How to cite this paper
Mahmood, H. (2025). Agriculture supply chain management and environmental sustainability in Alkharj: Moderating role of economic and social sustainability.Decision Science Letters , 14(1), 133-144.
Refrences
Alavijeh, N. K., Salehnia, N., Salehnia, N., & Koengkan, M. (2022). The effects of agricultural development on CO2 emissions: empirical evidence from the most populous developing countries. Environment, Development and Sustainability, 25(10), 12011–12031. https://doi.org/10.1007/s10668-022-02567-1
Ali, A., Usman, M., Usman, O., & Sarkodie, S. A. (2021). Modeling the Effects of Agricultural Innovation and Biocapacity on Carbon Dioxide Emissions in an Agrarian-Based Economy: Evidence From the Dynamic ARDL Simulations. Frontiers in Energy Research, 8. https://doi.org/10.3389/fenrg.2020.592061
Aluwani, T. (2023). Agricultural Economic Growth, Renewable Energy Supply and CO2 Emissions Nexus. Economies, 11(3), 85. https://doi.org/10.3390/economies11030085
Amorim, D. I. M., Da Silva, M. J. N., Tabosa, F. J. S., De Almeida, A. N., & De Carvalho Castelar, P. U. (2023). Greenhouse gas emissions from Brazilian agriculture and convergence clubs. International Review of Applied Economics, 37(4), 532–552. https://doi.org/10.1080/02692171.2023.2240250
Aziz, S., & Chowdhury, S. A. (2022). Analysis of agricultural greenhouse gas emissions using the STIRPAT model: a case study of Bangladesh. Environment, Development and Sustainability, 25(5), 3945–3965. https://doi.org/10.1007/s10668-022-02224-7
Azwardi, A., Sukanto, S., Igamo, A. M., & Kurniawan, A. (2021). Carbon emissions, economic growth, forest, agricultural land and air pollution in Indonesia. International Journal of Energy Economics and Policy, 11(4), 537–542. https://doi.org/10.32479/ijeep.11119
Baldos, U. L. (2023). Impacts of US Public R&D investments on Agricultural Productivity and GHG Emissions. Journal of Agricultural and Applied Economics, 55(3), 536-550. https://doi.org/10.1017/aae.2023.29
Balogh, J. M. (2023). The impacts of agricultural subsidies of Common Agricultural Policy on agricultural emissions: The case of the European Union. Zemědělská Ekonomika/Agricultural Economics, 69(4), 140–150. https://doi.org/10.17221/51/2023-agricecon
Bell, E., Qin, Y., & Horvath, A. (2023). Optimal allocation of tomato supply to minimize greenhouse gas emissions in major U.S. metropolitan markets. Resources, Conservation and Recycling, 188, 106660. https://doi.org/10.1016/j.resconrec.2022.106660
Cai, Y., Xu, J., Ahmad, P., & Anwar, A. (2021). What drives carbon emissions in the long-run? The role of renewable energy and agriculture in achieving the sustainable development goals. Ekonomska Istraživanja/Economic Research, 35(1), 4603–4624. https://doi.org/10.1080/1331677x.2021.2015613
General Authority for Statistics (2024). General Authority for Statistics. Riyadh, Saudi Arabia.
Guo, X., Yang, J., Shen, Y., & Zhang, X. (2023). Prediction of agricultural carbon emissions in China based on a GA-ELM model. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1245820
Herrera, S. I. O., Kallas, Z., Serebrennikov, D., Thorne, F., & McCarthy, S. N. (2023). Towards circular farming: factors affecting EU farmers’ decision to adopt emission-reducing innovations. International Journal of Agricultural Sustainability, 21(1). https://doi.org/10.1080/14735903.2023.2270149
Hou, J., Zhang, M., & Li, Y. (2024). Can digital economy truly improve agricultural ecological transformation? New insights from China. Humanities & Social Sciences Communications, 11(1). https://doi.org/10.1057/s41599-023-02593-y
Jacquet, I., Zhang, J., Wang, K., Liang, S., Fu, S., & Liu, S. (2023). Mitigating greenhouse gas emissions from agriculture in Benin: spatial estimation and reduction options. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04195-9
Kapa, M. M. J., Nalle, A. A., Tamelan, P. G., & Wisetsri, W. (2022). Impact of Green Finance, Agriculture Growth and Creativity on Carbon Emissions of High Carbon Emissions Producing Countries. International Journal of Energy Economics and Policy, 12(5), 432–440. https://doi.org/10.32479/ijeep.13562
Khurshid, N., Khurshid, J., Shakoor, U., & Ali, K. (2022). Asymmetric effect of agriculture value added on CO2 emission: Does globalization and energy consumption matter for Pakistan? Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.1053234
Li, J., Gao, M., Luo, E., Wang, J., & Zhang, X. (2023). Does rural energy poverty alleviation really reduce agricultural carbon emissions? The case of China. Energy Economics, 119, 106576. https://doi.org/10.1016/j.eneco.2023.106576
Ma, N., Liu, X., Wang, L., & Liu, G. (2024). A meta-analysis on the mitigation measures of methane emissions in Chinese rice paddy. Resources, Conservation and Recycling, 202, 107379. https://doi.org/10.1016/j.resconrec.2023.107379
Majewski, S., Mentel, G., Dylewski, M., & Salahodjaev, R. (2022). Renewable Energy, Agriculture and CO2 Emissions: Empirical Evidence From the Middle-Income Countries. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.921166
Martín-Ortega, J. L., & González-Sánchez, M. (2023). Sectoral composition of GDP and greenhouse gas emissions: an empirical analysis in EU27. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04048-5
Meng, F., Chen, H., Tan, Y., & Xiong, W. (2024). Changes in crop mix and the effects on agricultural carbon emissions in China. International Journal of Agricultural Sustainability, 22(1). https://doi.org/10.1080/14735903.2024.2335141
Nasseri, A. (2022). Effects of tillage practices on wheat production using groundwater-based irrigation: multidimensional analysis of energy use, greenhouse gases emissions and economic parameters. Environment, Development and Sustainability, 25(7), 7047–7074. https://doi.org/10.1007/s10668-022-02352-0
Nguyen, C. P., Le, T. H., Schinckus, C., & Su, T. D. (2020). Determinants of agricultural emissions: panel data evidence from a global sample. Environment and Development Economics, 26(2), 109–130. https://doi.org/10.1017/s1355770x20000315
Ntiamoah, E. B., Appiah-Otoo, I., Li, D., Twumasi, M. A., Yeboah, E. N., & Chandio, A. A. (2023). Estimating and mitigating greenhouse gas emissions from agriculture in West Africa: does threshold matter? Environment, Development and Sustainability, 26(4), 10623–10651. https://doi.org/10.1007/s10668-023-03167-3
Pazienza, P., & De Lucia, C. (2019). How does FDI in the “agricultural and fishing” sector affect methane emission? Evidence from the OECD countries. Economia Politica, 37(2), 441–462. https://doi.org/10.1007/s40888-019-00168-2
Raihan, A. (2023). An econometric evaluation of the effects of economic growth, energy use, and agricultural value added on carbon dioxide emissions in Vietnam. Asia-Pacific Journal of Regional Science, 7(3), 665–696. https://doi.org/10.1007/s41685-023-00278-7
Rehman, E., Ikram, M., Rehman, S., & Feng, M. T. (2021). Growing green? Sectoral-based prediction of GHG emission in Pakistan: a novel NDGM and doubling time model approach. Environment, Development and Sustainability, 23(8), 12169–12191. https://doi.org/10.1007/s10668-020-01163-5
Ridzuan, N. H. a. M., Marwan, N. F., Khalid, N., Ali, M. H., & Tseng, M. L. (2020). Effects of agriculture, renewable energy, and economic growth on carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resources, Conservation and Recycling, 160, 104879. https://doi.org/10.1016/j.resconrec.2020.104879
Sampedro, J., Waldhoff, S., Sarofim, M., & Van Dingenen, R. (2023). Marginal Damage of Methane Emissions: Ozone Impacts on Agriculture. Environmental & Resource Economics, 84(4), 1095–1126. https://doi.org/10.1007/s10640-022-00750-6
Sarfraz, M., Iqbal, K., Wang, Y., Bhutta, M. S., & Jaffri, Z. U. A. (2023). Role of agricultural resource sector in environmental emissions and its explicit relationship with sustainable development: Evidence from agri-food system in China. Resources Policy, 80, 103191. https://doi.org/10.1016/j.resourpol.2022.103191
Sazvar, Z., Rahmani, M., & Govindan, K. (2018). A sustainable supply chain for organic, conventional agro-food products: The role of demand substitution, climate change and public health. Journal of Cleaner Production, 194, 564–583. https://doi.org/10.1016/j.jclepro.2018.04.118
Schermelleh-Engel, K., Moosbrugger, H., & Muller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8(2), 23–74.
Shi, W., Fang, Y. R., Chang, Y., & Xie, G. H. (2023). Toward sustainable utilization of crop straw: Greenhouse gas emissions and their reduction potential from 1950 to 2021 in China. Resources, Conservation and Recycling, 190, 106824. https://doi.org/10.1016/j.resconrec.2022.106824
Song, L.A., Luo, Y.Q., Chang, Z.X., Jin, C.H., & Nicolas, M. (2022). Blockchain adoption in agricultural supply chain for better sustainability: A game theory perspective. Sustainability, 14, 1470. https://doi.org/10.3390/su14031470
Stetter, C., & Sauer, J. (2022). Greenhouse Gas Emissions and Eco-Performance at Farm Level: A Parametric Approach. Environmental & Resource Economics, 81(3), 617–647. https://doi.org/10.1007/s10640-021-00642-1
Su, P., & Wang, L. (2023). Spatial effect of digital inclusive finance on agricultural carbon emission intensity and mechanism. Ziyuan Kexue, 45(3), 593–608. https://doi.org/10.18402/resci.2023.03.10
Taridala, S. a. A., Alzarliani, W. O., Fauziyah, E., Rianse, I. S., & Arimbawa, P. (2023). Green Finance, Innovation, Agriculture Finance and Sustainable Economic Development: The Case of Indonesia’s Provincial Carbon Emissions. International Journal of Energy Economics and Policy, 13(1), 271–280. https://doi.org/10.32479/ijeep.13959
Wade, C. M., Baker, J. S., Jones, J. P. H., Austin, K. G., Cai, Y., De Hernandez, A. B., Latta, G. S., Ohrel, S. B., Ragnauth, S., Creason, J., & McCarl, B. (2022). Projecting the Impact of Socioeconomic and Policy Factors on Greenhouse Gas Emissions and Carbon Sequestration in U.S. Forestry and Agriculture. Journal of Forest Economics, 37(1), 127–131. https://doi.org/10.1561/112.00000545
Wang, J., Smith, P., Hergoualc’h, K., & Zou, J. (2022). Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resources, Conservation and Recycling, 185, 106501. https://doi.org/10.1016/j.resconrec.2022.106501
Wang, S., Ang, F., & Lansink, A. O. (2023). Mitigating greenhouse gas emissions on Dutch dairy farms. An efficiency analysis incorporating the circularity principle. Agricultural Economics, 54(6), 819–837. https://doi.org/10.1111/agec.12804
Wang, Y., Deng, X., & Wang, R. (2024). Greenhouse gas emissions of rice supply chain in China: From production to trade. Resources, Conservation and Recycling, 202, 107356. https://doi.org/10.1016/j.resconrec.2023.107356
Wei, G., Zhou, L., & Bary, B. (2022). Operational Decision and Sustainability of Green Agricultural Supply Chain with Consumer-Oriented Altruism. Sustainability, 14, 12210. https://doi.org/10.3390/su141912210
Wei, S., Yang, Y., & Xu, Y. (2023). Regional development, agricultural industrial upgrading and carbon emissions: What is the role of fiscal expenditure? —-Evidence from Northeast China. Economic Analysis and Policy, 80, 1858–1871. https://doi.org/10.1016/j.eap.2023.11.016
Wu, Y., Chen, D., Luo, M., Gao, F., & Li, Z. (2023). The decoupling effect between net agricultural carbon emissions and economic growth based on LCA. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04236-3
Xiao, Y., Zhang, F., Su, R., Ma, D., Liao, H., Yang, X., & Gong, G. (2023). Livestock or crop? Which deserves more investment to reduce greywater footprint emissions and improve water use efficiency? Environment, Development and Sustainability, 26(3), 7409–7435. https://doi.org/10.1007/s10668-023-03013-6
Xie, H., & Wu, X. (2023). Impact and its mechanism of urban-rural integration on the efficiency of agricultural carbon emissions in China. Ziyuan Kexue, 45(1), 48–61. https://doi.org/10.18402/resci.2023.01.04
Xing, L., Lin, T., Hu, Y., Lin, M., Liu, Y., Zhang, G., Ye, H., & Xue, X. (2023). Reducing food-system nitrogen input and emission through circular agriculture in montane and coastal regions. Resources, Conservation and Recycling, 188, 106726. https://doi.org/10.1016/j.resconrec.2022.106726
Xu, Z., Zheng, Y., & Wu, Y. (2024). Paving the way for sustainable agriculture: An analysis of evolution and driving forces of methane emissions reduction in China. Resources, Conservation and Recycling, 202, 107392. https://doi.org/10.1016/j.resconrec.2023.107392
Yasin, I., Ahmad, N., Amin, S., Sattar, N., & Hashmat, A. (2024). Does agriculture, forests, and energy consumption foster the carbon emissions and ecological footprint? fresh evidence from BRICS economies. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04456-7
Ye, J., Xie, R., Deng, X., Lin, M., Chen, Y., Lin, K., & Yang, J. (2024). Assessment of agricultural carbon emissions reduction potential and optimisation pathways based on a framework of equity and efficiency principles: Evidence from Fujian Province in China. Zemědělská Ekonomika/Agricultural Economics. https://doi.org/10.17221/329/2023-agricecon
Yoon, P. R., Lee, S. H., Choi, J. Y., Yoo, S. H., & Hur, S. O. (2022). Analysis of climate change impact on resource intensity and carbon emissions in protected farming systems using Water-Energy-Food-Carbon Nexus. Resources, Conservation and Recycling, 184, 106394. https://doi.org/10.1016/j.resconrec.2022.106394
Zheng, X., Tan, H., & Liao, W. (2024). Spatiotemporal evolution of factors affecting agricultural carbon emissions: empirical evidence from 31 Chinese provinces. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04337-z
Zhou, F. (2024). The impact of digital economy development on agricultural carbon emissions——empirical research based on Chinese data. Applied Economics Letters, 1–8. https://doi.org/10.1080/13504851.2024.2310060
Ali, A., Usman, M., Usman, O., & Sarkodie, S. A. (2021). Modeling the Effects of Agricultural Innovation and Biocapacity on Carbon Dioxide Emissions in an Agrarian-Based Economy: Evidence From the Dynamic ARDL Simulations. Frontiers in Energy Research, 8. https://doi.org/10.3389/fenrg.2020.592061
Aluwani, T. (2023). Agricultural Economic Growth, Renewable Energy Supply and CO2 Emissions Nexus. Economies, 11(3), 85. https://doi.org/10.3390/economies11030085
Amorim, D. I. M., Da Silva, M. J. N., Tabosa, F. J. S., De Almeida, A. N., & De Carvalho Castelar, P. U. (2023). Greenhouse gas emissions from Brazilian agriculture and convergence clubs. International Review of Applied Economics, 37(4), 532–552. https://doi.org/10.1080/02692171.2023.2240250
Aziz, S., & Chowdhury, S. A. (2022). Analysis of agricultural greenhouse gas emissions using the STIRPAT model: a case study of Bangladesh. Environment, Development and Sustainability, 25(5), 3945–3965. https://doi.org/10.1007/s10668-022-02224-7
Azwardi, A., Sukanto, S., Igamo, A. M., & Kurniawan, A. (2021). Carbon emissions, economic growth, forest, agricultural land and air pollution in Indonesia. International Journal of Energy Economics and Policy, 11(4), 537–542. https://doi.org/10.32479/ijeep.11119
Baldos, U. L. (2023). Impacts of US Public R&D investments on Agricultural Productivity and GHG Emissions. Journal of Agricultural and Applied Economics, 55(3), 536-550. https://doi.org/10.1017/aae.2023.29
Balogh, J. M. (2023). The impacts of agricultural subsidies of Common Agricultural Policy on agricultural emissions: The case of the European Union. Zemědělská Ekonomika/Agricultural Economics, 69(4), 140–150. https://doi.org/10.17221/51/2023-agricecon
Bell, E., Qin, Y., & Horvath, A. (2023). Optimal allocation of tomato supply to minimize greenhouse gas emissions in major U.S. metropolitan markets. Resources, Conservation and Recycling, 188, 106660. https://doi.org/10.1016/j.resconrec.2022.106660
Cai, Y., Xu, J., Ahmad, P., & Anwar, A. (2021). What drives carbon emissions in the long-run? The role of renewable energy and agriculture in achieving the sustainable development goals. Ekonomska Istraživanja/Economic Research, 35(1), 4603–4624. https://doi.org/10.1080/1331677x.2021.2015613
General Authority for Statistics (2024). General Authority for Statistics. Riyadh, Saudi Arabia.
Guo, X., Yang, J., Shen, Y., & Zhang, X. (2023). Prediction of agricultural carbon emissions in China based on a GA-ELM model. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1245820
Herrera, S. I. O., Kallas, Z., Serebrennikov, D., Thorne, F., & McCarthy, S. N. (2023). Towards circular farming: factors affecting EU farmers’ decision to adopt emission-reducing innovations. International Journal of Agricultural Sustainability, 21(1). https://doi.org/10.1080/14735903.2023.2270149
Hou, J., Zhang, M., & Li, Y. (2024). Can digital economy truly improve agricultural ecological transformation? New insights from China. Humanities & Social Sciences Communications, 11(1). https://doi.org/10.1057/s41599-023-02593-y
Jacquet, I., Zhang, J., Wang, K., Liang, S., Fu, S., & Liu, S. (2023). Mitigating greenhouse gas emissions from agriculture in Benin: spatial estimation and reduction options. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04195-9
Kapa, M. M. J., Nalle, A. A., Tamelan, P. G., & Wisetsri, W. (2022). Impact of Green Finance, Agriculture Growth and Creativity on Carbon Emissions of High Carbon Emissions Producing Countries. International Journal of Energy Economics and Policy, 12(5), 432–440. https://doi.org/10.32479/ijeep.13562
Khurshid, N., Khurshid, J., Shakoor, U., & Ali, K. (2022). Asymmetric effect of agriculture value added on CO2 emission: Does globalization and energy consumption matter for Pakistan? Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.1053234
Li, J., Gao, M., Luo, E., Wang, J., & Zhang, X. (2023). Does rural energy poverty alleviation really reduce agricultural carbon emissions? The case of China. Energy Economics, 119, 106576. https://doi.org/10.1016/j.eneco.2023.106576
Ma, N., Liu, X., Wang, L., & Liu, G. (2024). A meta-analysis on the mitigation measures of methane emissions in Chinese rice paddy. Resources, Conservation and Recycling, 202, 107379. https://doi.org/10.1016/j.resconrec.2023.107379
Majewski, S., Mentel, G., Dylewski, M., & Salahodjaev, R. (2022). Renewable Energy, Agriculture and CO2 Emissions: Empirical Evidence From the Middle-Income Countries. Frontiers in Energy Research, 10. https://doi.org/10.3389/fenrg.2022.921166
Martín-Ortega, J. L., & González-Sánchez, M. (2023). Sectoral composition of GDP and greenhouse gas emissions: an empirical analysis in EU27. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04048-5
Meng, F., Chen, H., Tan, Y., & Xiong, W. (2024). Changes in crop mix and the effects on agricultural carbon emissions in China. International Journal of Agricultural Sustainability, 22(1). https://doi.org/10.1080/14735903.2024.2335141
Nasseri, A. (2022). Effects of tillage practices on wheat production using groundwater-based irrigation: multidimensional analysis of energy use, greenhouse gases emissions and economic parameters. Environment, Development and Sustainability, 25(7), 7047–7074. https://doi.org/10.1007/s10668-022-02352-0
Nguyen, C. P., Le, T. H., Schinckus, C., & Su, T. D. (2020). Determinants of agricultural emissions: panel data evidence from a global sample. Environment and Development Economics, 26(2), 109–130. https://doi.org/10.1017/s1355770x20000315
Ntiamoah, E. B., Appiah-Otoo, I., Li, D., Twumasi, M. A., Yeboah, E. N., & Chandio, A. A. (2023). Estimating and mitigating greenhouse gas emissions from agriculture in West Africa: does threshold matter? Environment, Development and Sustainability, 26(4), 10623–10651. https://doi.org/10.1007/s10668-023-03167-3
Pazienza, P., & De Lucia, C. (2019). How does FDI in the “agricultural and fishing” sector affect methane emission? Evidence from the OECD countries. Economia Politica, 37(2), 441–462. https://doi.org/10.1007/s40888-019-00168-2
Raihan, A. (2023). An econometric evaluation of the effects of economic growth, energy use, and agricultural value added on carbon dioxide emissions in Vietnam. Asia-Pacific Journal of Regional Science, 7(3), 665–696. https://doi.org/10.1007/s41685-023-00278-7
Rehman, E., Ikram, M., Rehman, S., & Feng, M. T. (2021). Growing green? Sectoral-based prediction of GHG emission in Pakistan: a novel NDGM and doubling time model approach. Environment, Development and Sustainability, 23(8), 12169–12191. https://doi.org/10.1007/s10668-020-01163-5
Ridzuan, N. H. a. M., Marwan, N. F., Khalid, N., Ali, M. H., & Tseng, M. L. (2020). Effects of agriculture, renewable energy, and economic growth on carbon dioxide emissions: Evidence of the environmental Kuznets curve. Resources, Conservation and Recycling, 160, 104879. https://doi.org/10.1016/j.resconrec.2020.104879
Sampedro, J., Waldhoff, S., Sarofim, M., & Van Dingenen, R. (2023). Marginal Damage of Methane Emissions: Ozone Impacts on Agriculture. Environmental & Resource Economics, 84(4), 1095–1126. https://doi.org/10.1007/s10640-022-00750-6
Sarfraz, M., Iqbal, K., Wang, Y., Bhutta, M. S., & Jaffri, Z. U. A. (2023). Role of agricultural resource sector in environmental emissions and its explicit relationship with sustainable development: Evidence from agri-food system in China. Resources Policy, 80, 103191. https://doi.org/10.1016/j.resourpol.2022.103191
Sazvar, Z., Rahmani, M., & Govindan, K. (2018). A sustainable supply chain for organic, conventional agro-food products: The role of demand substitution, climate change and public health. Journal of Cleaner Production, 194, 564–583. https://doi.org/10.1016/j.jclepro.2018.04.118
Schermelleh-Engel, K., Moosbrugger, H., & Muller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research Online, 8(2), 23–74.
Shi, W., Fang, Y. R., Chang, Y., & Xie, G. H. (2023). Toward sustainable utilization of crop straw: Greenhouse gas emissions and their reduction potential from 1950 to 2021 in China. Resources, Conservation and Recycling, 190, 106824. https://doi.org/10.1016/j.resconrec.2022.106824
Song, L.A., Luo, Y.Q., Chang, Z.X., Jin, C.H., & Nicolas, M. (2022). Blockchain adoption in agricultural supply chain for better sustainability: A game theory perspective. Sustainability, 14, 1470. https://doi.org/10.3390/su14031470
Stetter, C., & Sauer, J. (2022). Greenhouse Gas Emissions and Eco-Performance at Farm Level: A Parametric Approach. Environmental & Resource Economics, 81(3), 617–647. https://doi.org/10.1007/s10640-021-00642-1
Su, P., & Wang, L. (2023). Spatial effect of digital inclusive finance on agricultural carbon emission intensity and mechanism. Ziyuan Kexue, 45(3), 593–608. https://doi.org/10.18402/resci.2023.03.10
Taridala, S. a. A., Alzarliani, W. O., Fauziyah, E., Rianse, I. S., & Arimbawa, P. (2023). Green Finance, Innovation, Agriculture Finance and Sustainable Economic Development: The Case of Indonesia’s Provincial Carbon Emissions. International Journal of Energy Economics and Policy, 13(1), 271–280. https://doi.org/10.32479/ijeep.13959
Wade, C. M., Baker, J. S., Jones, J. P. H., Austin, K. G., Cai, Y., De Hernandez, A. B., Latta, G. S., Ohrel, S. B., Ragnauth, S., Creason, J., & McCarl, B. (2022). Projecting the Impact of Socioeconomic and Policy Factors on Greenhouse Gas Emissions and Carbon Sequestration in U.S. Forestry and Agriculture. Journal of Forest Economics, 37(1), 127–131. https://doi.org/10.1561/112.00000545
Wang, J., Smith, P., Hergoualc’h, K., & Zou, J. (2022). Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resources, Conservation and Recycling, 185, 106501. https://doi.org/10.1016/j.resconrec.2022.106501
Wang, S., Ang, F., & Lansink, A. O. (2023). Mitigating greenhouse gas emissions on Dutch dairy farms. An efficiency analysis incorporating the circularity principle. Agricultural Economics, 54(6), 819–837. https://doi.org/10.1111/agec.12804
Wang, Y., Deng, X., & Wang, R. (2024). Greenhouse gas emissions of rice supply chain in China: From production to trade. Resources, Conservation and Recycling, 202, 107356. https://doi.org/10.1016/j.resconrec.2023.107356
Wei, G., Zhou, L., & Bary, B. (2022). Operational Decision and Sustainability of Green Agricultural Supply Chain with Consumer-Oriented Altruism. Sustainability, 14, 12210. https://doi.org/10.3390/su141912210
Wei, S., Yang, Y., & Xu, Y. (2023). Regional development, agricultural industrial upgrading and carbon emissions: What is the role of fiscal expenditure? —-Evidence from Northeast China. Economic Analysis and Policy, 80, 1858–1871. https://doi.org/10.1016/j.eap.2023.11.016
Wu, Y., Chen, D., Luo, M., Gao, F., & Li, Z. (2023). The decoupling effect between net agricultural carbon emissions and economic growth based on LCA. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04236-3
Xiao, Y., Zhang, F., Su, R., Ma, D., Liao, H., Yang, X., & Gong, G. (2023). Livestock or crop? Which deserves more investment to reduce greywater footprint emissions and improve water use efficiency? Environment, Development and Sustainability, 26(3), 7409–7435. https://doi.org/10.1007/s10668-023-03013-6
Xie, H., & Wu, X. (2023). Impact and its mechanism of urban-rural integration on the efficiency of agricultural carbon emissions in China. Ziyuan Kexue, 45(1), 48–61. https://doi.org/10.18402/resci.2023.01.04
Xing, L., Lin, T., Hu, Y., Lin, M., Liu, Y., Zhang, G., Ye, H., & Xue, X. (2023). Reducing food-system nitrogen input and emission through circular agriculture in montane and coastal regions. Resources, Conservation and Recycling, 188, 106726. https://doi.org/10.1016/j.resconrec.2022.106726
Xu, Z., Zheng, Y., & Wu, Y. (2024). Paving the way for sustainable agriculture: An analysis of evolution and driving forces of methane emissions reduction in China. Resources, Conservation and Recycling, 202, 107392. https://doi.org/10.1016/j.resconrec.2023.107392
Yasin, I., Ahmad, N., Amin, S., Sattar, N., & Hashmat, A. (2024). Does agriculture, forests, and energy consumption foster the carbon emissions and ecological footprint? fresh evidence from BRICS economies. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04456-7
Ye, J., Xie, R., Deng, X., Lin, M., Chen, Y., Lin, K., & Yang, J. (2024). Assessment of agricultural carbon emissions reduction potential and optimisation pathways based on a framework of equity and efficiency principles: Evidence from Fujian Province in China. Zemědělská Ekonomika/Agricultural Economics. https://doi.org/10.17221/329/2023-agricecon
Yoon, P. R., Lee, S. H., Choi, J. Y., Yoo, S. H., & Hur, S. O. (2022). Analysis of climate change impact on resource intensity and carbon emissions in protected farming systems using Water-Energy-Food-Carbon Nexus. Resources, Conservation and Recycling, 184, 106394. https://doi.org/10.1016/j.resconrec.2022.106394
Zheng, X., Tan, H., & Liao, W. (2024). Spatiotemporal evolution of factors affecting agricultural carbon emissions: empirical evidence from 31 Chinese provinces. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04337-z
Zhou, F. (2024). The impact of digital economy development on agricultural carbon emissions——empirical research based on Chinese data. Applied Economics Letters, 1–8. https://doi.org/10.1080/13504851.2024.2310060