How to cite this paper
Motwakel, A. (2025). Revolutionizing classification: A novel gray level co-occurrence matrix and statistical feature-based segmentation approach.International Journal of Data and Network Science, 9(1), 201-216.
Refrences
Alagu, S., & Bagan, K. B. (2019, April). Acute Lymphoblastic Leukemia diagnosis in microscopic blood smear images using Texture features and SVM classifier. In Alliance International Conference on Artificial Intelligence and Machine Learning (AICAAM) (pp. 175-186).
Chicco, D., & Jurman, G. (2023). The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification. BioData Mining, 16(1), 4.
Labati, R. D., Piuri, V., & Scotti, F. (2011, September). All-IDB: The acute lymphoblastic leukemia image database for image processing. In 2011 18th IEEE international conference on image processing (pp. 2045-2048). IEEE. doi: 10.1109/ICIP.2011.6115881.
More, P., & Sugandhi, R. (2023). Automated and enhanced leucocyte detection and classification for leukemia detection using multi-class SVM classifier. Engineering Proceedings, 37(1), 36.
Muntasa, A., & Yusuf, M. (2019). Modeling of the acute lymphoblastic leukemia detection based on the principal object char-acteristics of the color image. Procedia Computer Science, 157, 87-98.
Muntasa, A., & Yusuf, M. (2020). A Novel Approach to Detect the Acute Lymphoblastic Leukemia Based on the Color Or-thonormal Basis Entropy (COBE) and the Distribution of the Pixel Intensity (DoPI). International Journal of Intelligent Engineering & Systems, 13(1).
Muntasa, A., & Yusuf, M. (2021). Multi Distance and Angle Models of the Gray Level Co-occurrence Matrix (GLCM) to Ex-tract the Acute Lymphoblastic Leukemia (ALL) Images. International Journal of Intelligent Engineering & Systems, 14(6).
Muntasa, A., Wahyuningrum, R. T., & Nafisah, D. (2023). A New Model: Commutative Hypercomplex-Convolutional Neural Network to Classify Acute Lymphoblastic Leukemia Images. International Journal of Intelligent Engineering & Sys-tems, 16(5).
Muntasa, A., Wahyuningrum, R. T., Tuzzahra, Z., Motwakel, A., Yusuf, M., & Mahmudi, W. F. (2022). A Pyramid Model of Convolutional Neural Network to Classify Acute Lymphoblastic Leukemia Images. International Journal of Intelligent Engineering & Systems, 15(6).
PS, S. K., & Vs, D. (2016). Extraction of texture features using GLCM and shape features using connected re-gions. International journal of engineering and technology, 8(6), 2926-2930.
Shafique, S., & Tehsin, S. (2018). Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technology in cancer research & treatment, 17, 1533033818802789.
Sukhia, K. N., Ghafoor, A., Riaz, M. M., & Iltaf, N. (2019). Automated acute lymphoblastic leukaemia detection system using microscopic images. IET Image Processing, 13(13), 2548-2553.
Talaat, F. M., & Gamel, S. A. (2024). Machine learning in detection and classification of leukemia using C-NMC_Leukemia. Multimedia Tools and Applications, 83(3), 8063-8076.
Terwilliger, T., & Abdul-Hay, M. J. B. C. J. (2017). Acute lymphoblastic leukemia: a comprehensive review and 2017 up-date. Blood Cancer Journal, 7(6), e577-e577.
Chicco, D., & Jurman, G. (2023). The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification. BioData Mining, 16(1), 4.
Labati, R. D., Piuri, V., & Scotti, F. (2011, September). All-IDB: The acute lymphoblastic leukemia image database for image processing. In 2011 18th IEEE international conference on image processing (pp. 2045-2048). IEEE. doi: 10.1109/ICIP.2011.6115881.
More, P., & Sugandhi, R. (2023). Automated and enhanced leucocyte detection and classification for leukemia detection using multi-class SVM classifier. Engineering Proceedings, 37(1), 36.
Muntasa, A., & Yusuf, M. (2019). Modeling of the acute lymphoblastic leukemia detection based on the principal object char-acteristics of the color image. Procedia Computer Science, 157, 87-98.
Muntasa, A., & Yusuf, M. (2020). A Novel Approach to Detect the Acute Lymphoblastic Leukemia Based on the Color Or-thonormal Basis Entropy (COBE) and the Distribution of the Pixel Intensity (DoPI). International Journal of Intelligent Engineering & Systems, 13(1).
Muntasa, A., & Yusuf, M. (2021). Multi Distance and Angle Models of the Gray Level Co-occurrence Matrix (GLCM) to Ex-tract the Acute Lymphoblastic Leukemia (ALL) Images. International Journal of Intelligent Engineering & Systems, 14(6).
Muntasa, A., Wahyuningrum, R. T., & Nafisah, D. (2023). A New Model: Commutative Hypercomplex-Convolutional Neural Network to Classify Acute Lymphoblastic Leukemia Images. International Journal of Intelligent Engineering & Sys-tems, 16(5).
Muntasa, A., Wahyuningrum, R. T., Tuzzahra, Z., Motwakel, A., Yusuf, M., & Mahmudi, W. F. (2022). A Pyramid Model of Convolutional Neural Network to Classify Acute Lymphoblastic Leukemia Images. International Journal of Intelligent Engineering & Systems, 15(6).
PS, S. K., & Vs, D. (2016). Extraction of texture features using GLCM and shape features using connected re-gions. International journal of engineering and technology, 8(6), 2926-2930.
Shafique, S., & Tehsin, S. (2018). Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technology in cancer research & treatment, 17, 1533033818802789.
Sukhia, K. N., Ghafoor, A., Riaz, M. M., & Iltaf, N. (2019). Automated acute lymphoblastic leukaemia detection system using microscopic images. IET Image Processing, 13(13), 2548-2553.
Talaat, F. M., & Gamel, S. A. (2024). Machine learning in detection and classification of leukemia using C-NMC_Leukemia. Multimedia Tools and Applications, 83(3), 8063-8076.
Terwilliger, T., & Abdul-Hay, M. J. B. C. J. (2017). Acute lymphoblastic leukemia: a comprehensive review and 2017 up-date. Blood Cancer Journal, 7(6), e577-e577.