How to cite this paper
Dey, S & Chakraborty, S. (2015). Forward and Reverse Mapping for WEDM Process using Artificial Neural Networks.Decision Science Letters , 4(3), 277-288.
Refrences
Chandrashekarappa, M.P.G., Krishna, P., & Parappagoudar, B. (2014). Forward and reverse process models for the squeeze casting process using neural network based approaches. Applied Computational Intelligence and Soft Computing. Article ID 293976, 12 pages, http://dx.doi.org/10.1155/2014/293976.
Ghodsisyeh, D., Golshan, A., & Shirvanehdeh, J.A. (2013). Review on current research trends in wire electrical discharge machining (WEDM). Indian Journal of Science and Technology, 6(2), 154-168.
Goswami, A., & Kumar, J. (2014). Investigation of surface integrity, material removal rate and wire wear ratio for WEDM of Nimonic 80A alloy using GRA and Taguchi method. Engineering Science and Technology, an International Journal, 17, 173-184.
Ho, K.H., Newman, S.T., Rahimifard, S., & Allen, R.D. (2004). State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools & Manufacture, 44(12-13), 1247-1259.
Kumar, A., Kumar, V., & Kumar, J. (2013a). Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process. International Journal of Advanced Manufacturing Technology, 68(9-12), 2645- 2668.
Kumar, A., Kumar, V., & Kumar, J. (2013b). Effect of machining parameters on dimensional deviation in wire electro discharge machining process using pure titanium. Journal of Engineering and Technology, 3(2), 105-112.
Mukherjee, R., Chakraborty, S., & Samanta, S. (2012). Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms. Applied Soft Computing, 12(8), 2506-2516.
Pontes, F.J., Ferreira, J.R., Silva, M.B., Paiva, A.P., & Balestrassi, P.P. (2009). Artificial neural networks for machining process surface roughness modeling. International Journal of Advanced Manufacturing Technology, 49(9-12), 879-902.
Prasad, D.V.S.S.S.V., & Gopala Krishna, A. (2014). Empirical modeling and optimization of kerf and wire wear ratio in wire electrical discharge machining. International Journal of Advanced Manufacturing Technology, 77(1-4), 427-441.
Saha, P., Singha, A., Pal, S.K., & Saha, P. (2007). Soft computing models based prediction of cutting speed and surface roughness in wire electro discharge machining of tungsten carbide cobalt composite. International Journal of Advanced Manufacturing Technology, 49(1-2), 74-84.
Saha, P., Tarafdar, D., Pal, S.K., Saha, P., Srivastava, A.K., & Das, K. (2008). Modelling of wire electro-discharge machining of TiC/Fe in situ metal matrix using normalized RGFN with enhanced k-means clustering technique. International Journal of Advanced Manufacturing Technology, 43(1-2), 107-116.
Samarasinghe, S. (2006). Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition. New York: Auerbach Publications.
Scott, D., Boyina, S., & Rajurkar, K.P. (1991). Analysis and optimization of parameter combinations in wire electrical discharge machining. International Journal of Production Research, 29(11), 2189-2207.
Shandilya, P., Jain, P.K., & Jain, N.K. (2013). RSM and ANN modeling approaches for predicting average cutting speed during WEDM of SiCp/6061 Al MMC. Procedia Engineering, 64, 767-774.
Sivanandam, P. (2003). Introduction to Artificial Neural Networks, New Delhi: Vikas Publishing House.
Spedding, T.A., & Wang, Z.Q. (1997a). Parametric optimization and surface characterization of wire electrical discharge machining process. Precision Engineering, 20(1), 5-15.
Spedding, T.A., & Wang, Z.Q. (1997b). Study on modeling of wire EDM process. Journal of Materials Processing Technology, 69(1-3), 18-28.
Ugrasen, G., Ravindra, H.V., Prakash, G.V.N., & Keshavamurthy, K. (2014). Process optimization and estimation of machining performances using artificial neural network in wire EDM. Procedia Materials Science, 6, 1752-1760.
Ghodsisyeh, D., Golshan, A., & Shirvanehdeh, J.A. (2013). Review on current research trends in wire electrical discharge machining (WEDM). Indian Journal of Science and Technology, 6(2), 154-168.
Goswami, A., & Kumar, J. (2014). Investigation of surface integrity, material removal rate and wire wear ratio for WEDM of Nimonic 80A alloy using GRA and Taguchi method. Engineering Science and Technology, an International Journal, 17, 173-184.
Ho, K.H., Newman, S.T., Rahimifard, S., & Allen, R.D. (2004). State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools & Manufacture, 44(12-13), 1247-1259.
Kumar, A., Kumar, V., & Kumar, J. (2013a). Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process. International Journal of Advanced Manufacturing Technology, 68(9-12), 2645- 2668.
Kumar, A., Kumar, V., & Kumar, J. (2013b). Effect of machining parameters on dimensional deviation in wire electro discharge machining process using pure titanium. Journal of Engineering and Technology, 3(2), 105-112.
Mukherjee, R., Chakraborty, S., & Samanta, S. (2012). Selection of wire electrical discharge machining process parameters using non-traditional optimization algorithms. Applied Soft Computing, 12(8), 2506-2516.
Pontes, F.J., Ferreira, J.R., Silva, M.B., Paiva, A.P., & Balestrassi, P.P. (2009). Artificial neural networks for machining process surface roughness modeling. International Journal of Advanced Manufacturing Technology, 49(9-12), 879-902.
Prasad, D.V.S.S.S.V., & Gopala Krishna, A. (2014). Empirical modeling and optimization of kerf and wire wear ratio in wire electrical discharge machining. International Journal of Advanced Manufacturing Technology, 77(1-4), 427-441.
Saha, P., Singha, A., Pal, S.K., & Saha, P. (2007). Soft computing models based prediction of cutting speed and surface roughness in wire electro discharge machining of tungsten carbide cobalt composite. International Journal of Advanced Manufacturing Technology, 49(1-2), 74-84.
Saha, P., Tarafdar, D., Pal, S.K., Saha, P., Srivastava, A.K., & Das, K. (2008). Modelling of wire electro-discharge machining of TiC/Fe in situ metal matrix using normalized RGFN with enhanced k-means clustering technique. International Journal of Advanced Manufacturing Technology, 43(1-2), 107-116.
Samarasinghe, S. (2006). Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition. New York: Auerbach Publications.
Scott, D., Boyina, S., & Rajurkar, K.P. (1991). Analysis and optimization of parameter combinations in wire electrical discharge machining. International Journal of Production Research, 29(11), 2189-2207.
Shandilya, P., Jain, P.K., & Jain, N.K. (2013). RSM and ANN modeling approaches for predicting average cutting speed during WEDM of SiCp/6061 Al MMC. Procedia Engineering, 64, 767-774.
Sivanandam, P. (2003). Introduction to Artificial Neural Networks, New Delhi: Vikas Publishing House.
Spedding, T.A., & Wang, Z.Q. (1997a). Parametric optimization and surface characterization of wire electrical discharge machining process. Precision Engineering, 20(1), 5-15.
Spedding, T.A., & Wang, Z.Q. (1997b). Study on modeling of wire EDM process. Journal of Materials Processing Technology, 69(1-3), 18-28.
Ugrasen, G., Ravindra, H.V., Prakash, G.V.N., & Keshavamurthy, K. (2014). Process optimization and estimation of machining performances using artificial neural network in wire EDM. Procedia Materials Science, 6, 1752-1760.