How to cite this paper
Dey, S & Chakraborty, S. (2016). A study on the machinability of some metal alloys using grey TOPSIS method.Decision Science Letters , 5(1), 31-44.
Refrences
Alexopoulos, N.D. & Pantelakis, S.G. (2004). A new quality index for characterizing aluminum cast alloys with regard to aircraft structure design requirements. Metallurgical and Materials Transactions A, 35A, 301-308.
Alexopoulous, N.D. (2007). Generation of quality maps to support material selection by exploiting the quality indices concept of cast aluminium alloys. Materials & Design, 28(2), 534-543.
Boubekri, N., Rodriguez, J., & Asfour, S. (2003). Development of an aggregate indicator to assess the machinability of steels. Journal of Materials Processing Technology, 134(2), 159-165.
Davim, J.P., & Reis, P. (2004). Machinability study on composite (polyetheretherketone reinforced with 30% glass fibre–PEEK GF 30) using polycrystalline diamond (PCD) and cemented carbide (K20) tools. International Journal of Advanced Manufacturing Technology, 23(5-6), 412-418.
Davim, J. P., & Mata, F. (2005). A new machinability index in turning fiber reinforced plastics. Journal of Materials Processing Technology, 170(1-2), 436-440.
Davim, J.P., & Figueira, L. (2007). Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques. Materials & Design, 28(4), 1186-1191.
Deng, J. L. (1982). Control problem of grey system. System and Control Letters, 1(5), 288-294.
Deng, J. L. (1989). Introduction to grey system theory. The Journal of Grey System, 1(1), 1-24.
Enache, S., Str?jescu, E., Opran, C., Minciu, C., & Zamfirache, M. (1995). Mathematical model for the establishment of the materials machinability. Annals of the CIRP, 44(1), 79-82.
Hoseiny, H., H?gman, B., Klement, U., & Kinnander, A. (2012). Machinability evaluation of pre-hardened plastic mould steels. International Journal of Machining and Machinability of Materials, 11(4), 327-341.
Jadidi, O., Hong, T.S., Firouzi, F., & Yusuff, R.M. (2008). An optimal grey based approach based on TOPSIS concepts for supplier selection problem. International Journal of Management Science and Engineering Management, 4(2), 104-117.
Kim, K-K., Kang, M-C., Kim, J-S., Jung, Y-H., & Kim, N-K. (2002). A study on the precision machinability of ball end milling by cutting speed optimization. Journal of Materials Processing Technology, 130-131, 357-362.
Li, G-D., Yamaguchi, D., & Nagai, M. (2007). A grey-based decision-making approach to the supplier selection problem. Mathematical and Computer Modelling, 46(3-4), 573-581.
Lin, Y-H., Lee, P-C., & Ting, H-I. (2008). Dynamic multi-attribute decision making model with grey number evaluations. Expert Systems with Applications, 35(4), 1638-1644.
Lobato, F.S., Sousa, M.N., Silva, M.A.. & Machado, A.R. (2014). Multi-objective optimization and bio-inspired methods applied to machinability of stainless steel. Applied Soft Computing, 22, 261-271.
Manna, A., & Bhattacharayya, B. (2003). A study on machinability of Al/SiC-MMC. Journal of Materials Processing Technology, 140(1-3), 711-716.
Mills, B. (1983). Machinability of Engineering Materials. Essex: Applied Science Publishers Ltd.
Morehead, M., Huang, Y., & Hartwig, K.T. (2007). Machinability of ultrafine-grained copper using tungsten carbide and polycrystalline diamond tools. International Journal of Machine Tools & Manufacture, 47(2), 286-293.
Rao, R.V., & Gandhi, O.P. (2002). Digraph and matrix methods for the machinability evaluation of work materials. International Journal of Machine Tools & Manufacture, 42(3), 321-330.
Rao, R.V. (2006). Machinability evaluation of work materials using a combined multiple attribute decision-making method. International Journal of Advanced Manufacturing Technology, 28(3-4), 221-227.
Rech, J., Le Calvez, C., & Dessoly, M. (2004). A new approach for the characterization of machinability - application to steels for plastic injection molds. Journal of Materials Processing Technology, 152(1), 66-70.
Sadeghi, M., Razavi, S.H., & Saberi, N. (2013). Application of grey TOPSIS in preference ordering of action plans in balanced scorecard and strategy map. Informatica, 24(4), 619-635.
?alak, A., Vasilko, K., Seleck?, M., & H. Danninger (2006). New short time face turning method for testing the machinability of PM steels. Journal of Materials Processing Technology, 176(1-3), 62-69.
Sameer Kumar, D., & Suman, K.N.S. (2014). Selection of magnesium alloy by MADM methods for automobile wheels. International Journal of Engineering and Manufacturing, 4(2), 31-41.
?eker, U., & Hasirci, H. (2006). Evaluation of machinability of austempered ductile irons in terms of cutting forces and surface quality. Journal of Materials Processing Technology, 173(3), 260-268.
Sridharan, V., & Muthukrishnan, N. (2013). Optimization of machinability of polyester/modified jute fabric composite using grey relational analysis (GRA). Procedia Engineering, 64, 1003- 1012.
Stoi?, A., Kopa?, J., & Cukor, G. (2005). Testing of machinability of mould steel 40CrMnMo7 using genetic algorithm. Journal of Materials Processing Technology, 164-165, 1624-1630.
Turskis, Z., & Zavadskas, E.K. (2010). A novel method for multiple criteria analysis: grey additive ratio assessment (ARAS-G) method. Informatica, 21(4), 597-610.
Wang, X., Huang, C., Zou, B., Liu, H., Zhu, H., & Wang, J. (2014). A new method to evaluate the machinability of difficult-to-cut materials. International Journal of Advanced Manufacturing Technology, 75(1-4), 91-96.
Xu, L., Schultheiss, F., Andersson, M., & St?hl, J-E. (2013). General conception of polar diagrams for the evaluation of the potential machinability of workpiece materials. International Journal of Machining and Machinability of Materials, 14(1), 24-44.
Zavadskas, E.K., Kaklauskas, A., Turskis, Z., & Tamo?aitien?, J. (2009). Multi-attribute decision-making model by applying grey numbers. Informatica, 20(2), 305-320.
Zolfani, S.H., & Antucheviciene, J. (2012). Team member selecting based on AHP and TOPSIS grey. Inzinerine Ekonomika - Engineering Economics, 23(4), 425-434.
Alexopoulous, N.D. (2007). Generation of quality maps to support material selection by exploiting the quality indices concept of cast aluminium alloys. Materials & Design, 28(2), 534-543.
Boubekri, N., Rodriguez, J., & Asfour, S. (2003). Development of an aggregate indicator to assess the machinability of steels. Journal of Materials Processing Technology, 134(2), 159-165.
Davim, J.P., & Reis, P. (2004). Machinability study on composite (polyetheretherketone reinforced with 30% glass fibre–PEEK GF 30) using polycrystalline diamond (PCD) and cemented carbide (K20) tools. International Journal of Advanced Manufacturing Technology, 23(5-6), 412-418.
Davim, J. P., & Mata, F. (2005). A new machinability index in turning fiber reinforced plastics. Journal of Materials Processing Technology, 170(1-2), 436-440.
Davim, J.P., & Figueira, L. (2007). Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques. Materials & Design, 28(4), 1186-1191.
Deng, J. L. (1982). Control problem of grey system. System and Control Letters, 1(5), 288-294.
Deng, J. L. (1989). Introduction to grey system theory. The Journal of Grey System, 1(1), 1-24.
Enache, S., Str?jescu, E., Opran, C., Minciu, C., & Zamfirache, M. (1995). Mathematical model for the establishment of the materials machinability. Annals of the CIRP, 44(1), 79-82.
Hoseiny, H., H?gman, B., Klement, U., & Kinnander, A. (2012). Machinability evaluation of pre-hardened plastic mould steels. International Journal of Machining and Machinability of Materials, 11(4), 327-341.
Jadidi, O., Hong, T.S., Firouzi, F., & Yusuff, R.M. (2008). An optimal grey based approach based on TOPSIS concepts for supplier selection problem. International Journal of Management Science and Engineering Management, 4(2), 104-117.
Kim, K-K., Kang, M-C., Kim, J-S., Jung, Y-H., & Kim, N-K. (2002). A study on the precision machinability of ball end milling by cutting speed optimization. Journal of Materials Processing Technology, 130-131, 357-362.
Li, G-D., Yamaguchi, D., & Nagai, M. (2007). A grey-based decision-making approach to the supplier selection problem. Mathematical and Computer Modelling, 46(3-4), 573-581.
Lin, Y-H., Lee, P-C., & Ting, H-I. (2008). Dynamic multi-attribute decision making model with grey number evaluations. Expert Systems with Applications, 35(4), 1638-1644.
Lobato, F.S., Sousa, M.N., Silva, M.A.. & Machado, A.R. (2014). Multi-objective optimization and bio-inspired methods applied to machinability of stainless steel. Applied Soft Computing, 22, 261-271.
Manna, A., & Bhattacharayya, B. (2003). A study on machinability of Al/SiC-MMC. Journal of Materials Processing Technology, 140(1-3), 711-716.
Mills, B. (1983). Machinability of Engineering Materials. Essex: Applied Science Publishers Ltd.
Morehead, M., Huang, Y., & Hartwig, K.T. (2007). Machinability of ultrafine-grained copper using tungsten carbide and polycrystalline diamond tools. International Journal of Machine Tools & Manufacture, 47(2), 286-293.
Rao, R.V., & Gandhi, O.P. (2002). Digraph and matrix methods for the machinability evaluation of work materials. International Journal of Machine Tools & Manufacture, 42(3), 321-330.
Rao, R.V. (2006). Machinability evaluation of work materials using a combined multiple attribute decision-making method. International Journal of Advanced Manufacturing Technology, 28(3-4), 221-227.
Rech, J., Le Calvez, C., & Dessoly, M. (2004). A new approach for the characterization of machinability - application to steels for plastic injection molds. Journal of Materials Processing Technology, 152(1), 66-70.
Sadeghi, M., Razavi, S.H., & Saberi, N. (2013). Application of grey TOPSIS in preference ordering of action plans in balanced scorecard and strategy map. Informatica, 24(4), 619-635.
?alak, A., Vasilko, K., Seleck?, M., & H. Danninger (2006). New short time face turning method for testing the machinability of PM steels. Journal of Materials Processing Technology, 176(1-3), 62-69.
Sameer Kumar, D., & Suman, K.N.S. (2014). Selection of magnesium alloy by MADM methods for automobile wheels. International Journal of Engineering and Manufacturing, 4(2), 31-41.
?eker, U., & Hasirci, H. (2006). Evaluation of machinability of austempered ductile irons in terms of cutting forces and surface quality. Journal of Materials Processing Technology, 173(3), 260-268.
Sridharan, V., & Muthukrishnan, N. (2013). Optimization of machinability of polyester/modified jute fabric composite using grey relational analysis (GRA). Procedia Engineering, 64, 1003- 1012.
Stoi?, A., Kopa?, J., & Cukor, G. (2005). Testing of machinability of mould steel 40CrMnMo7 using genetic algorithm. Journal of Materials Processing Technology, 164-165, 1624-1630.
Turskis, Z., & Zavadskas, E.K. (2010). A novel method for multiple criteria analysis: grey additive ratio assessment (ARAS-G) method. Informatica, 21(4), 597-610.
Wang, X., Huang, C., Zou, B., Liu, H., Zhu, H., & Wang, J. (2014). A new method to evaluate the machinability of difficult-to-cut materials. International Journal of Advanced Manufacturing Technology, 75(1-4), 91-96.
Xu, L., Schultheiss, F., Andersson, M., & St?hl, J-E. (2013). General conception of polar diagrams for the evaluation of the potential machinability of workpiece materials. International Journal of Machining and Machinability of Materials, 14(1), 24-44.
Zavadskas, E.K., Kaklauskas, A., Turskis, Z., & Tamo?aitien?, J. (2009). Multi-attribute decision-making model by applying grey numbers. Informatica, 20(2), 305-320.
Zolfani, S.H., & Antucheviciene, J. (2012). Team member selecting based on AHP and TOPSIS grey. Inzinerine Ekonomika - Engineering Economics, 23(4), 425-434.