildfire detection and segmentation. Sensors, 22(5), 1977.
Global Forest Watch (GFW), (2022). https://www.globalforestwatch.org/, (Access on 18 Jan 2023).
Gonzalez, R. C. (2009). Digital image processing. Pearson education india.
Hanley, J. A. (2014). Receiver operating characteristic (ROC) curves. Wiley StatsRef: Statistics Reference Online.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
Hossain, F. A., Zhang, Y. M., & Tonima, M. A. (2020). Forest fire flame and smoke detection from UAV-captured im-ages using fire-specific color features and multi-color space local binary pattern. Journal of Unmanned Vehicle Sys-tems, 8(4), 285-309.
Hossain, S., & Lee, D. J. (2019). Deep learning-based real-time multiple-object detection and tracking from aerial im-agery via a flying robot with GPU-based embedded devices. Sensors, 19(15), 3371.
INSPIRE 2, (2022), https://www.dji.com/de/inspire-2, (Access on 3 July 2022).
Jazebi, S., De Leon, F., & Nelson, A. (2019). Review of wildfire management techniques—Part I: Causes, prevention, detection, suppression, and data analytics. IEEE Transactions on Power Delivery, 35(1), 430-439.
Jiao, Z., Zhang, Y., Xin, J., Mu, L., Yi, Y., Liu, H., & Liu, D. (2019, July). A deep learning based forest fire detection approach using UAV and YOLOv3. In 2019 1st International conference on industrial artificial intelligence (IAI) (pp. 1-5). IEEE.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., & Bowman, D. M. (2015). Climate-induced variations in global wildfire danger from 1979 to 2013. Nature communications, 6(1), 1-11.
Joshi, K., Yadav, R., & Allwadhi, S. (2016, March). PSNR and MSE based investigation of LSB. In 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT) (pp. 280-285). IEEE.
Khan, A., Hassan, B., Khan, S., Ahmed, R., & Abuassba, A. (2022). DeepFire: A Novel Dataset and Deep Transfer Learning Benchmark for Forest Fire Detection. Mobile Information Systems, 2022.
Lee, W., Kim, S., Lee, Y. T., Lee, H. W., & Choi, M. (2017, January). Deep neural networks for wild fire detection with unmanned aerial vehicle. In 2017 IEEE international conference on consumer electronics (ICCE) (pp. 252-253). IEEE.
Lin, Y., Diao, Y., Du, Y., Zhang, J., Li, L., & Liu, P. (2022). Automatic cell counting for phase‐contrast microscopic im-ages based on a combination of Otsu and watershed segmentation method. Microscopy Research and Tech-nique, 85(1), 169-180.
López-Randulfe, J., Veiga, C., Rodríguez-Andina, J. J., & Farina, J. (2017, March). A quantitative method for selecting denoising filters, based on a new edge-sensitive metric. In 2017 IEEE International Conference on Industrial Tech-nology (ICIT) (pp. 974-979). IEEE.
Malhotra, P., Gupta, S., Koundal, D., Zaguia, A., & Enbeyle, W. (2022). Deep Neural Networks for Medical Image Seg-mentation. Journal of Healthcare Engineering, 2022.
Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lyso-zyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 405(2), 442-451.
Matrice 300 RTK, (2022), https://www.dji.com/de/matrice-300/specs, (Access on 3 July 2022).
Martínez-de Dios, J. R., Merino, L., Caballero, F., Ollero, A., & Viegas, D. X. (2006). Experimental results of automatic fire detection and monitoring with UAVs. Forest Ecology and Management, 234(1), S232.
Meng, X., Liu, Y., Gao, X., & Zhang, H. (2014, October). A new bio-inspired algorithm: chicken swarm optimization. In International conference in swarm intelligence (pp. 86-94). Springer, Cham.
Misra, D. (2019). Mish: A self regularized non-monotonic neural activation function. arXiv preprint arXiv:1908.08681, 4(2), 10-48550.
Mitchell, T. M., & Mitchell, T. M. (1997). Machine learning (Vol. 1, No. 9). New York: McGraw-hill.
Mo, Y., Wu, Y., Yang, X., Liu, F., & Liao, Y. (2022). Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing, 493, 626-646.
Mousavi, S. M. H. (2018). A new way to age estimation for rgb-d images, based on a new face detection and extraction method for depth images. International Journal of Image, Graphics and Signal Processing, 10(11), 10.
Mousavi, S. M. H., Lyashenko, V., & Prasath, V. B. S. (2019). Analysis of a robust edge detection system in different color spaces using color and depth images. Computer Optics, 43(4), 632-646.
Mousavi, S. M. H., & Kharazi, M. (2017). An edge detection system for polluted images by gaussian, salt and pepper, poisson and speckle noises. In 4th National Conference on Information Technology, Computer & TeleCommunica-tion.
Mousavi, S., & Mirinezhad, S. (2022). Weevil damage optimization algorithm and its applications. Journal of Future Sustainability, 2(4), 133-144.
Mousavi, S. M. H., MiriNezhad, S. Y., & Dezfoulian, M. H. (2017, October). Galaxy gravity optimization (GGO) an al-gorithm for optimization, inspired by comets life cycle. In 2017 Artificial Intelligence and Signal Processing Con-ference (AISP) (pp. 306-315). IEEE.
Mousavi, S. M. H., MiriNezhad, S. Y., & Mirmoini, A. (2017, October). A new support vector finder method, based on triangular calculations and K-means clustering. In 2017 9th International Conference on Information and Knowledge Technology (IKT) (pp. 46-53). IEEE.
Mousavi, S. M. H., & Mosavi, S. M. H. (2022, March). A New Edge and Pixel-Based Image Quality Assessment Metric for Colour and Depth Images. In 2022 9th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS) (pp. 1-11). IEEE.
National Interagency Fire Center (NIFC), (2022). https://www.nifc.gov/fire-information/nfn, (Access on 3 July 2022).
Nugrahaeni, R. A., & Mutijarsa, K. (2016, August). Comparative analysis of machine learning KNN, SVM, and random forests algorithm for facial expression classification. In 2016 International Seminar on Application for Technology of Information and Communication (ISemantic) (pp. 163-168). IEEE.
Parrot ANAFI Thermal, (2022), https://www.parrot.com/uk/drones/anafi-thermal, (Access on 3 July 2022).
Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and data engineer-ing, 22(10), 1345-1359.
Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm—a novel tool for complex optimisation problems. In Intelligent production machines and systems (pp. 454-459). Elsevier Science Ltd.
Phantom 4 Pro V2.0, (2022), https://www.dji.com/de/phantom-4-pro-v2, (Access on 3 July 2022).
Polesel, A., Ramponi, G., & Mathews, V. J. (2000). Image enhancement via adaptive unsharp masking. IEEE transac-tions on image processing, 9(3), 505-510.
Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correla-tion. arXiv preprint arXiv:2010.16061.
Rahim, M. A., Azam, M. S., Hossain, N., & Islam, M. R. (2013). Face recognition using local binary patterns (LBP). Global Journal of Computer Science and Technology.
Rostami, O., & Kaveh, M. (2021). Optimal feature selection for SAR image classification using biogeography-based op-timization (BBO), artificial bee colony (ABC) and support vector machine (SVM): a combined approach of optimi-zation and machine learning. Computational Geosciences, 25(3), 911-930.
Sadeghi, M., Tavakkoli-Moghaddam, R., & Babazadeh, R. (2018). AN EFFICIENT ARTIFICIAL BEE COLONY AL-GORITHM FOR A P-HUB COVERING LOCATION PROBLEM WITH TRAVEL TIME RELIABIL-ITY. International Journal of Industrial Engineering, 25(1).
Sazli, M. H. (2006). A brief review of feed-forward neural networks. Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 50(01).
SCHIEBEL CAMCOPTER, (2022). https://schiebel.net/wp-content/uploads/downloadBrochures/CC_redesign_ENG/index.html#page=10, (Access on 2 July 2022)
Sebe, N., Cohen, I., Garg, A., & Huang, T. S. (2005). Machine learning in computer vision (Vol. 29). Springer Science & Business Media.
Setiawan, A. W. (2020, November). Image segmentation metrics in skin lesion: accuracy, sensitivity, specificity, dice coefficient, Jaccard index, and Matthews correlation coefficient. In 2020 International Conference on Computer En-gineering, Network, and Intelligent Multimedia (CENIM) (pp. 97-102). IEEE.
Shamsoshoara, A., Afghah, F., Razi, A., Zheng, L., Fulé, P. Z., & Blasch, E. (2021). Aerial imagery pile burn detection using deep learning: The FLAME dataset. Computer Networks, 193, 108001.
Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation, 12(6), 702-713.
Skowronski, M. D., & Harris, J. G. (2006, May). Minimum mean squared error time series classification using an echo state network prediction model. In 2006 IEEE International Symposium on Circuits and Systems (pp. 4-pp). IEEE.
Smoot, E. E., & Gleason, K. E. (2021). Forest fires reduce snow-water storage and advance the timing of snowmelt across the Western US. Water, 13(24), 3533.
Sun, L., Wang, T., Ding, W., Xu, J., & Lin, Y. (2021). Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification. Information Sciences, 578, 887-912.
Srinivas, K., & Dua, M. (2019, August). Fog computing and deep CNN based efficient approach to early forest fire de-tection with unmanned aerial vehicles. In International Conference on Inventive Computation Technologies (pp. 646-652). Springer, Cham.
Tang, Z., Liu, X., Chen, H., Hupy, J., & Yang, B. (2020). Deep learning-based wildfire event object detection from 4K aerial images acquired by UAS. AI, 1(2), 166-179.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
Tkalcic, M., & Tasic, J. F. (2003). Colour spaces: perceptual, historical and applicational background (Vol. 1, pp. 304-308). IEEE.
Valavanis, K. P., & Vachtsevanos, G. J. (Eds.). (2015). Handbook of unmanned aerial vehicles (Vol. 1). Dordrecht: Springer Netherlands.
Vamsidhar, A., Surya Kavitha, T., & Ramesh Babu, G. (2022). Image Enhancement Using Chicken Swarm Optimiza-tion. In Proceedings of the International Conference on Computational Intelligence and Sustainable Technolo-gies (pp. 555-565). Springer, Singapore.
Wang, S. H., & Zhang, Y. D. (2020). DenseNet-201-based deep neural network with composite learning factor and pre-computation for multiple sclerosis classification. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 16(2s), 1-19.
Wang, Z., & Bovik, A. C. (2006). Modern image quality assessment. Synthesis Lectures on Image, Video, and Multime-dia Processing, 2(1), 1-156.
Wang, Z., Wang, E., & Zhu, Y. (2020). Image segmentation evaluation: a survey of methods. Artificial Intelligence Re-view, 53(8), 5637-5674.
World Health Organization (WHO), (2022). https://www.who.int/health-topics/wildfires#tab=tab_1 , (Access on 3 July 2022).
Xiao, J., Li, H., & Jin, H. (2022). Transtrack: Online meta-transfer learning and Otsu segmentation enabled wireless gesture tracking. Pattern Recognition, 121, 108157.
Xu, Q., Zhang, C., & Zhang, L. (2015, August). Denoising convolutional neural network. In 2015 IEEE International Conference on Information and Automation (pp. 1184-1187). IEEE.
Yang, X.-S. (2010). Nature-inspired metaheuristic algorithms. Luniver Press
Yuan, B., Cao, H., & Chu, J. (2012, March). Combining local binary pattern and local phase quantization for face recog-nition. In 2012 International Symposium on Biometrics and Security Technologies (pp. 51-53). IEEE.
Yuan, C., Liu, Z., & Zhang, Y. (2015, June). UAV-based forest fire detection and tracking using image processing tech-niques. In 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 639-643). IEEE.
Yuan, C., Zhang, Y., & Liu, Z. (2015). A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Canadian journal of forest research, 45(7), 783-792.
Yuan, C., Liu, Z., & Zhang, Y. (2019). Learning-based smoke detection for unmanned aerial vehicles applied to forest fire surveillance. Journal of Intelligent & Robotic Systems, 93(1), 337-349.
Zadeh, L. A. (1988). Fuzzy logic. Computer, 21(4), 83-93.
Zang, H., Zhang, S., & Hapeshi, K. (2010). A review of nature-inspired algorithms. Journal of Bionic Engineering, 7(4), S232-S237.
Zenmuse H20N, (2022), https://www.dji.com/de/zenmuse-h20n/specs, (Access on 3 July 2022).
Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE transactions on image processing, 26(7), 3142-3155.
Zhang, L., Wang, M., Fu, Y., & Ding, Y. (2022). A Forest Fire Recognition Method Using UAV Images Based on Trans-fer Learning. Forests, 13(7), 975.
Zhang, H., & Peng, Q. (2022). PSO and K-means-based semantic segmentation toward agricultural products. Future Generation Computer Systems, 126, 82-87.