Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Engineering Solid Mechanics » The microstructure and mechanical behavior of modern high temperature alloys

Journals

  • IJIEC (678)
  • MSL (2637)
  • DSL (606)
  • CCL (460)
  • USCM (1087)
  • ESM (391)
  • AC (543)
  • JPM (215)
  • IJDS (802)
  • JFS (81)

ESM Volumes

    • Volume 1 (16)
      • Issue 1 (4)
      • Issue 2 (4)
      • Issue 3 (4)
      • Issue 4 (4)
    • Volume 2 (32)
      • Issue 1 (6)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 3 (27)
      • Issue 1 (7)
      • Issue 2 (7)
      • Issue 3 (6)
      • Issue 4 (7)
    • Volume 4 (25)
      • Issue 1 (5)
      • Issue 2 (7)
      • Issue 3 (7)
      • Issue 4 (6)
    • Volume 5 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 6 (32)
      • Issue 1 (8)
      • Issue 2 (8)
      • Issue 3 (8)
      • Issue 4 (8)
    • Volume 7 (28)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (7)
      • Issue 4 (8)
    • Volume 8 (36)
      • Issue 1 (8)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 9 (36)
      • Issue 1 (9)
      • Issue 2 (9)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 10 (35)
      • Issue 1 (9)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 11 (39)
      • Issue 1 (10)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (10)
    • Volume 12 (41)
      • Issue 1 (10)
      • Issue 2 (9)
      • Issue 3 (12)
      • Issue 4 (10)
    • Volume 13 (19)
      • Issue 1 (12)
      • Issue 2 (7)

Keywords

Supply chain management(156)
Jordan(154)
Vietnam(147)
Customer satisfaction(119)
Performance(108)
Supply chain(105)
Service quality(95)
Tehran Stock Exchange(94)
Competitive advantage(91)
SMEs(85)
Financial performance(81)
optimization(81)
Factor analysis(78)
Job satisfaction(78)
Trust(77)
Knowledge Management(76)
Genetic Algorithm(74)
TOPSIS(73)
Social media(72)
Organizational performance(71)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(52)
Endri Endri(44)
Muhammad Alshurideh(40)
Hotlan Siagian(36)
Muhammad Turki Alshurideh(35)
Jumadil Saputra(35)
Barween Al Kurdi(32)
Hassan Ghodrati(31)
Dmaithan Almajali(30)
Mohammad Khodaei Valahzaghard(30)
Ahmad Makui(30)
Ni Nyoman Kerti Yasa(29)
Basrowi Basrowi(29)
Shankar Chakraborty(29)
Prasadja Ricardianto(28)
Sulieman Ibraheem Shelash Al-Hawary(27)
Ali Harounabadi(26)
Haitham M. Alzoubi(26)


» Show all authors

Countries

Iran(2149)
Indonesia(1208)
India(762)
Jordan(726)
Vietnam(489)
Malaysia(415)
Saudi Arabia(400)
United Arab Emirates(209)
Thailand(142)
China(130)
United States(100)
Turkey(97)
Ukraine(93)
Egypt(86)
Canada(83)
Pakistan(81)
Nigeria(72)
Peru(70)
United Kingdom(69)
Taiwan(65)


» Show all countries

Engineering Solid Mechanics

ISSN 2291-8752 (Online) - ISSN 2291-8744 (Print)
Quarterly Publication
Volume 3 Issue 1 pp. 1-20 , 2015

The microstructure and mechanical behavior of modern high temperature alloys Pages 1-20 Right click to download the paper Download PDF

Authors: A.T. Samaei, M.M. Mirsayar, M.R.M. Aliha

Keywords: High Entropy Alloy, Mechanical Properties, Phase Stability, Structure-Property Relation

Abstract: Over the past decades, high entropy alloys (HEAs) have attracted continuously increasing research efforts because of their technological promise for structural applications and their scientific interest as a multi-component alloy exhibiting an overall random solid solution structure with high mixing entropy at high temperature. In this summary, we briefly review the recent studies focused on the structure and mechanical behavior of HEAs, covering the important issues from phase stability to elastic modulus, mechanical strength, hardness and fatigue resistance. Finally, we highlight a few key findings recently reported for HEAs and discuss the outstanding issues yet to be resolved.

How to cite this paper
Samaei, A., Mirsayar, M & Aliha, M. (2015). The microstructure and mechanical behavior of modern high temperature alloys.Engineering Solid Mechanics, 3(1), 1-20.

Refrences
Cantor, B., & Cahn, R. W. (1976). Metastable alloy phases by co-sputtering. Acta Metallurgica, 24(9), 845-852.

Cantor, B., Chang, I. T. H., Knight, P., & Vincent, A. J. B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375, 213-218.

Chen, M. R., Lin, S. J., Yeh, J. W., Chen, S. K., Huang, Y. S., & Tu, C. P. (2006). Microstructure and Properties of Al0.5CoCrCuFeNiTix (x = 0 - 2.0) High-Entropy Alloys.

Chen, S. T., Tang, W. Y., Kuo, Y. F., Chen, S. Y., Tsau, C. H., Shun, T. T., & Yeh, J. W. (2010). Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Materials science & engineering. A, Structural materials: properties, microstructure and processing, 527(21-22), 5818-5825.

Chen, T. K., Shun, T. T., Yeh, J. W., & Wong, M. S. (2004). Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology, 188, 193-200.

Chen, W., Fu, Z., Fang, S., Wang, Y., Xiao, H., & Zhu, D. (2013). Processing, microstructure and properties of Al0.6CoNiFeTi0.4 high entropy alloy with nanoscale twins. Materials Science and Engineering: A,565, 439-444.

Chen, Y. L., Hu, Y. H., Tsai, C. W., Hsieh, C. A., Kao, S. W., Yeh, J. W., ... & Chen, S. K. (2009a). Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying. Journal of Alloys and Compounds,477(1), 696-705.

Chen, Y. L., Hu, Y. H., Tsai, C. W., Yeh, J. W., Chen, S. K., & Chang, S. Y. (2009b). Structural evolution during mechanical milling and subsequent annealing of Cu–Ni–Al–Co–Cr–Fe–Ti alloys. Materials Chemistry and Physics, 118(2), 354-361.

Chen, Y. Y., Duval, T., Hung, U. D., Yeh, J. W., & Shih, H. C. (2005). Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion science, 47(9), 2257-2279.

Chou, H. P., Chang, Y. S., Chen, S. K., & Yeh, J. W. (2009). Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0?x? 2) high-entropy alloys. Materials Science and Engineering: B, 163(3), 184-189.

Chou, Y. L., Wang, Y. C., Yeh, J. W., & Shih, H. C. (2010a). Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corrosion Science, 52(10), 3481-3491.

Chou, Y. L., Yeh, J. W., & Shih, H. C. (2010b). The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corrosion Science, 52(8), 2571-2581.

Chuang, M. H., Tsai, M. H., Wang, W. R., Lin, S. J., & Yeh, J. W. (2011). Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia, 59(16), 6308-6317.

Cohen, M. H., & Turnbull, D. (1961). Composition requirements for glass formation in metallic and ionic systems.

Courtney, T. (1990). Mechanical Behavior of Materials. McGraw-Hill, New York, 173–84.

Dieter, G. E. (1988). Mechanical Metallurgy. SI Metric Editions, McGraw-Hill Book Company, New York 117–21.

Dong, Y., Lu, Y., Kong, J., Zhang, J., & Li, T. (2013). Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys. Journal of Alloys and Compounds, 573, 96-101.

Egami, T., & Waseda, Y. (1984). Atomic size effect on the formability of metallic glasses. Journal of non-crystalline solids, 64(1), 113-134.

Fu, Z., Chen, W., Fang, S., Zhang, D., Xiao, H., & Zhu, D. (2013a). Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. Journal of Alloys and Compounds, 553, 316-323.

Fu, Z., Chen, W., Xiao, H., Zhou, L., Zhu, D., & Yang, S. (2013b). Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique. Materials & Design, 44, 535-539.

Gao, X. Q., Zhao, K., Ke, H. B., Ding, D. W., Wang, W. H., & Bai, H. Y. (2011). High mixing entropy bulk metallic glasses. Journal of Non-Crystalline Solids, 357(21), 3557-3560.

Guo, S., Ng, C., & Liu, C. T. (2013). Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. Journal of Alloys and Compounds, 557, 77-81.

He, J. Y., Liu, W. H., Wang, H., Wu, Y., Liu, X. J., Nieh, T. G., & Lu, Z. P. (2014). Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 62, 105-113.

Hemphill, M. A., Yuan, T., Wang, G. Y., Yeh, J. W., Tsai, C. W., Chuang, A., & Liaw, P. K. (2012). Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Materialia, 60(16), 5723-5734.

Hsieh, K. C., Yu, C. F., Hsieh, W. T., Chiang, W. R., Ku, J. S., Lai, J. H., ... & Yang, C. C. (2009). The microstructure and phase equilibrium of new high performance high-entropy alloys. Journal of Alloys and Compounds, 483(1), 209-212.

Hsu, C. Y., Juan, C. C., Wang, W. R., Sheu, T. S., Yeh, J. W., & Chen, S. K. (2011). On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Materials Science and Engineering: A, 528(10), 3581-3588.

Hsu, C. Y., Wang, W. R., Tang, W. Y., Chen, S. K., & Yeh, J. W. (2010). Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High?Entropy Alloys. Advanced Engineering Materials, 12(1?2), 44-49.

Hsu, U. S., Hung, U. D., Yeh, J. W., Chen, S. K., Huang, Y. S., & Yang, C. C. (2007). Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys. Materials Science and Engineering: A, 460, 403-408.

Huang, Y. S., Chen, L., Lui, H. W., Cai, M. H., & Yeh, J. W. (2007). Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy. Materials Science and Engineering: A,457(1), 77-83.

Inoue, A. (2000). Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta materialia, 48(1), 279-306.

Kao, Y. F., Chen, T. J., Chen, S. K., & Yeh, J. W. (2009). Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0?x?2) high-entropy alloys. Journal of Alloys and Compounds,488(1), 57-64.

Kaufman, L., & Bernstein, H,. (1970). Computer Calculation of Phase Diagrams New York: Academic Press.

Ke, G. Y., Chen, S. K., Hsu, T., & Yeh, J. W. (2006). FCC and BCC equivalents in as-cast solid solutions of AlxCoyCrzCu0.5FeVNiW high-entropy alloys. In Annales de chimie (Vol. 31, No. 6, pp. 669-683).
Lavoisier.

Khalifa, W., Samuel, F. H., & Gruzleski, J. E. (2003). Iron intermetallic phases in the Al corner of the Al-Si-Fe system. Metallurgical and Materials Transactions A,34(3), 807-825.

Koundinya, N. T. B. N., Babu, C. S., Sivaprasad, K., Susila, P., Babu, N. K., & Baburao, J. (2013). Phase Evolution and Thermal Analysis of Nanocrystalline AlCrCuFeNiZn High Entropy Alloy Produced by Mechanical Alloying. Journal of materials engineering and performance, 22(10), 3077-3084.

Lee, C. F., & Shun, T. T. (2014). Age Hardening of the Al0.5CoCrNiTi0.5 High-Entropy Alloy. Metallurgical and Materials Transactions A, 45(1), 191-195.

Lee, C. P., Chen, Y. Y., Hsu, C. Y., Yeh, J. W., & Shih, H. C. (2007). The Effect of Boron on the Corrosion Resistance of the High Entropy Alloys Al0.5CoCrCuFeNiBx. Journal of the Electrochemical Society, 154(8), C424-C430.

Li, A., Ma, D., & Zheng, Q. (2014). Effect of Cr on Microstructure and Properties of a Series of AlTiCrxFeCoNiCu High-Entropy Alloys. Journal of materials engineering and performance, 23(4), 1197-1203.

Li, B. S., Wang, Y. P., Ren, M. X., Yang, C., & Fu, H. Z. (2008). Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy. Materials Science and Engineering: A, 498(1), 482-486.

Li, C., Li, J. C., Zhao, M., & Jiang, Q. (2009). Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 475(1), 752-757.

Li, C., Li, J. C., Zhao, M., & Jiang, Q. (2010). Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. Journal of Alloys and Compounds, 504, S515-S518.

Li, Y., Poon, S. J., Shiflet, G. J., Xu, J., Kim, D. H., & L?ffler, J. F. (2007). Formation of bulk metallic glasses and their composites. MRS bulletin, 32(08), 624-628.

Lin, C. M., & Tsai, H. L. (2010a). Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature. Journal of Alloys and Compounds,489(1), 30-35.

Lin, C. M., & Tsai, H. L. (2011). Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics,19(3), 288-294.

Lin, C. M., Tsai, H. L., & Bor, H. Y. (2010b). Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy. Intermetallics, 18(6), 1244-1250.

Lin, M. I., Tsai, M. H., Shen, W. J., & Yeh, J. W. (2010c). Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Thin Solid Films, 518(10), 2732-2737.

Lin, Y. C., & Cho, Y. H. (2009). Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ. Surface and Coatings Technology, 203(12), 1694-1701.

Liu, L., Zhu, J. B., Li, J. C., & Jiang, Q. (2012). Microstructure and Magnetic Properties of FeNiCuMnTiSnx High Entropy Alloys. Advanced Engineering Materials, 14(10), 919-922.

Ma, L., Wang, L., Zhang, T., & Inoue, A. (2002). Bulk glass formation of Ti-Zr-Hf-Cu-M (M= Fe, Co, Ni) alloys. Materials Transactions, 43(2), 277-280.

Ma, S. G., & Zhang, Y. (2012). Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Materials Science and Engineering: A, 532, 480-486.

Manzoni, A., Daoud, H., Mondal, S., van Smaalen, S., V?lkl, R., Glatzel, U., & Wanderka, N. (2013a). Investigation of phases in Al23Co15Cr23Cu8Fe15Ni16 and Al8Co17Cr17Cu8Fe17Ni33 high entropy alloys and comparison with equilibrium phases predicted by Thermo-Calc. Journal of Alloys and Compounds,552(Complete), 430-436.

Manzoni, A., Daoud, H., V?lkl, R., Glatzel, U., & Wanderka, N. (2013b). Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy, 132, 212-215.

Mridha, S., Samal, S., Khan, P. Y., & Biswas, K. (2013). Processing and Consolidation of Nanocrystalline Cu-Zn-Ti-Fe-Cr High-Entropy Alloys via Mechanical Alloying. Metallurgical and Materials Transactions A, 44(10), 4532-4541.

Ng, C., Guo, S., Luan, J., Shi, S., & Liu, C. T. (2012). Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy. Intermetallics, 31, 165-172.

Otto, F., Dlouh?, A., Somsen, C., Bei, H., Eggeler, G., & George, E. P. (2013a). The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 61(15), 5743-5755.

Otto, F., Yang, Y., Bei, H., & George, E. P. (2013b). Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia,61(7), 2628-2638.

Perricone, M. J., DuPont, J. N., & Cieslak, M. J. (2003). Solidification of hastelloy alloys: an alternative interpretation. Metallurgical and Materials Transactions A,34(5), 1127-1132.

Praveen, S., Anupam, A., Sirasani, T., Murty, B. S., & Kottada, R. S. (2013). Characterization of Oxide Dispersed AlCoCrFe High Entropy Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering. Transactions of the Indian Institute of Metals, 66(4), 369-373.

Praveen, S., Murty, B. S., & Kottada, R. S. (2012). Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Materials Science and Engineering: A, 534, 83-89.

Qiu, X. W., & Liu, C. G. (2013). Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. Journal of Alloys and Compounds, 553, 216-220.

R.A. Swalin, E. Burke, B. Chalmers, & AlKrumhansl J. (1991) Thermodynamics of Solids. second ed, JohnWiley & Sons, New York, NY.

Ranganathan, S. (2003). Alloyed pleasures: Multimetallic cocktails. Current Science, 85(5), 1404-1406.

Razuan, R., Jani, N. A., Harun, M. K., & Talari, M. K. (2013). Microstructure and Hardness Properties Investigation of Ti and Nb Added FeNiAlCuCrTixNby High Entropy Alloys. Transactions of the Indian Institute of Metals, 66(4), 309-312.

Ren, B., Liu, Z. X., Cai, B., Wang, M. X., & Shi, L. (2012). Aging behavior of a CuCr2Fe2NiMn high-entropy alloy. Materials & Design, 33, 121-126.

Senkov, O. N., & Woodward, C. F. (2011a). Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Materials Science and Engineering: A, 529, 311-320.

Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P., & Liaw, P. K. (2010). Refractory high-entropy alloys. Intermetallics, 18(9), 1758-1765.

Senkov, O. N., Wilks, G. B., Scott, J. M., & Miracle, D. B. (2011b). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19(5), 698-706.

Sheng, H. F., M. Gong, and L. M. Peng. "Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions." Materials Science and Engineering: A 567 (2013): 14-20.

Shun, T. T., & Du, Y. C. (2009). Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy. Journal of alloys and compounds, 478(1-2), 269-272.

Shun, T. T., Chang, L. Y., & Shiu, M. H. (2012a). Microstructure and mechanical properties of multiprincipal component CoCrFeNiMox alloys.Materials Characterization, 70, 63-67.

Shun, T. T., Chang, L. Y., & Shiu, M. H. (2012b). Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Materials Science and Engineering: A, 556, 170-174.

Shun, T. T., Chang, L. Y., & Shiu, M. H. (2013). Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy. Materials Characterization, 81, 92-96.

Shun, T. T., Hung, C. H., & Lee, C. F. (2010). The effects of secondary elemental Mo or Ti addition in Al0.3CoCrFeNi high-entropy alloy on age hardening at 700° C. Journal of Alloys and Compounds, 495(1), 55-58.

Singh, S., Wanderka, N., Murty, B. S., Glatzel, U., & Banhart, J. (2011). Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Materialia, 59(1), 182-190.

Sriharitha, R., Murty, B. S., & Kottada, R. S. (2013). Phase formation in mechanically alloyed AlxCoCrCuFeNi (x= 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics, 32, 119-126.

Takeuchi, A., & Inoue, A. (2000). Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Materials Transactions-JIM, 41(11), 1372-1378.

Takeuchi, A., & Inoue, A. (2001). Quantitative evaluation of critical cooling rate for metallic glasses. Materials Science and Engineering: A, 304, 446-451.

Tariq, N. H., Naeem, M., Hasan, B. A., Akhter, J. I., & Siddique, M. (2013). Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. Journal of Alloys and Compounds, 556, 79-85.

Tong, C. J., Chen, Y. L., Yeh, J. W., Lin, S. J., Chen, S. K., Shun, T. T., ... & Chang, S. Y. (2005). Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A,36(4), 881-893.

Tsai, C. W., Chen, Y. L., Tsai, M. H., Yeh, J. W., Shun, T. T., & Chen, S. K. (2009). Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. Journal of Alloys and Compounds, 486(1), 427-435.

Tsai, D. C., Chang, Z. C., Kuo, B. H., Shiao, M. H., Chang, S. Y., & Shieu, F. S. (2013a). Structural morphology and characterization of (AlCrMoTaTi) N coating deposited via magnetron sputtering. Applied Surface Science, 282, 789-797.

Tsai, K. Y., Tsai, M. H., & Yeh, J. W. (2013b). Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 61(13), 4887-4897.

Tsai, M. H., Wang, C. W., Tsai, C. W., Shen, W. J., Yeh, J. W., Gan, J. Y., & Wu, W. W. (2011). Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization. Journal of the Electrochemical Society, 158(11), H1161-H1165.

Tsai, M. H., Yuan, H., Cheng, G., Xu, W., Jian, W. W., Chuang, M. H., ... & Zhu, Y. (2013c). Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy. Intermetallics, 33, 81-86.

Tsai, M. H., Yuan, H., Cheng, G., Xu, W., Tsai, K. Y., Tsai, C. W., ... & Zhu, Y. T. (2013d). Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics, 32, 329-336.

Tsao, L. C., Chen, C. S., & Chu, C. P. (2012). Age hardening reaction of the Al0.3CrFe1.5MnNi0.5 high entropy alloy.Materials & Design, 36, 854-858.

Tung, C. C., Yeh, J. W., Shun, T. T., Chen, S. K., Huang, Y. S., & Chen, H. C. (2007). On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials letters, 61(1), 1-5.

Varalakshmi, S., Kamaraj, M., & Murty, B. S. (2008). Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. Journal of Alloys and Compounds, 460(1), 253-257.

Wang, F. J., Zhang, Y., & Chen, G. L. (2009a). Atomic packing efficiency and phase transition in a high entropy alloy. Journal of Alloys and Compounds, 478(1), 321-324.

Wang, W. R., Wang, W. L., Wang, S. C., Tsai, Y. C., Lai, C. H., & Yeh, J. W. (2012). Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 26, 44-51.

Wang, X. F., Zhang, Y., Qiao, Y., & Chen, G. L. (2007). Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics, 15(3), 357-362.

Wang, Y. P., Li, B. S., & Fu, H. Z. (2009b). Solid Solution or Intermetallics in a High?Entropy Alloy. Advanced Engineering Materials, 11(8), 641-644.

Wang, Y. P., Li, B. S., Ren, M. X., Yang, C., & Fu, H. Z. (2008). Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A, 491(1), 154-158.

Wang, Y. P., Li, D. Y., Parent, L., & Tian, H. (2011). Improving the wear resistance of white cast iron using a new concept–High-entropy microstructure. Wear, 271(9), 1623-1628.

Wang, Y. P., Li, D. Y., Parent, L., & Tian, H. (2013). Performances of hybrid high-entropy high-Cr cast irons during sliding wear and air-jet solid-particle erosion. Wear, 301(1), 390-397.

Wen, L. H., Kou, H. C., Li, J. S., Chang, H., Xue, X. Y., & Zhou, L. (2009). Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics, 17(4), 266-269.

Wu, J. M., Lin, S. J., Yeh, J. W., Chen, S. K., Huang, Y. S., & Chen, H. C. (2006). Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 261(5), 513-519.

Yang, X., Zhang, Y., & Liaw, P. K. (2012). Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Engineering, 36, 292-298.

Yeh, J. W. (2013). Alloy design strategies and future trends in high-entropy alloys. JOM, 65(12), 1759-1771.

Yeh, J. W., Chang, S. Y., Hong, Y. D., Chen, S. K., & Lin, S. J. (2007). Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials chemistry and physics, 103(1), 41-46.

Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004a). Nanostructured High?Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials,6(5), 299-303.

Yeh, J. W., Lin, S. J., Chin, T. S., Gan, J. Y., Chen, S. K., Shun, T. T., ... & Chou, S. Y. (2004b). Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A, 35(8), 2533-2536.

Yu, Y., Liu, W. M., Zhang, T. B., Li, J. S., Wang, J., Kou, H. C., & Li, J. (2014). Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution. Metallurgical and Materials Transactions A, 45(1), 201-207.

Zhang, C., Zhang, F., Chen, S., & Cao, W. (2012a). Computational thermodynamics aided high-entropy alloy design. JOM, 64(7), 839-845.

Zhang, H., He, Y. Z., Pan, Y., & Pei, L. Z. (2011). Phase selection, microstructure and properties of laser rapidly solidified FeCoNiCrAl2Si coating. Intermetallics, 19(8), 1130-1135.

Zhang, H., He, Y., & Pan, Y. (2013). Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scripta Materialia, 69(4), 342-345.

Zhang, K. B., Fu, Z. Y., Zhang, J. Y., Shi, J., Wang, W. M., Wang, H., ... & Zhang, Q. J. (2010). Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. Journal of Alloys and Compounds, 502(2), 295-299.

Zhang, K. B., Fu, Z. Y., Zhang, J. Y., Wang, W. M., Wang, H., Wang, Y. C., ... & Shi, J. (2009). Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Materials Science and Engineering: A, 508(1), 214-219.

Zhang, Y., Ma, S. G., & Qiao, J. W. (2012b). Morphology transition from dendrites to equiaxed grains for AlCoCrFeNi high-entropy alloys by copper mold casting and Bridgman solidification. Metallurgical and Materials Transactions A, 43(8), 2625-2630.

Zhang, Y., Yang, X., & Liaw, P. K. (2012c). Alloy design and properties optimization of high-entropy alloys. JOM, 64(7), 830-838.

Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., & Liaw, P. K. (2008). Solid?Solution Phase Formation Rules for Multi?component Alloys. Advanced Engineering Materials, 10(6), 534-538.

Zhou, Y. J., Zhang, Y., Wang, Y. L., & Chen, G. L. (2007a). Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)(100?x) high-entropy alloys. Materials Science and Engineering: A,454, 260-265.

Zhou, Y. J., Zhang, Y., Wang, Y. L., & Chen, G. L. (2007b). Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied physics letters, 90(18), 181904-181904.

Zhu, J. M., Fu, H. M., Zhang, H. F., Wang, A. M., Li, H., & Hu, Z. Q. (2010a). Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys. Materials Science and Engineering: A, 527(26), 6975-6979.

Zhu, J. M., Fu, H. M., Zhang, H. F., Wang, A. M., Li, H., & Hu, Z. Q. (2010b). Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. Materials Science and Engineering: A, 527(27), 7210-7214.

Zhu, J. M., Fu, H. M., Zhang, H. F., Wang, A. M., Li, H., & Hu, Z. Q. (2011). Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys. Journal of Alloys and Compounds, 509(8), 3476-3480.

Zhuang, Y. X., Liu, W. J., Chen, Z. Y., Xue, H. D., & He, J. C. (2012). Effect of elemental interaction on microstructure and mechanical properties of FeCoNiCuAl alloys. Materials Science and Engineering: A, 556, 395-399.
  • 34
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Engineering Solid Mechanics | Year: 2015 | Volume: 3 | Issue: 1 | Views: 3998 | Reviews: 0

Related Articles:
  • Effect of transverse speed of the tool on microstructure and mechanical pro ...
  • Experimental study on mechanical properties of different lightweight aggreg ...
  • The flow stress assessment of austenitic-martensitic functionally graded st ...
  • Optimization of process parameters for friction Stir welding of dissimilar ...
  • A survivability model for ejection of green compacts in powder metallurgy t ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com