How to cite this paper
Rawashdeh, A., Abaalkhail, L & Bakhit, M. (2023). A two-stage SEM-artificial neural network analysis of the organizational effects of Internet of things adoption in auditing firms.Decision Science Letters , 12(2), 255-266.
Refrences
Abbasi, G. A., Tiew, L. Y., Tang, J., Goh, Y.-N., & Thurasamy, R. (2021). The adoption of cryptocurrency as a disruptive force: Deep learning-based dual stage structural equation modelling and artificial neural network analysis. Plos one, 16(3), e0247582.
Abed, S. S. (2020). Social commerce adoption using TOE framework: An empirical investigation of Saudi Arabian SMEs. International Journal of Information Management, 53, 102118.
Ahmetoglu, S., Che Cob, Z., & Ali, N. A. (2022). A Systematic Review of Internet of Things Adoption in Organizations: Taxonomy, Benefits, Challenges and Critical Factors. Applied Sciences, 12(9), 4117.
Al-Rawashdeh, A. A. (2011). Diffusion of XBRL innovation model of adoption and usage. Universiti Utara Malaysia,
Alberts, B. (2000). Sustainable development: the challenge of transition (Vol. 2): Cambridge University Press.
Al-Momani, A. M., Mahmoud, M. A., & Ahmad, M. S. (2018). Factors that influence the acceptance of internet of things services by customers of telecommunication companies in Jordan. Journal of Organizational and End User Computing (JOEUC), 30(4), 51-63.
AlSheibani, S., Cheung, Y., & Messom, C. (2018a). Artificial intelligence adoption: AI-readiness at firm-level.
Alsheibani, S., Cheung, Y., & Messom, C. (2018b). Artificial Intelligence Adoption: AI-readiness at Firm-Level. Paper presented at the PACIS.
Amini, M., & Bakri, A. (2015). Cloud computing adoption by SMEs in the Malaysia: A multi-perspective framework based on DOI theory and TOE framework. Journal of Information Technology & Information Systems Research (JITISR), 9(2), 121-135.
Anscombe, G. E. M. (2000). Intention: Harvard University Press.
Arnold, C., & Voigt, K.-I. (2019). Determinants of industrial internet of things adoption in German manufacturing companies. International Journal of Innovation and Technology Management, 16(06), 1950038.
Arnold, C., Veile, J., & Voigt, K.-I. (2018). What drives industry 4.0 adoption? An examination of technological, organizational, and environmental determinants. Paper presented at the Proceedings of the International Association for Management of Technology (IAMOT) Conference, Birmingham, UK.
Arvanitis, S., & Hollenstein, H. (2001). The determinants of the adoption of advanced manufacturing technology: an empirical analysis based on firm-level data for Swiss manufacturing. Economics of Innovation and New Technology, 10(5), 377-414.
Ashaari, M. A., Singh, K. S. D., Abbasi, G. A., Amran, A., & Liebana-Cabanillas, F. J. (2021). Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective. Technological Forecasting and Social Change, 173, 121119.
Bhattacharya, M., & Wamba, S. F. (2018). A conceptual framework of RFID adoption in retail using TOE framework. In Technology adoption and social issues: Concepts, methodologies, tools, and applications (pp. 69-102): IGI global.
Billari, F., D'Amuri, F., & Marcucci, J. (2016). Forecasting births using Google. Paper presented at the CARMA 2016: 1st International Conference on Advanced Research Methods in Analytics.
Blunch, N. (2012). Introduction to structural equation modeling using IBM SPSS statistics and AMOS: Sage.
Brickman Bhutta, C. (2012). Not by the book: Facebook as a sampling frame. Sociological methods & research, 41(1), 57-88.
Brown, M. L. (2010). Use of tabletop exercises for disaster preparedness training. The University of Texas School of Public Health,
Chatterjee, S. (2022). Antecedents of Behavioral Intention Impacting Human Behavior to Use IoT-Enabled Devices: An Empirical Investigation. International Journal of Technology and Human Interaction (IJTHI), 18(1), 1-19.
Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative science quarterly, 128-152.
Cortellazzo, L., Bruni, E., & Zampieri, R. (2019). The role of leadership in a digitalized world: A review. Frontiers in psychology, 10, 1938.
Cuevas-Vargas, H., Aguirre, J., & Parga-Montoya, N. (2022). Impact of ICT adoption on absorptive capacity and open innovation for greater firm performance. The mediating role of ACAP. Journal of Business Research, 140, 11-24.
De Mattos, C. A., & Laurindo, F. J. B. (2017). Information technology adoption and assimilation: Focus on the suppliers portal. Computers in industry, 85, 48-57.
Ernstberger, J., Koch, C., Schreiber, E. M., & Trompeter, G. (2020). Are audit firms' compensation policies associated with audit quality? Contemporary Accounting Research, 37(1), 218-244.
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods, 39(2), 175-191.
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. In: Sage Publications Sage CA: Los Angeles, CA.
Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of enterprise information management, 28(1), 107-130.
Goel, S., Obeng, A., & Rothschild, D. (2015). Non-representative surveys: Fast, cheap, and mostly accurate. Work Pap.
Hair, J. F., Ortinau, D. J., & Harrison, D. E. (2010). Essentials of marketing research (Vol. 2): McGraw-Hill/Irwin New York, NY.
Haykin, S. (2001). Redes neurais: princípios e prática: Bookman Editora.
Hsu, C.-W., & Yeh, C.-C. (2017). Understanding the factors affecting the adoption of the Internet of Things. Technology analysis & strategic management, 29(9), 1089-1102.
Hsu, H.-Y., Liu, F.-H., Tsou, H.-T., & Chen, L.-J. (2019). Openness of technology adoption, top management support and service innovation: a social innovation perspective. Journal of Business & Industrial Marketing.
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
Jaradat, M., Ababneh, H. T., Faqih, K., & Nusairat, N. M. (2020). Exploring cloud computing adoption in higher educational environment: an extension of the UTAUT model with trust. International Journal of Advanced Science and Technology, 29(5), 8282-8306.
Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401-415.
Kumar, G., & Shenbagaraman, V. (2017). The customers' perception of mobile banking adoption in Chennai City. An empirical assessment of an extended technology acceptance model. International Journal of Business Information Systems, 26(1), 46-65.
Kumar, R., Sinwar, D., Pandey, A., Tadele, T., Singh, V., & Raghuwanshi, G. (2022). IoT Enabled Technologies in Smart Farming and Challenges for Adoption. In Internet of Things and Analytics for Agriculture, Volume 3 (pp. 141-164): Springer.
Leong, L.-Y., Hew, T.-S., Ooi, K.-B., Lee, V.-H., & Hew, J.-J. (2019). A hybrid SEM-neural network analysis of social media addiction. Expert Systems with Applications, 133, 296-316.
Lin, D., Lee, C., & Lin, K. (2016). Research on effect factors evaluation of internet of things (IOT) adoption in Chinese agricultural supply chain. Paper presented at the 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).
McDonald, R. P., & Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and goodness of fit. Psychological bulletin, 107(2), 247.
Musawa, M. S., & Wahab, E. (2012). The adoption of electronic data interchange (EDI) technology by Nigerian SMEs: A conceptual framework. Journal of Business Management and Economics, 3(2), 55-68.
Oma, S. (2016). Research Methods in Management. In: Translated by Saebi. Mohammad and Shirazi, Mahmoud. Tehran, Institute of ….
Prause, M. (2019). Challenges of industry 4.0 technology adoption for SMEs: the case of Japan. Sustainability, 11(20), 5807.
Priyadarshinee, P., Raut, R. D., Jha, M. K., & Gardas, B. B. (2017). Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM-Neural networks approach. Computers in Human Behavior, 76, 341-362.
Rawashdeh, A., Shehadeh, E., Rababah, A., & Al-Okdeh, S. K. (2022). Adoption Of Robotic Process Automation (RPA) And Its Effect On Business Value: An Internal Auditors Perspective. Journal of Positive School Psychology, 9832-9847.
Rogers, E. M. (1995a). Diffusion of Innovations, 4th edn. The Free Press, New York.
Rogers, E. M. (1995b). Diffusion of Innovations: modifications of a model for telecommunications. In Die diffusion von innovationen in der telekommunikation (pp. 25-38): Springer.
Rogers, R. W. (1975). A protection motivation theory of fear appeals and attitude change1. The journal of psychology, 91(1), 93-114.
Rosli, K., Yeow, P. H., & Siew, E.-G. (2012a). Computer-assisted auditing tools acceptance using I-Toe: a new paradigm. Computer, 7, 15-2012.
Rosli, K., Yeow, P. H., & Siew, E.-G. (2012b). Factors influencing audit technology acceptance by audit firms: A new I-TOE adoption framework. Journal of Accounting and Auditing, 2012, 1.
Rouhani, S., Ashrafi, A., Ravasan, A. Z., & Afshari, S. (2018). Business intelligence systems adoption model: an empirical investigation. Journal of Organizational and End User Computing (JOEUC), 30(2), 43-70.
Savoia, E., Morano, J., Cote, D., Rampal, S., Villa, D., & Testa, M. (2012). Public health preparedness evaluation and measurement. Italian Journal of Public Health, 1(1-2).
Schneider, D., & Harknett, K. (2022). What’s to like? Facebook as a tool for survey data collection. Sociological Methods & Research, 51(1), 108-140.
Sharma, S., Daniel, E. M., & Gray, C. (2012). Absorptive capacity and ERP implementation in Indian medium-sized firms. Journal of Global Information Management (JGIM), 20(4), 54-79.
Siew, E.-G., Rosli, K., & Yeow, P. H. (2020). Organizational and environmental influences in the adoption of computer-assisted audit tools and techniques (CAATTs) by audit firms in Malaysia. International journal of accounting information systems, 36, 100445.
Stern, M. J., Bilgen, I., & Dillman, D. A. (2014). The state of survey methodology: Challenges, dilemmas, and new frontiers in the era of the tailored design. Field methods, 26(3), 284-301.
Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in science education, 48(6), 1273-1296.
Teo, T. S., & Pian, Y. (2003). A contingency perspective on Internet adoption and competitive advantage. European Journal of Information Systems, 12(2), 78-92.
Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). Processes of technological innovation: Lexington books.
Tu, M. (2018). An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management: A mixed research approach. The International Journal of Logistics Management, Vol. 29 No. 1, pp. 131-151. https://doi.org/10.1108/IJLM-11-2016-0274
Upadhyay, A., Ayodele, J. O., Kumar, A., & Garza-Reyes, J. A. (2020). A review of challenges and opportunities of blockchain adoption for operational excellence in the UK automotive industry. Journal of Global Operations and Strategic Sourcing.
Usman, U. M. Z., Ahmad, M. N., & Zakaria, N. H. (2019). The determinants of adoption of cloud-based ERP of Nigerian's SMEs manufacturing sector using TOE framework and DOI theory. International Journal of Enterprise Information Systems (IJEIS), 15(3), 27-43.
Wang, W., Rothschild, D., Goel, S., & Gelman, A. (2015). Forecasting elections with non-representative polls. International Journal of Forecasting, 31(3), 980-991.
Wei, J., Lowry, P. B., & Seedorf, S. (2015). The assimilation of RFID technology by Chinese companies: A technology diffusion perspective. Information & Management, 52(6), 628-642.
Zagheni, E., Weber, I., & Gummadi, K. (2017). Leveraging Facebook's advertising platform to monitor stocks of migrants. Population and Development Review, 721-734.
Zhou, L., Chong, A. Y., & Ngai, W. T. (2015). Supply chain management in the era of the internet of things. International Journal of Production Economics, 159, 1-3.
Abed, S. S. (2020). Social commerce adoption using TOE framework: An empirical investigation of Saudi Arabian SMEs. International Journal of Information Management, 53, 102118.
Ahmetoglu, S., Che Cob, Z., & Ali, N. A. (2022). A Systematic Review of Internet of Things Adoption in Organizations: Taxonomy, Benefits, Challenges and Critical Factors. Applied Sciences, 12(9), 4117.
Al-Rawashdeh, A. A. (2011). Diffusion of XBRL innovation model of adoption and usage. Universiti Utara Malaysia,
Alberts, B. (2000). Sustainable development: the challenge of transition (Vol. 2): Cambridge University Press.
Al-Momani, A. M., Mahmoud, M. A., & Ahmad, M. S. (2018). Factors that influence the acceptance of internet of things services by customers of telecommunication companies in Jordan. Journal of Organizational and End User Computing (JOEUC), 30(4), 51-63.
AlSheibani, S., Cheung, Y., & Messom, C. (2018a). Artificial intelligence adoption: AI-readiness at firm-level.
Alsheibani, S., Cheung, Y., & Messom, C. (2018b). Artificial Intelligence Adoption: AI-readiness at Firm-Level. Paper presented at the PACIS.
Amini, M., & Bakri, A. (2015). Cloud computing adoption by SMEs in the Malaysia: A multi-perspective framework based on DOI theory and TOE framework. Journal of Information Technology & Information Systems Research (JITISR), 9(2), 121-135.
Anscombe, G. E. M. (2000). Intention: Harvard University Press.
Arnold, C., & Voigt, K.-I. (2019). Determinants of industrial internet of things adoption in German manufacturing companies. International Journal of Innovation and Technology Management, 16(06), 1950038.
Arnold, C., Veile, J., & Voigt, K.-I. (2018). What drives industry 4.0 adoption? An examination of technological, organizational, and environmental determinants. Paper presented at the Proceedings of the International Association for Management of Technology (IAMOT) Conference, Birmingham, UK.
Arvanitis, S., & Hollenstein, H. (2001). The determinants of the adoption of advanced manufacturing technology: an empirical analysis based on firm-level data for Swiss manufacturing. Economics of Innovation and New Technology, 10(5), 377-414.
Ashaari, M. A., Singh, K. S. D., Abbasi, G. A., Amran, A., & Liebana-Cabanillas, F. J. (2021). Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective. Technological Forecasting and Social Change, 173, 121119.
Bhattacharya, M., & Wamba, S. F. (2018). A conceptual framework of RFID adoption in retail using TOE framework. In Technology adoption and social issues: Concepts, methodologies, tools, and applications (pp. 69-102): IGI global.
Billari, F., D'Amuri, F., & Marcucci, J. (2016). Forecasting births using Google. Paper presented at the CARMA 2016: 1st International Conference on Advanced Research Methods in Analytics.
Blunch, N. (2012). Introduction to structural equation modeling using IBM SPSS statistics and AMOS: Sage.
Brickman Bhutta, C. (2012). Not by the book: Facebook as a sampling frame. Sociological methods & research, 41(1), 57-88.
Brown, M. L. (2010). Use of tabletop exercises for disaster preparedness training. The University of Texas School of Public Health,
Chatterjee, S. (2022). Antecedents of Behavioral Intention Impacting Human Behavior to Use IoT-Enabled Devices: An Empirical Investigation. International Journal of Technology and Human Interaction (IJTHI), 18(1), 1-19.
Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative science quarterly, 128-152.
Cortellazzo, L., Bruni, E., & Zampieri, R. (2019). The role of leadership in a digitalized world: A review. Frontiers in psychology, 10, 1938.
Cuevas-Vargas, H., Aguirre, J., & Parga-Montoya, N. (2022). Impact of ICT adoption on absorptive capacity and open innovation for greater firm performance. The mediating role of ACAP. Journal of Business Research, 140, 11-24.
De Mattos, C. A., & Laurindo, F. J. B. (2017). Information technology adoption and assimilation: Focus on the suppliers portal. Computers in industry, 85, 48-57.
Ernstberger, J., Koch, C., Schreiber, E. M., & Trompeter, G. (2020). Are audit firms' compensation policies associated with audit quality? Contemporary Accounting Research, 37(1), 218-244.
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods, 39(2), 175-191.
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. In: Sage Publications Sage CA: Los Angeles, CA.
Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of enterprise information management, 28(1), 107-130.
Goel, S., Obeng, A., & Rothschild, D. (2015). Non-representative surveys: Fast, cheap, and mostly accurate. Work Pap.
Hair, J. F., Ortinau, D. J., & Harrison, D. E. (2010). Essentials of marketing research (Vol. 2): McGraw-Hill/Irwin New York, NY.
Haykin, S. (2001). Redes neurais: princípios e prática: Bookman Editora.
Hsu, C.-W., & Yeh, C.-C. (2017). Understanding the factors affecting the adoption of the Internet of Things. Technology analysis & strategic management, 29(9), 1089-1102.
Hsu, H.-Y., Liu, F.-H., Tsou, H.-T., & Chen, L.-J. (2019). Openness of technology adoption, top management support and service innovation: a social innovation perspective. Journal of Business & Industrial Marketing.
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
Jaradat, M., Ababneh, H. T., Faqih, K., & Nusairat, N. M. (2020). Exploring cloud computing adoption in higher educational environment: an extension of the UTAUT model with trust. International Journal of Advanced Science and Technology, 29(5), 8282-8306.
Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401-415.
Kumar, G., & Shenbagaraman, V. (2017). The customers' perception of mobile banking adoption in Chennai City. An empirical assessment of an extended technology acceptance model. International Journal of Business Information Systems, 26(1), 46-65.
Kumar, R., Sinwar, D., Pandey, A., Tadele, T., Singh, V., & Raghuwanshi, G. (2022). IoT Enabled Technologies in Smart Farming and Challenges for Adoption. In Internet of Things and Analytics for Agriculture, Volume 3 (pp. 141-164): Springer.
Leong, L.-Y., Hew, T.-S., Ooi, K.-B., Lee, V.-H., & Hew, J.-J. (2019). A hybrid SEM-neural network analysis of social media addiction. Expert Systems with Applications, 133, 296-316.
Lin, D., Lee, C., & Lin, K. (2016). Research on effect factors evaluation of internet of things (IOT) adoption in Chinese agricultural supply chain. Paper presented at the 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).
McDonald, R. P., & Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and goodness of fit. Psychological bulletin, 107(2), 247.
Musawa, M. S., & Wahab, E. (2012). The adoption of electronic data interchange (EDI) technology by Nigerian SMEs: A conceptual framework. Journal of Business Management and Economics, 3(2), 55-68.
Oma, S. (2016). Research Methods in Management. In: Translated by Saebi. Mohammad and Shirazi, Mahmoud. Tehran, Institute of ….
Prause, M. (2019). Challenges of industry 4.0 technology adoption for SMEs: the case of Japan. Sustainability, 11(20), 5807.
Priyadarshinee, P., Raut, R. D., Jha, M. K., & Gardas, B. B. (2017). Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM-Neural networks approach. Computers in Human Behavior, 76, 341-362.
Rawashdeh, A., Shehadeh, E., Rababah, A., & Al-Okdeh, S. K. (2022). Adoption Of Robotic Process Automation (RPA) And Its Effect On Business Value: An Internal Auditors Perspective. Journal of Positive School Psychology, 9832-9847.
Rogers, E. M. (1995a). Diffusion of Innovations, 4th edn. The Free Press, New York.
Rogers, E. M. (1995b). Diffusion of Innovations: modifications of a model for telecommunications. In Die diffusion von innovationen in der telekommunikation (pp. 25-38): Springer.
Rogers, R. W. (1975). A protection motivation theory of fear appeals and attitude change1. The journal of psychology, 91(1), 93-114.
Rosli, K., Yeow, P. H., & Siew, E.-G. (2012a). Computer-assisted auditing tools acceptance using I-Toe: a new paradigm. Computer, 7, 15-2012.
Rosli, K., Yeow, P. H., & Siew, E.-G. (2012b). Factors influencing audit technology acceptance by audit firms: A new I-TOE adoption framework. Journal of Accounting and Auditing, 2012, 1.
Rouhani, S., Ashrafi, A., Ravasan, A. Z., & Afshari, S. (2018). Business intelligence systems adoption model: an empirical investigation. Journal of Organizational and End User Computing (JOEUC), 30(2), 43-70.
Savoia, E., Morano, J., Cote, D., Rampal, S., Villa, D., & Testa, M. (2012). Public health preparedness evaluation and measurement. Italian Journal of Public Health, 1(1-2).
Schneider, D., & Harknett, K. (2022). What’s to like? Facebook as a tool for survey data collection. Sociological Methods & Research, 51(1), 108-140.
Sharma, S., Daniel, E. M., & Gray, C. (2012). Absorptive capacity and ERP implementation in Indian medium-sized firms. Journal of Global Information Management (JGIM), 20(4), 54-79.
Siew, E.-G., Rosli, K., & Yeow, P. H. (2020). Organizational and environmental influences in the adoption of computer-assisted audit tools and techniques (CAATTs) by audit firms in Malaysia. International journal of accounting information systems, 36, 100445.
Stern, M. J., Bilgen, I., & Dillman, D. A. (2014). The state of survey methodology: Challenges, dilemmas, and new frontiers in the era of the tailored design. Field methods, 26(3), 284-301.
Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in science education, 48(6), 1273-1296.
Teo, T. S., & Pian, Y. (2003). A contingency perspective on Internet adoption and competitive advantage. European Journal of Information Systems, 12(2), 78-92.
Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). Processes of technological innovation: Lexington books.
Tu, M. (2018). An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management: A mixed research approach. The International Journal of Logistics Management, Vol. 29 No. 1, pp. 131-151. https://doi.org/10.1108/IJLM-11-2016-0274
Upadhyay, A., Ayodele, J. O., Kumar, A., & Garza-Reyes, J. A. (2020). A review of challenges and opportunities of blockchain adoption for operational excellence in the UK automotive industry. Journal of Global Operations and Strategic Sourcing.
Usman, U. M. Z., Ahmad, M. N., & Zakaria, N. H. (2019). The determinants of adoption of cloud-based ERP of Nigerian's SMEs manufacturing sector using TOE framework and DOI theory. International Journal of Enterprise Information Systems (IJEIS), 15(3), 27-43.
Wang, W., Rothschild, D., Goel, S., & Gelman, A. (2015). Forecasting elections with non-representative polls. International Journal of Forecasting, 31(3), 980-991.
Wei, J., Lowry, P. B., & Seedorf, S. (2015). The assimilation of RFID technology by Chinese companies: A technology diffusion perspective. Information & Management, 52(6), 628-642.
Zagheni, E., Weber, I., & Gummadi, K. (2017). Leveraging Facebook's advertising platform to monitor stocks of migrants. Population and Development Review, 721-734.
Zhou, L., Chong, A. Y., & Ngai, W. T. (2015). Supply chain management in the era of the internet of things. International Journal of Production Economics, 159, 1-3.