Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Engineering Solid Mechanics » A slightly compressible hyperelastic material model implementation in ABAQUS

Journals

  • IJIEC (678)
  • MSL (2637)
  • DSL (606)
  • CCL (460)
  • USCM (1087)
  • ESM (391)
  • AC (543)
  • JPM (215)
  • IJDS (802)
  • JFS (81)

ESM Volumes

    • Volume 1 (16)
      • Issue 1 (4)
      • Issue 2 (4)
      • Issue 3 (4)
      • Issue 4 (4)
    • Volume 2 (32)
      • Issue 1 (6)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 3 (27)
      • Issue 1 (7)
      • Issue 2 (7)
      • Issue 3 (6)
      • Issue 4 (7)
    • Volume 4 (25)
      • Issue 1 (5)
      • Issue 2 (7)
      • Issue 3 (7)
      • Issue 4 (6)
    • Volume 5 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 6 (32)
      • Issue 1 (8)
      • Issue 2 (8)
      • Issue 3 (8)
      • Issue 4 (8)
    • Volume 7 (28)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (7)
      • Issue 4 (8)
    • Volume 8 (36)
      • Issue 1 (8)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 9 (36)
      • Issue 1 (9)
      • Issue 2 (9)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 10 (35)
      • Issue 1 (9)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 11 (39)
      • Issue 1 (10)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (10)
    • Volume 12 (41)
      • Issue 1 (10)
      • Issue 2 (9)
      • Issue 3 (12)
      • Issue 4 (10)
    • Volume 13 (19)
      • Issue 1 (12)
      • Issue 2 (7)

Keywords

Supply chain management(156)
Jordan(154)
Vietnam(147)
Customer satisfaction(119)
Performance(108)
Supply chain(105)
Service quality(95)
Tehran Stock Exchange(94)
Competitive advantage(91)
SMEs(85)
Financial performance(81)
optimization(81)
Factor analysis(78)
Job satisfaction(78)
Trust(77)
Knowledge Management(76)
Genetic Algorithm(74)
TOPSIS(73)
Social media(72)
Organizational performance(71)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(52)
Endri Endri(44)
Muhammad Alshurideh(40)
Hotlan Siagian(36)
Muhammad Turki Alshurideh(35)
Jumadil Saputra(35)
Barween Al Kurdi(32)
Hassan Ghodrati(31)
Dmaithan Almajali(30)
Mohammad Khodaei Valahzaghard(30)
Ahmad Makui(30)
Ni Nyoman Kerti Yasa(29)
Basrowi Basrowi(29)
Shankar Chakraborty(29)
Prasadja Ricardianto(28)
Sulieman Ibraheem Shelash Al-Hawary(27)
Ali Harounabadi(26)
Haitham M. Alzoubi(26)


» Show all authors

Countries

Iran(2149)
Indonesia(1208)
India(762)
Jordan(726)
Vietnam(489)
Malaysia(415)
Saudi Arabia(400)
United Arab Emirates(209)
Thailand(142)
China(130)
United States(100)
Turkey(97)
Ukraine(93)
Egypt(86)
Canada(83)
Pakistan(81)
Nigeria(72)
Peru(70)
United Kingdom(69)
Taiwan(65)


» Show all countries

Engineering Solid Mechanics

ISSN 2291-8752 (Online) - ISSN 2291-8744 (Print)
Quarterly Publication
Volume 8 Issue 4 pp. 365-380 , 2020

A slightly compressible hyperelastic material model implementation in ABAQUS Pages 365-380 Right click to download the paper Download PDF

Authors: Aleksander Franus, Stanisław Jemioło, Marek Antoni

DOI: 10.5267/j.esm.2020.3.002

Keywords:

Abstract: ABAQUS/Standard is a powerful finite element program designed for general use in nonlinear problems. The paper touches only one aspect of usage of the software, namely a constitutive modelling of slightly compressible hyperelastic materials. It begins with a discussion of a well-known approach of describing slight compressibility in the context of the stored energy function. Basic equations of continuum mechanics are presented as well. The main part of the work concerns an implementation of one of the presented models. To this end, the UHYPER user subroutine is employed. Analytical formulas for a few simple, homogeneous deformation states are given which allow verifying numerical results. Finally, a couple demonstration examples with nonhomogeneous deformations are presented as an attempt at motivating applications in engineering.

How to cite this paper
Franus, A., Jemioło, S & Antoni, M. (2020). A slightly compressible hyperelastic material model implementation in ABAQUS.Engineering Solid Mechanics, 8(4), 365-380.

Refrences
Alexander, H. (1968). A constitutive relation for rubber-like materials. International Journal of Engineering Science, 6(9), 549-563.
Ball, J. M. (1977). Convexity conditions and existence theorems in nonlinear elasticity. Archive for Rational Mechanics and Analysis 66, 63(4), 337-403.
Biderman, V. L. (1958). Calculation of rubber parts. Rascheti na prochnost, 40.
Bonet, J., Gil, A. J., & Wood, R. D. (2016). Nonlinear Solid Mechanics for Finite Element Analysis: Statics. Cambridge University Press.
Brezzi, F., & Fortin, M. (1991). Mixed and Hybrid Finite Element Method. New York: Springer-Verlag.
Chadwick, P. (1974). Thermo-Mechanics of Rubberlike Materials. Philosophical Transactions of The Royal Society A, Mathematical Physical and Engineering Sciences, 276(1260), 371–403.
Ciarlet, P. G. (1988). Mathematical elasticity. Volume I: Three-dimensional elasticity. Amsterdam: North-Holland.
Dassault Systèmes. (2015). ABAQUS 2016 Analysis user’s guide. Volume III: Materials.
Dassault Systèmes. (2015). ABAQUS 2016 Theory Manual.
Doll, S., & Schweizerhof, K. (1999). On the development of volumetric strain energy function. J. Appl. Mech., 67(1), 17-21.
Ehlers, W., & Eipper, G. (1998). The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mechanica, 130(1-2), 17-27.
Franus, A., & Jemioło, S. (2019). Zastosowanie aproksymacji średniokwadratowej do wyznaczania parametrów wielomianowych modeli hipersprężystości [Application of least-squares approximation to determine the parameters of polynomial hyperelastic models]. In S. Jemioło (Ed.), Nieliniowa sprężystość. Modelowanie konstytutywne, stateczność i zagadnienia falowe. Warsaw: OWPW.
Holzapfel, G. A. (2010). Nonlinear solid mechanics. New York: John Wiley & Sons Ltd.
Isihara, A., Hashitsume, N., & Tatibana, M. (1951). Statistical Theory of Rubber‐Like Elasticity. IV. (Two‐Dimensional Stretching). The Journal of Chemical Physics, 19(1508), 1508–1512.
James, A. G., Green, A., & Simpson, G. M. (1975). Strain energy functions of rubber. I. Characterization of gum vulcanizates. Journal of Applied Polymer Science, 19(7), 2033-2058.
Jemioło, S. (2016). Relacje konstytutywne hipersprężystości [Constitutive relationships of hyperelasticity]. Warsaw: KILiW PAN.
Jemioło, S. (2019). Materiały małościśliwe – uogólnienia modelu MV [Slightly compressible materials – a generalisation of MV model]. In S. Jemioło (Ed.), Nieliniowa sprężystość. Modelowanie konstytutywne, stateczność i zagadnienia falowe. Warsaw: OWPW.
Jemioło, S., & Franus, A. (2018). Numerical implementation of the Murnaghan material model in ABAQUS/Standard. MATEC Web of Conferences. 196, p. 01042. EDP Sciences.
Jemioło, S., & Franus, A. (2019). Metodyka wyznaczania parametrów materiałowych modeli hipersprężytości o wielomianowej funkcji energii [Methodology for identification parameters of hyperelastic polynomial models]. In S. Jemioło (Ed.), Nieliniowa sprężystość. Modelowanie konstytutywne, stateczność i zagadnienia falowe. Warsaw: OWPW.
Levinson, M., & Burgess, I. W. (1971). A comparison of some simple constitutive relations for slightly compressible rubber-like materials. International Journal of Mechanical Sciences, 13(6), 563-572.
Mooney, M. (1940). A Theory of Large Elastic Deformation. Journal of Applied Physics, 11(582), pp. 582-592.
Ogden, R. W. (1984). Non-linear elastic deformations. New York: Dover Publication.
Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. II Some uniqueness theorems for pure homogeneous deformation. 240(822), 491-508.
Suchocki, C. (2017). Finite element implementation of slightly compressible and incompressible first invariant-based hyperelasticity. 55(3), 797-800. doi:10.15632/jtam-pl.55.3.787
Suchocki, C., & Jemioło, S. (2019). On finite element implementation of polyconvex incompressible hyperelasticity. Theory, Coding and Applications. doi:https://doi.org/10.1142/S021987621950049X
Yeoh, O. H. (1990). Characterization of elastic properties of carbon black filled rubber vulcanizates. 63(5), 792-805.
Zahorski, S. (1959). A form of the elastic potential for rubber-like materials. 5, 613–618.
Zienkiewicz, O. C., Taylor, R. L., & Fox, D. (2014). The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann.
  • 34
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Engineering Solid Mechanics | Year: 2020 | Volume: 8 | Issue: 4 | Views: 2004 | Reviews: 0

Related Articles:
  • Effect of boundary conditions and geometry on the failure of cylindrical sh ...
  • An effective combination of finite element and differential quadrature meth ...
  • Finite element analysis of out-of-plane compressive properties of a honeyco ...
  • Determining the biomechanical properties of human intracranial blood vessel ...
  • Impact damage simulation in elastic and viscoelastic media

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com