How to cite this paper
Alzyoud, M., Al-Shanableh, N., Alomar, S., AsadAlnaser, A., Mustafad, A., Al-Momani, A & Al-Hawary, S. (2024). Artificial intelligence in Jordanian education: Assessing acceptance via perceived cybersecurity, novelty value, and perceived trust.International Journal of Data and Network Science, 8(2), 823-834.
Refrences
Abu-Shanab, E., Ababneh, N., & Ala’a, A. (2012a). E-Learning Systems’ acceptance: The Case of Eduwave In Jordan. The International Scientific Conference ELearning and Software for Education, 2, 463.
Abu-Shanab, E., Ala’a, A., & Ababneh, N. (2012b). Teachers’ adoption Of E-learning systems: the case of EduWave in Jordan. The 2012 International Arab Conference of E-Technology (IACe-T’2012), Zarqa, Jordan, 51–56.
Adapa, S., Fazal-e-Hasan, S. M., Makam, S. B., Azeem, M. M., & Mortimer, G. (2020). Examining the antecedents and consequences of perceived shopping value through smart retail technology. Journal of Retailing and Consumer Services, 52(August 2019), 101901. https://doi.org/10.1016/j.jretconser.2019.101901
Afthanorhan, A., Ghazali, P. L., & Rashid, N. (2021). Discriminant Validity: A Comparison of CBSEM and Consistent PLS using Fornell & Larcker and HTMT Approaches. Journal of Physics: Conference Series, 1874(1), 012085. https://doi.org/10.1088/1742-6596/1874/1/012085
Ala’a, A. (2022). Mind Map of Introduction to Structural Equational Modeling (Issue February).
Ala’a, A. (2023a). Adoption of Artificial Intelligence and Robotics in Healthcare: A Systematic Literature Review. International Journal of Contemporary Management and Information Technology (IJCMIT), 3(6), 1–16.
Ala’a, A. (2023b). Adoption of Artificial Intelligence and Robotics in Organisations: A Systematic Literature Review. International Journal of Business and Technology Management, 5(3), 342–359. https://doi.org/10.55057/ijbtm.2023.5.3.28
Ala’a, A., & Ramayah, T. (2023a). Predicting the Behavioural Intention of Jordanian Healthcare Professionals to Use Blockchain-Based EHR Systems: An Empirical Study. Journal of System and Management Sciences, 13(4), 107–139. https://doi.org/10.33168/JSMS.2023.0407
Ala’a, A., & Ramayah, T. (2023b). Impact of Electronic Healthcare Records Usage on Healthcare Professionals’ Performance Among Jordanian Public Sector: A Conceptual Paper. International Journal of Business and Technology Management, 4(4), 129–143. https://doi.org/10.55057/ijbtm.2022.4.4.11
Ala’a, A., & Ramayah, T. (2023c). A Review of the Technology Acceptance Model in Electronic Health Records. International Journal of Business and Technology Management, 5(2), 8–19. https://doi.org/10.55057/ijbtm.2023.5.2.2
Algerafi, M. A. M., Zhou, Y., Alfadda, H., & Wijaya, T. T. (2023). Understanding the Factors Influencing Higher Education Students’ Intention to Adopt Artificial Intelligence-Based Robots. IEEE Access, 11(August), 99752–99764. https://doi.org/10.1109/ACCESS.2023.3314499
Alsaad, A. (2023). The dual effect of anthropomorphism on customers’ decisions to use artificial intelligence devices in hotel services. Journal of Hospitality Marketing and Management, 32(8), 1048–1076. https://doi.org/10.1080/19368623.2023.2223584
Bani Ahmad, F., Al-Nawaiseh, S. J., & Al-Nawaiseh, A. J. (2023). Receptivity Level of Faculty Members in Universities Using Digital Learning Tools: A UTAUT Perspective. International Journal of Emerging Technologies in Learning (IJET), 18(13), 209–219. https://doi.org/10.3991/ijet.v18i13.39763
Barrientos-Báez, A., Martínez-González, J. A., García-Rodríguez, F. J., & Gómez Galán, J. (2022). Entrepreneurial competence perceived by university students: Quantitative and descriptive analysis. Journal of International Studies, 15(2), 40–49. https://doi.org/10.14254/2071-8330.2022/15-2/3
Bates, T., Cobo, C., Mariño, O., & Wheeler, S. (2020). Can artificial intelligence transform higher education? International Journal of Educational Technology in Higher Education, 17(1), 42. https://doi.org/10.1186/s41239-020-00218-x
Bedaf, S., Marti, P., & De Witte, L. (2019). What are the preferred characteristics of a service robot for the elderly? A multi-country focus group study with older adults and caregivers. Assistive Technology, 31(3), 147–157. https://doi.org/10.1080/10400435.2017.1402390
Chang, S. E., Liu, A. Y., & Shen, W. C. (2017). User trust in social networking services: A comparison of Facebook and LinkedIn. Computers in Human Behavior, 69, 207–217. https://doi.org/10.1016/j.chb.2016.12.013
Chi, O. H., Jia, S., Li, Y., & Gursoy, D. (2021). Developing a formative scale to measure consumers’ trust toward interaction with artificially intelligent (AI) social robots in service delivery. Computers in Human Behavior, 118(May 2020), 106700. https://doi.org/10.1016/j.chb.2021.106700
Cho, G., Hwang, H., Sarstedt, M., & Ringle, C. M. (2020). Cutoff criteria for overall model fit indexes in generalized structured component analysis. Journal of Marketing Analytics, 8(4), 189–202. https://doi.org/10.1057/s41270-020-00089-1
Eleimat, D., Ebbini, M. M. Al, Aryan, L. A., & Al-Hawary, S. I. S. (2023). The effect of big data on financial reporting quality. International Journal of Data and Network Science, 7(4), 1775–1780. https://doi.org/10.5267/j.ijdns.2023.7.015
Gerlich, M. (2023). Perceptions and Acceptance of Artificial Intelligence: A Multi-Dimensional Study. Social Sciences, 12(9), 502. https://doi.org/10.3390/socsci12090502
Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management, 49(March), 157–169. https://doi.org/10.1016/j.ijinfomgt.2019.03.008
Hijjawi, G. S., Eldahamsheh, M. M., Quran, A. Z. F. Al, Almomani, H. M. A., Alhalalmeh, M. I., & Hawary, S. I. S. Al. (2023). The mediating effect of digital supply chain management among the relationship between lean management and supply chain operations. International Journal of Economics and Business Research, 26(2), 146–162. https://doi.org/10.1504/IJEBR.2023.132642
Hinojo-Lucena, F.-J., Aznar-Díaz, I., Cáceres-Reche, M.-P., & Romero-Rodríguez, J.-M. (2019). Artificial Intelligence in Higher Education: A Bibliometric Study on its Impact in the Scientific Literature. Education Sciences, 9(1), 51. https://doi.org/10.3390/educsci9010051
Hofstede-insights. (2023). Hofstede Insights Organisational Culture Consulting. https://www.hofstede-insights.com/country-comparison-tool?countries=jordan
Hofstede, G., Hofstede, G. J., & Minkov, M. (2010). Cultures and organizations: Software of the mind: Intercultural cooperation and its importance for survival. New York: McGraw-Hill.
Hoyle, R. H. (1995). The structural equation modeling approach: Basic concepts and fundamental issues.
Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption: Testing the UTAUT model. Information and Management, 48(1), 1–8.
Im, S., Bhat, S., & Lee, Y. (2015). Consumer perceptions of product creativity, coolness, value and attitude. Journal of Business Research, 68(1), 166–172. https://doi.org/10.1016/j.jbusres.2014.03.014
Jarrah, H., & Lahiani, H. (2021). The Effect of Digital Technology on Educational Outcomes through Student Engagement in Distance Education. Journal of Hunan University(Natural Sciences), 48(12), 183–192.
Karjaluoto, H., Shaikh, A. A., Saarijärvi, H., & Saraniemi, S. (2019). How perceived value drives the use of mobile financial services apps. International Journal of Information Management, 47(August 2018), 252–261. https://doi.org/10.1016/j.ijinfomgt.2018.08.014
Khazaei, H. (2020). Integrating Cognitive Antecedents to UTAUT Model to Explain Adoption of Blockchain Technology Among Malaysian SMEs. JOIV : International Journal on Informatics Visualization, 4(2), 85–90. https://doi.org/10.30630/joiv.4.2.362
Kim, G., Shin, B., & Lee, H. G. (2009). Understanding dynamics between initial trust and usage intentions of mobile banking. Information Systems Journal, 19(3), 283–311. https://doi.org/10.1111/j.1365-2575.2007.00269.x
Kim, J. H. (2019). Multicollinearity and misleading statistical results. Korean Journal of Anesthesiology, 72(6), 558–569.
Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.
Kumar, N., Singh, M., Upreti, K., & Mohan, D. (2022). Blockchain Adoption Intention in Higher Education: Role of Trust, Perceived Security and Privacy in Technology Adoption Model. In Proceedings of International Conference on Emerging Technologies and Intelligent Systems: ICETIS 2021 (Volume 1) (pp. 303–313). Springer. https://doi.org/10.1007/978-3-030-82616-1_27
Lee, C. T., & Pan, L.-Y. (2023). Smile to pay: predicting continuous usage intention toward contactless payment services in the post-COVID-19 era. International Journal of Bank Marketing, 41(2), 312–332. https://doi.org/10.1108/IJBM-03-2022-0130
Luqman, A., Cao, X., Ali, A., Masood, A., & Yu, L. (2017). Empirical investigation of Facebook discontinues usage intentions based on SOR paradigm. Computers in Human Behavior, 70, 544–555. https://doi.org/10.1016/j.chb.2017.01.020
Ma, X., & Huo, Y. (2023). Are users willing to embrace ChatGPT? Exploring the factors on the acceptance of chatbots from the perspective of AIDUA framework. Technology in Society, 75(28), 102362. https://doi.org/10.1016/j.techsoc.2023.102362
McNeish, D., & Wolf, M. G. (2023). Dynamic fit index cutoffs for confirmatory factor analysis models. Psychological Methods, 28(1), 61–88. https://doi.org/10.1037/met0000425
Mohammad, A., Aldmour, R., & Al-Hawary, S. (2022). Drivers of online food delivery orientation. International Journal of Data and Network Science, 6(4), 1619–1624. https://doi.org/10.5267/j.ijdns.2022.4.016
Muda, I., Sivaraman, R., Al-Hawary, S. I. S., Rahardja, U., Bader, R. S., Kadarsyah, D., Mohsen, K. S., Jabbar, A. H., & Chaudhary, P. (2022). Hub location-allocation in computer-based networks under disruption using whale optimization algorithm. Industrial Engineering and Management Systems, 21(3), 503–515.
Network Readiness Index. (2022). Stepping into the new digital era How and why digital natives will change the world. https://networkreadinessindex.org/
Pallathadka, H., Al-Hawary, S. I. S., Muda, I., Surahman, S. H., Al-Salami, A. A. A., & Nasimova, Z. (2023). The study of Islamic teachings in education: With an emphasis on behavioural gentleness. HTS Teologiese Studies/Theological Studies, 79(1), 1–7. https://doi.org/10.4102/hts.v79i1.8193
Pande, S., & Gupta, K. P. (2023). Indian customers’ acceptance of service robots in restaurant services. Behaviour and Information Technology, 42(12), 1946–1967. https://doi.org/10.1080/0144929X.2022.2103734
Rahamneh, A. A. AL, Alrawashdeh, S. T., Bawaneh, A. A., Alatyat, Z., Mohammad, A., Mohammad, A. A. S., & Al-Hawary, S. I. S. (2023). The effect of digital supply chain on lean manufacturing: A structural equation modelling approach. Uncertain Supply Chain Management, 11(1), 391–402. https://doi.org/10.5267/j.uscm.2022.9.003
Rönkkö, M., & Cho, E. (2022). An updated guideline for assessing discriminant validity. Organizational Research Methods, 25(1), 6–14.
Roy, R., Babakerkhell, M. D., Mukherjee, S., Pal, D., & Funilkul, S. (2022). Evaluating the Intention for the Adoption of Artificial Intelligence-Based Robots in the University to Educate the Students. IEEE Access, 10(November), 125666–125678. https://doi.org/10.1109/ACCESS.2022.3225555
Sahoo, M. (2019). Structural equation modeling: Threshold criteria for assessing model fit. In Methodological Issues in Management Research: Advances, Challenges, and the Way Ahead (pp. 269–276). Emerald Publishing Limited.
Seo, K. H., & Lee, J. H. (2021). The Emergence of Service Robots at Restaurants: Integrating Trust, Perceived Risk, and Satisfaction. Sustainability, 13(8), 4431. https://doi.org/10.3390/su13084431
Shah, M. H., Peikari, H. R., & Yasin, N. M. (2014). The determinants of individuals’ perceived e-security: Evidence from Malaysia. International Journal of Information Management, 34(1), 48–57. https://doi.org/10.1016/j.ijinfomgt.2013.10.001
Sharma, H., Soetan, T., Farinloye, T., Mogaji, E., & Noite, M. D. F. (2022a). AI adoption in universities in emerging economies: Prospects, challenges and recommendations. In Re-imagining Educational Futures in Developing Countries: Lessons from Global Health Crises (pp. 159–174). Springer.
Sharma, S., Singh, G., Gaur, L., & Afaq, A. (2022b). Exploring customer adoption of autonomous shopping systems. Telematics and Informatics, 73(July), 101861. https://doi.org/10.1016/j.tele.2022.101861
Straub, D., Keil, M., & Brenner, W. (1997). Testing the technology acceptance model across cultures: A three country study. Information and Management, 33(1), 1–11. https://doi.org/10.1016/s0378- 7206(97)00026-8
Sujati, H., Sajidan, Akhyar, M., & Gunarhadi. (2020). Testing the Construct Validity and Reliability of Curiosity Scale Using Confirmatory Factor Analysis. Journal of Educational and Social Research, 10(4), 229. https://doi.org/10.36941/jesr-2020-0080
Sullivan, F. R., & Keith, P. K. (2019). Exploring the potential of natural language processing to support microgenetic analysis of collaborative learning discussions. British Journal of Educational Technology, 50(6), 3047–3063. https://doi.org/10.1111/bjet.12875
Sun, H., & Zhang, P. (2006). The role of moderating factors in user technology acceptance. International Journal of Human-Computer Studies, 64(2), 53–78. https://doi.org/10.1016/j.ijhcs.2005.04.013
Timotheou, S., Miliou, O., Dimitriadis, Y., Sobrino, S. V., Giannoutsou, N., Cachia, R., Monés, A. M., & Ioannou, A. (2023). Impacts of digital technologies on education and factors influencing schools’ digital capacity and transformation: A literature review. Education and Information Technologies, 28(6), 6695–6726. https://doi.org/10.1007/s10639-022-11431-8
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.
Wang, Y., Liu, C., & Tu, Y. F. (2021). Factors Affecting the Adoption of AI Based Applications in Higher Education: An Analysis of Teachers Perspectives Using Structural Equation Modeling. Educational Technology and Society, 24(3), 116–129.
Waris, I., & Hameed, I. (2023). Modeling teachers acceptance of learning management system in higher education during COVID-19 pandemic: A developing country perspective. Journal of Public Affairs, 23(1). https://doi.org/10.1002/pa.2821
Weitz, K., Schiller, D., Schlagowski, R., Huber, T., & André, E. (2019). “Do you trust me?”: Increasing User-Trust by Integrating Virtual Agents in Explainable AI Interaction Design. Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents, 7–9. https://doi.org/10.1145/3308532.3329441
Xia, Y., & Yang, Y. (2019). RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behavior Research Methods, 51(1), 409–428. https://doi.org/10.3758/s13428-018-1055-2
Xie, L., Liu, X., & Li, D. (2022). The mechanism of value cocreation in robotic services: customer inspiration from robotic service novelty. Journal of Hospitality Marketing and Management, 31(8), 962–983. https://doi.org/10.1080/19368623.2022.2112354
Ximénez, C., Maydeu-Olivares, A., Shi, D., & Revuelta, J. (2022). Assessing Cutoff Values of SEM Fit Indices: Advantages of the Unbiased SRMR Index and Its Cutoff Criterion Based on Communality. Structural Equation Modeling: A Multidisciplinary Journal, 29(3), 368–380. https://doi.org/10.1080/10705511.2021.1992596
Zaman, T., & Bulut, H. (2023). An efficient family of robust-type estimators for the population variance in simple and stratified random sampling. Communications in Statistics - Theory and Methods, 52(8), 2610–2624. https://doi.org/10.1080/03610926.2021.1955388
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0
Zhang, J., Lai, I. K. W., & Xu, W. (2020). Motivating students’ learning in science and technology by using robots. International Journal of Innovation and Learning, 27(4), 395–410.
Zhang, M., Gursoy, D., Zhu, Z., & Shi, S. (2021). Impact of anthropomorphic features of artificially intelligent service robots on consumer acceptance: moderating role of sense of humor. International Journal of Contemporary Hospitality Management, 33(11), 3883–3905. https://doi.org/10.1108/IJCHM-11-2020-1256
Zheng, H., Li, Y., & Jiang, D. (2012). Empirical study and model of User’s acceptance for mobile commerce in China. International Journal of Computer Science Issues (IJCSI), 9(6), 278.
Abu-Shanab, E., Ala’a, A., & Ababneh, N. (2012b). Teachers’ adoption Of E-learning systems: the case of EduWave in Jordan. The 2012 International Arab Conference of E-Technology (IACe-T’2012), Zarqa, Jordan, 51–56.
Adapa, S., Fazal-e-Hasan, S. M., Makam, S. B., Azeem, M. M., & Mortimer, G. (2020). Examining the antecedents and consequences of perceived shopping value through smart retail technology. Journal of Retailing and Consumer Services, 52(August 2019), 101901. https://doi.org/10.1016/j.jretconser.2019.101901
Afthanorhan, A., Ghazali, P. L., & Rashid, N. (2021). Discriminant Validity: A Comparison of CBSEM and Consistent PLS using Fornell & Larcker and HTMT Approaches. Journal of Physics: Conference Series, 1874(1), 012085. https://doi.org/10.1088/1742-6596/1874/1/012085
Ala’a, A. (2022). Mind Map of Introduction to Structural Equational Modeling (Issue February).
Ala’a, A. (2023a). Adoption of Artificial Intelligence and Robotics in Healthcare: A Systematic Literature Review. International Journal of Contemporary Management and Information Technology (IJCMIT), 3(6), 1–16.
Ala’a, A. (2023b). Adoption of Artificial Intelligence and Robotics in Organisations: A Systematic Literature Review. International Journal of Business and Technology Management, 5(3), 342–359. https://doi.org/10.55057/ijbtm.2023.5.3.28
Ala’a, A., & Ramayah, T. (2023a). Predicting the Behavioural Intention of Jordanian Healthcare Professionals to Use Blockchain-Based EHR Systems: An Empirical Study. Journal of System and Management Sciences, 13(4), 107–139. https://doi.org/10.33168/JSMS.2023.0407
Ala’a, A., & Ramayah, T. (2023b). Impact of Electronic Healthcare Records Usage on Healthcare Professionals’ Performance Among Jordanian Public Sector: A Conceptual Paper. International Journal of Business and Technology Management, 4(4), 129–143. https://doi.org/10.55057/ijbtm.2022.4.4.11
Ala’a, A., & Ramayah, T. (2023c). A Review of the Technology Acceptance Model in Electronic Health Records. International Journal of Business and Technology Management, 5(2), 8–19. https://doi.org/10.55057/ijbtm.2023.5.2.2
Algerafi, M. A. M., Zhou, Y., Alfadda, H., & Wijaya, T. T. (2023). Understanding the Factors Influencing Higher Education Students’ Intention to Adopt Artificial Intelligence-Based Robots. IEEE Access, 11(August), 99752–99764. https://doi.org/10.1109/ACCESS.2023.3314499
Alsaad, A. (2023). The dual effect of anthropomorphism on customers’ decisions to use artificial intelligence devices in hotel services. Journal of Hospitality Marketing and Management, 32(8), 1048–1076. https://doi.org/10.1080/19368623.2023.2223584
Bani Ahmad, F., Al-Nawaiseh, S. J., & Al-Nawaiseh, A. J. (2023). Receptivity Level of Faculty Members in Universities Using Digital Learning Tools: A UTAUT Perspective. International Journal of Emerging Technologies in Learning (IJET), 18(13), 209–219. https://doi.org/10.3991/ijet.v18i13.39763
Barrientos-Báez, A., Martínez-González, J. A., García-Rodríguez, F. J., & Gómez Galán, J. (2022). Entrepreneurial competence perceived by university students: Quantitative and descriptive analysis. Journal of International Studies, 15(2), 40–49. https://doi.org/10.14254/2071-8330.2022/15-2/3
Bates, T., Cobo, C., Mariño, O., & Wheeler, S. (2020). Can artificial intelligence transform higher education? International Journal of Educational Technology in Higher Education, 17(1), 42. https://doi.org/10.1186/s41239-020-00218-x
Bedaf, S., Marti, P., & De Witte, L. (2019). What are the preferred characteristics of a service robot for the elderly? A multi-country focus group study with older adults and caregivers. Assistive Technology, 31(3), 147–157. https://doi.org/10.1080/10400435.2017.1402390
Chang, S. E., Liu, A. Y., & Shen, W. C. (2017). User trust in social networking services: A comparison of Facebook and LinkedIn. Computers in Human Behavior, 69, 207–217. https://doi.org/10.1016/j.chb.2016.12.013
Chi, O. H., Jia, S., Li, Y., & Gursoy, D. (2021). Developing a formative scale to measure consumers’ trust toward interaction with artificially intelligent (AI) social robots in service delivery. Computers in Human Behavior, 118(May 2020), 106700. https://doi.org/10.1016/j.chb.2021.106700
Cho, G., Hwang, H., Sarstedt, M., & Ringle, C. M. (2020). Cutoff criteria for overall model fit indexes in generalized structured component analysis. Journal of Marketing Analytics, 8(4), 189–202. https://doi.org/10.1057/s41270-020-00089-1
Eleimat, D., Ebbini, M. M. Al, Aryan, L. A., & Al-Hawary, S. I. S. (2023). The effect of big data on financial reporting quality. International Journal of Data and Network Science, 7(4), 1775–1780. https://doi.org/10.5267/j.ijdns.2023.7.015
Gerlich, M. (2023). Perceptions and Acceptance of Artificial Intelligence: A Multi-Dimensional Study. Social Sciences, 12(9), 502. https://doi.org/10.3390/socsci12090502
Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management, 49(March), 157–169. https://doi.org/10.1016/j.ijinfomgt.2019.03.008
Hijjawi, G. S., Eldahamsheh, M. M., Quran, A. Z. F. Al, Almomani, H. M. A., Alhalalmeh, M. I., & Hawary, S. I. S. Al. (2023). The mediating effect of digital supply chain management among the relationship between lean management and supply chain operations. International Journal of Economics and Business Research, 26(2), 146–162. https://doi.org/10.1504/IJEBR.2023.132642
Hinojo-Lucena, F.-J., Aznar-Díaz, I., Cáceres-Reche, M.-P., & Romero-Rodríguez, J.-M. (2019). Artificial Intelligence in Higher Education: A Bibliometric Study on its Impact in the Scientific Literature. Education Sciences, 9(1), 51. https://doi.org/10.3390/educsci9010051
Hofstede-insights. (2023). Hofstede Insights Organisational Culture Consulting. https://www.hofstede-insights.com/country-comparison-tool?countries=jordan
Hofstede, G., Hofstede, G. J., & Minkov, M. (2010). Cultures and organizations: Software of the mind: Intercultural cooperation and its importance for survival. New York: McGraw-Hill.
Hoyle, R. H. (1995). The structural equation modeling approach: Basic concepts and fundamental issues.
Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption: Testing the UTAUT model. Information and Management, 48(1), 1–8.
Im, S., Bhat, S., & Lee, Y. (2015). Consumer perceptions of product creativity, coolness, value and attitude. Journal of Business Research, 68(1), 166–172. https://doi.org/10.1016/j.jbusres.2014.03.014
Jarrah, H., & Lahiani, H. (2021). The Effect of Digital Technology on Educational Outcomes through Student Engagement in Distance Education. Journal of Hunan University(Natural Sciences), 48(12), 183–192.
Karjaluoto, H., Shaikh, A. A., Saarijärvi, H., & Saraniemi, S. (2019). How perceived value drives the use of mobile financial services apps. International Journal of Information Management, 47(August 2018), 252–261. https://doi.org/10.1016/j.ijinfomgt.2018.08.014
Khazaei, H. (2020). Integrating Cognitive Antecedents to UTAUT Model to Explain Adoption of Blockchain Technology Among Malaysian SMEs. JOIV : International Journal on Informatics Visualization, 4(2), 85–90. https://doi.org/10.30630/joiv.4.2.362
Kim, G., Shin, B., & Lee, H. G. (2009). Understanding dynamics between initial trust and usage intentions of mobile banking. Information Systems Journal, 19(3), 283–311. https://doi.org/10.1111/j.1365-2575.2007.00269.x
Kim, J. H. (2019). Multicollinearity and misleading statistical results. Korean Journal of Anesthesiology, 72(6), 558–569.
Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.
Kumar, N., Singh, M., Upreti, K., & Mohan, D. (2022). Blockchain Adoption Intention in Higher Education: Role of Trust, Perceived Security and Privacy in Technology Adoption Model. In Proceedings of International Conference on Emerging Technologies and Intelligent Systems: ICETIS 2021 (Volume 1) (pp. 303–313). Springer. https://doi.org/10.1007/978-3-030-82616-1_27
Lee, C. T., & Pan, L.-Y. (2023). Smile to pay: predicting continuous usage intention toward contactless payment services in the post-COVID-19 era. International Journal of Bank Marketing, 41(2), 312–332. https://doi.org/10.1108/IJBM-03-2022-0130
Luqman, A., Cao, X., Ali, A., Masood, A., & Yu, L. (2017). Empirical investigation of Facebook discontinues usage intentions based on SOR paradigm. Computers in Human Behavior, 70, 544–555. https://doi.org/10.1016/j.chb.2017.01.020
Ma, X., & Huo, Y. (2023). Are users willing to embrace ChatGPT? Exploring the factors on the acceptance of chatbots from the perspective of AIDUA framework. Technology in Society, 75(28), 102362. https://doi.org/10.1016/j.techsoc.2023.102362
McNeish, D., & Wolf, M. G. (2023). Dynamic fit index cutoffs for confirmatory factor analysis models. Psychological Methods, 28(1), 61–88. https://doi.org/10.1037/met0000425
Mohammad, A., Aldmour, R., & Al-Hawary, S. (2022). Drivers of online food delivery orientation. International Journal of Data and Network Science, 6(4), 1619–1624. https://doi.org/10.5267/j.ijdns.2022.4.016
Muda, I., Sivaraman, R., Al-Hawary, S. I. S., Rahardja, U., Bader, R. S., Kadarsyah, D., Mohsen, K. S., Jabbar, A. H., & Chaudhary, P. (2022). Hub location-allocation in computer-based networks under disruption using whale optimization algorithm. Industrial Engineering and Management Systems, 21(3), 503–515.
Network Readiness Index. (2022). Stepping into the new digital era How and why digital natives will change the world. https://networkreadinessindex.org/
Pallathadka, H., Al-Hawary, S. I. S., Muda, I., Surahman, S. H., Al-Salami, A. A. A., & Nasimova, Z. (2023). The study of Islamic teachings in education: With an emphasis on behavioural gentleness. HTS Teologiese Studies/Theological Studies, 79(1), 1–7. https://doi.org/10.4102/hts.v79i1.8193
Pande, S., & Gupta, K. P. (2023). Indian customers’ acceptance of service robots in restaurant services. Behaviour and Information Technology, 42(12), 1946–1967. https://doi.org/10.1080/0144929X.2022.2103734
Rahamneh, A. A. AL, Alrawashdeh, S. T., Bawaneh, A. A., Alatyat, Z., Mohammad, A., Mohammad, A. A. S., & Al-Hawary, S. I. S. (2023). The effect of digital supply chain on lean manufacturing: A structural equation modelling approach. Uncertain Supply Chain Management, 11(1), 391–402. https://doi.org/10.5267/j.uscm.2022.9.003
Rönkkö, M., & Cho, E. (2022). An updated guideline for assessing discriminant validity. Organizational Research Methods, 25(1), 6–14.
Roy, R., Babakerkhell, M. D., Mukherjee, S., Pal, D., & Funilkul, S. (2022). Evaluating the Intention for the Adoption of Artificial Intelligence-Based Robots in the University to Educate the Students. IEEE Access, 10(November), 125666–125678. https://doi.org/10.1109/ACCESS.2022.3225555
Sahoo, M. (2019). Structural equation modeling: Threshold criteria for assessing model fit. In Methodological Issues in Management Research: Advances, Challenges, and the Way Ahead (pp. 269–276). Emerald Publishing Limited.
Seo, K. H., & Lee, J. H. (2021). The Emergence of Service Robots at Restaurants: Integrating Trust, Perceived Risk, and Satisfaction. Sustainability, 13(8), 4431. https://doi.org/10.3390/su13084431
Shah, M. H., Peikari, H. R., & Yasin, N. M. (2014). The determinants of individuals’ perceived e-security: Evidence from Malaysia. International Journal of Information Management, 34(1), 48–57. https://doi.org/10.1016/j.ijinfomgt.2013.10.001
Sharma, H., Soetan, T., Farinloye, T., Mogaji, E., & Noite, M. D. F. (2022a). AI adoption in universities in emerging economies: Prospects, challenges and recommendations. In Re-imagining Educational Futures in Developing Countries: Lessons from Global Health Crises (pp. 159–174). Springer.
Sharma, S., Singh, G., Gaur, L., & Afaq, A. (2022b). Exploring customer adoption of autonomous shopping systems. Telematics and Informatics, 73(July), 101861. https://doi.org/10.1016/j.tele.2022.101861
Straub, D., Keil, M., & Brenner, W. (1997). Testing the technology acceptance model across cultures: A three country study. Information and Management, 33(1), 1–11. https://doi.org/10.1016/s0378- 7206(97)00026-8
Sujati, H., Sajidan, Akhyar, M., & Gunarhadi. (2020). Testing the Construct Validity and Reliability of Curiosity Scale Using Confirmatory Factor Analysis. Journal of Educational and Social Research, 10(4), 229. https://doi.org/10.36941/jesr-2020-0080
Sullivan, F. R., & Keith, P. K. (2019). Exploring the potential of natural language processing to support microgenetic analysis of collaborative learning discussions. British Journal of Educational Technology, 50(6), 3047–3063. https://doi.org/10.1111/bjet.12875
Sun, H., & Zhang, P. (2006). The role of moderating factors in user technology acceptance. International Journal of Human-Computer Studies, 64(2), 53–78. https://doi.org/10.1016/j.ijhcs.2005.04.013
Timotheou, S., Miliou, O., Dimitriadis, Y., Sobrino, S. V., Giannoutsou, N., Cachia, R., Monés, A. M., & Ioannou, A. (2023). Impacts of digital technologies on education and factors influencing schools’ digital capacity and transformation: A literature review. Education and Information Technologies, 28(6), 6695–6726. https://doi.org/10.1007/s10639-022-11431-8
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.
Wang, Y., Liu, C., & Tu, Y. F. (2021). Factors Affecting the Adoption of AI Based Applications in Higher Education: An Analysis of Teachers Perspectives Using Structural Equation Modeling. Educational Technology and Society, 24(3), 116–129.
Waris, I., & Hameed, I. (2023). Modeling teachers acceptance of learning management system in higher education during COVID-19 pandemic: A developing country perspective. Journal of Public Affairs, 23(1). https://doi.org/10.1002/pa.2821
Weitz, K., Schiller, D., Schlagowski, R., Huber, T., & André, E. (2019). “Do you trust me?”: Increasing User-Trust by Integrating Virtual Agents in Explainable AI Interaction Design. Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents, 7–9. https://doi.org/10.1145/3308532.3329441
Xia, Y., & Yang, Y. (2019). RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behavior Research Methods, 51(1), 409–428. https://doi.org/10.3758/s13428-018-1055-2
Xie, L., Liu, X., & Li, D. (2022). The mechanism of value cocreation in robotic services: customer inspiration from robotic service novelty. Journal of Hospitality Marketing and Management, 31(8), 962–983. https://doi.org/10.1080/19368623.2022.2112354
Ximénez, C., Maydeu-Olivares, A., Shi, D., & Revuelta, J. (2022). Assessing Cutoff Values of SEM Fit Indices: Advantages of the Unbiased SRMR Index and Its Cutoff Criterion Based on Communality. Structural Equation Modeling: A Multidisciplinary Journal, 29(3), 368–380. https://doi.org/10.1080/10705511.2021.1992596
Zaman, T., & Bulut, H. (2023). An efficient family of robust-type estimators for the population variance in simple and stratified random sampling. Communications in Statistics - Theory and Methods, 52(8), 2610–2624. https://doi.org/10.1080/03610926.2021.1955388
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0
Zhang, J., Lai, I. K. W., & Xu, W. (2020). Motivating students’ learning in science and technology by using robots. International Journal of Innovation and Learning, 27(4), 395–410.
Zhang, M., Gursoy, D., Zhu, Z., & Shi, S. (2021). Impact of anthropomorphic features of artificially intelligent service robots on consumer acceptance: moderating role of sense of humor. International Journal of Contemporary Hospitality Management, 33(11), 3883–3905. https://doi.org/10.1108/IJCHM-11-2020-1256
Zheng, H., Li, Y., & Jiang, D. (2012). Empirical study and model of User’s acceptance for mobile commerce in China. International Journal of Computer Science Issues (IJCSI), 9(6), 278.