How to cite this paper
Zare-Dorabei, R., Ganjali, M., Rahimi, H., Farahani, H & Norouzi, P. (2013). Design and fabrication of a novel optical sensor for determination of trace amounts of lutetium ion.Current Chemistry Letters, 2(3), 125-134.
Refrences
1. Bariain C., Matias I. R., Fernandez-Valdivielso C., Arregui F. J., Rodriguez-Mendezb M. L., De Saja J. A. (2003) Optical fiber sensor based on lutetium bisphthalocyanine for the detection of gases using standard telecommunication wavelengths. Sens. Actuators B: Chem. 93, 153–158.
2. Fricker S. P. (2006) Therapeutic application of lanthanides. Chem. Soc. Rev. 35, 524-533.
3. Evans C. H. (1983) Interesting and useful biochemical properties of lanthanides. Trends Biochem. Sci. 8, 445-449.
4. Zhu T. C., Hahn S. M., Kapatkin A. S., Dimofte A., Rodriguez C. E., Vulcan T. G., Glatstein E., His R. A. (2003) In vivo optical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy. Photochem. Photobiol. 77, 81–88.
5. Vio L., Cretier G., Chartier F., Geertsen V., Gourgiotis A., Isnard H., Rocca J. L. (2012) Separation and analysis of lanthanides by isotachophoresis coupled with inductively coupled plasma mass spectrometry. Talanta 99, 586-593.
6. Yang Y. H., Zhang H. F., Chu Z. Y., Xie L. W., Wu F. Y. (2010) Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-MS and TIMS. Int. J. Mass Spectrom. 290, 120-126.
7. Kagaya S., Mizuno T., Tohda K. (2009) Inductively coupled plasma atomic emission spectrometric determination of 27 trace elements in table salts after coprecipitation with indium phosphate. Talanta 79, 512–516.
8. Li Y., Hu B. (2010) Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological. J. Hazard. Mater. 174, 534-540.
9. Biju V. M., Prasada Rao T. (2005) FAAS Determination of Selected Rare Earth Elements Coupled with Multielement Solid Phase Extractive Preconcentration. Chem. Anal. Warsaw 50, 935-944.
10. Pantelica A., Ene A., Georgescu I. I. (2012) Instrumental neutron activation analysis of some fish species from Danube River in Romania. Microchem. J. 103, 142-147.
11. Sanchez F. G., Lopez M. H., Gomez J. C. M. (1987) A graphical derivative approach to the photometric determination of lutetium and praseodymium in mixtures. Talanta 34, 639–644.
12. Yang J., Jie N., Lin C., Wang M., Ma W. (1997) Determination of Lutetium by Fluorimetry, using BPMPHD and CTMAB. Mikrochimica Acta 127, 85-88.
13. Hosseini M., Ganjali M.R., Aboufazeli F., Faridbod F., Goldooz H., Badiei A., Norouzi P. (2013) A selective fluorescent bulk sensor for Lutetium based onhexagonal mesoporous structures. Sens. Actuators B: Chem. DOI: 10.1016/j.snb.2013.04.059.
14. Pourjavid M.R., Razavi T. (2012) 2-Amino-4-(4-aminophenyl)thiazole application as an ionophore in the construction of a Lu(III) selective membrane sensor. Chin. Chem. Lett. 23, 343-346.
15. Zamani H. A., Ganjali M. R., Faridbod F. (2011) A lutetium PVC membrane sensor based on (2-oxo-1,2--diphenylethylidene)-N-phenylhydrazinecarbothioamide. J. Serb. Chem. Soc. 76, 1295-1305.
16. Ganjali M. R., Norouzi P., Atrian A., Faridbod F., Meghdadi S., Giahi M. (2009) Neutral N,N?-bis(2-pyridinecarboxamide)-1,2-ethane as sensing material for determination of lutetium(III) ions in biological and environmental samples. Mat. Sci. Eng. C 29, 205-210.
17. Seitz W. R. (1991) Optical ion sensing fiber optic chemical sensors biosensors II. CRC Press, Bocaraton, Florida, pp. 1–19.
18. Castilleja-Rivera W. L., Hinojosa-Reyes L., Guzman-Mar J. L., Hernandez-Ramirez A., Ruiz-Ruiz E., Cerda V. (2012) Sensitive determination of chromium (VI) in paint samples using a membrane optode coupled to a multisyringe flow injection system. Talanta 99, 730-736.
19. Noroozifar M., Khorasani Motlagh M., Taheri A., Zare-Dorabei R. (2008) Diphenylthiocarbazone immobilized on the triacetyl cellulose membrane as an optical silver sensor. Turk. J. Chem. 32, 249–257.
20. Zare-Dorabei R., Norouzi P., Ganjali M.R. (2009) Design of a Novel gadolinium optical sensor based on immobilization of (Z)-N_-((pyridine-2-yl) methylene) thiophene-2-carbohydrazide on a triacetylcellulose membrane and its application to the urine samples. Anal. Lett. 42, 190–203.
21. Zare-Dorabei R., Norouzi P., Ganjali M. R. (2009) Design of a novel optical sensor for determination of trace gadolinium. J. Hazard. Mater. 171, 601–605.
22. Ganjali M. R., Zare-Dorabei R., Norouzi P. (2009) Design and construction of a novel optical sensor for determination of trace amounts of dysprosium ion. Sens. Actuators B: Chem. 143, 233–238.
23. Seiler K., Simon W. (1992) Theoretical aspects of bulk optode membranes. Anal. Chim. Acta 266, 73-87.
24. Oehme I., Wolfbeis O. S. (1997) Optical Sensors for Determination of Heavy Metal Ions. Mikrochim. Acta 126, 177-189.
25. Narayanaswamy R. (1993) Tutorial review: Optical chemical sensors: Transduction and signal processing. Analyst 118, 317-322.
26. Moreno M. C., Jimenez M., Conde C. P., Camara C. (1990) Analytical performance of an optical pH sensor for acid–base titration. Anal. Chim. Acta 230, 35–40.
27. Alizadeh K., Parooi R., Hashemi P., Rezaei B., Ganjali M. R. (2011) A new Schiff & apos; s base ligand immobilized agarose membrane optical sensor for selective monitoring of mercury ion. J. Hazard. Mater. 186, 1794-1800.
28. Firooz A. R., Ensafi A. A., Kazemifard N., Sharghi H. (2012) A highly sensitive and selective bulk optode based on benzimidazol derivative as an ionophore and ETH5294 for the determination of ultra trace amount of silver ions Talanta 101, 171–176.
29. Sotomayor P. T., Raimundo Jr I. M., Zarbin A. J. G., Rohwedder J. J. R., Alves O. L. (2001) Construction and evaluation of an optical pH sensor based on polyaniline-porous Vycor glass nanocomposite. Sens. Actuators B: Chem. 74, 157–162.
30. Ling L., Zhao Y., Du J., Xiao D. (2012) An optical sensor for mercuric ion based on immobilization of Rhodamine B derivative in PVC membrane Talanta 91, 65-71.
31. Vukovic J., Avidad M. A., Capitan-Vallvey L. F. (2012) Characterization of disposable optical sensors for heavy metal determination. Talanta 94, 123-132.
32. Jones T. P., Porter M. D. (1988) Optical pH sensor based on the chemical modification of a porous polymer film. Anal. Chem. 60, 404-406.
33. Ganjali M. R., Norouzi P., Daftari A., Faridbod F., Salavati-Niasari M. (2007) Fabrication of a highly selective Eu(III) membrane sensor based on a new S-N hexadentates Schiff & apos; s base. Sens. Actuator B: Chem. 120, 673-678.
34. Kuswandi B., Narayanaswamy R. (1999) Characterisation of a Hg(II) ion optrode based on Nafion–1-(2-thiazolylazo)-2-naphthol composite thin films. J. Environ. Monit. 1, 109-114.
35. Marczenko Z. (1986) Separation and Spectrophotometric Determination of Elements, Elis Horwood Limited, Chichester, pp. 470.
2. Fricker S. P. (2006) Therapeutic application of lanthanides. Chem. Soc. Rev. 35, 524-533.
3. Evans C. H. (1983) Interesting and useful biochemical properties of lanthanides. Trends Biochem. Sci. 8, 445-449.
4. Zhu T. C., Hahn S. M., Kapatkin A. S., Dimofte A., Rodriguez C. E., Vulcan T. G., Glatstein E., His R. A. (2003) In vivo optical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy. Photochem. Photobiol. 77, 81–88.
5. Vio L., Cretier G., Chartier F., Geertsen V., Gourgiotis A., Isnard H., Rocca J. L. (2012) Separation and analysis of lanthanides by isotachophoresis coupled with inductively coupled plasma mass spectrometry. Talanta 99, 586-593.
6. Yang Y. H., Zhang H. F., Chu Z. Y., Xie L. W., Wu F. Y. (2010) Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-MS and TIMS. Int. J. Mass Spectrom. 290, 120-126.
7. Kagaya S., Mizuno T., Tohda K. (2009) Inductively coupled plasma atomic emission spectrometric determination of 27 trace elements in table salts after coprecipitation with indium phosphate. Talanta 79, 512–516.
8. Li Y., Hu B. (2010) Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological. J. Hazard. Mater. 174, 534-540.
9. Biju V. M., Prasada Rao T. (2005) FAAS Determination of Selected Rare Earth Elements Coupled with Multielement Solid Phase Extractive Preconcentration. Chem. Anal. Warsaw 50, 935-944.
10. Pantelica A., Ene A., Georgescu I. I. (2012) Instrumental neutron activation analysis of some fish species from Danube River in Romania. Microchem. J. 103, 142-147.
11. Sanchez F. G., Lopez M. H., Gomez J. C. M. (1987) A graphical derivative approach to the photometric determination of lutetium and praseodymium in mixtures. Talanta 34, 639–644.
12. Yang J., Jie N., Lin C., Wang M., Ma W. (1997) Determination of Lutetium by Fluorimetry, using BPMPHD and CTMAB. Mikrochimica Acta 127, 85-88.
13. Hosseini M., Ganjali M.R., Aboufazeli F., Faridbod F., Goldooz H., Badiei A., Norouzi P. (2013) A selective fluorescent bulk sensor for Lutetium based onhexagonal mesoporous structures. Sens. Actuators B: Chem. DOI: 10.1016/j.snb.2013.04.059.
14. Pourjavid M.R., Razavi T. (2012) 2-Amino-4-(4-aminophenyl)thiazole application as an ionophore in the construction of a Lu(III) selective membrane sensor. Chin. Chem. Lett. 23, 343-346.
15. Zamani H. A., Ganjali M. R., Faridbod F. (2011) A lutetium PVC membrane sensor based on (2-oxo-1,2--diphenylethylidene)-N-phenylhydrazinecarbothioamide. J. Serb. Chem. Soc. 76, 1295-1305.
16. Ganjali M. R., Norouzi P., Atrian A., Faridbod F., Meghdadi S., Giahi M. (2009) Neutral N,N?-bis(2-pyridinecarboxamide)-1,2-ethane as sensing material for determination of lutetium(III) ions in biological and environmental samples. Mat. Sci. Eng. C 29, 205-210.
17. Seitz W. R. (1991) Optical ion sensing fiber optic chemical sensors biosensors II. CRC Press, Bocaraton, Florida, pp. 1–19.
18. Castilleja-Rivera W. L., Hinojosa-Reyes L., Guzman-Mar J. L., Hernandez-Ramirez A., Ruiz-Ruiz E., Cerda V. (2012) Sensitive determination of chromium (VI) in paint samples using a membrane optode coupled to a multisyringe flow injection system. Talanta 99, 730-736.
19. Noroozifar M., Khorasani Motlagh M., Taheri A., Zare-Dorabei R. (2008) Diphenylthiocarbazone immobilized on the triacetyl cellulose membrane as an optical silver sensor. Turk. J. Chem. 32, 249–257.
20. Zare-Dorabei R., Norouzi P., Ganjali M.R. (2009) Design of a Novel gadolinium optical sensor based on immobilization of (Z)-N_-((pyridine-2-yl) methylene) thiophene-2-carbohydrazide on a triacetylcellulose membrane and its application to the urine samples. Anal. Lett. 42, 190–203.
21. Zare-Dorabei R., Norouzi P., Ganjali M. R. (2009) Design of a novel optical sensor for determination of trace gadolinium. J. Hazard. Mater. 171, 601–605.
22. Ganjali M. R., Zare-Dorabei R., Norouzi P. (2009) Design and construction of a novel optical sensor for determination of trace amounts of dysprosium ion. Sens. Actuators B: Chem. 143, 233–238.
23. Seiler K., Simon W. (1992) Theoretical aspects of bulk optode membranes. Anal. Chim. Acta 266, 73-87.
24. Oehme I., Wolfbeis O. S. (1997) Optical Sensors for Determination of Heavy Metal Ions. Mikrochim. Acta 126, 177-189.
25. Narayanaswamy R. (1993) Tutorial review: Optical chemical sensors: Transduction and signal processing. Analyst 118, 317-322.
26. Moreno M. C., Jimenez M., Conde C. P., Camara C. (1990) Analytical performance of an optical pH sensor for acid–base titration. Anal. Chim. Acta 230, 35–40.
27. Alizadeh K., Parooi R., Hashemi P., Rezaei B., Ganjali M. R. (2011) A new Schiff & apos; s base ligand immobilized agarose membrane optical sensor for selective monitoring of mercury ion. J. Hazard. Mater. 186, 1794-1800.
28. Firooz A. R., Ensafi A. A., Kazemifard N., Sharghi H. (2012) A highly sensitive and selective bulk optode based on benzimidazol derivative as an ionophore and ETH5294 for the determination of ultra trace amount of silver ions Talanta 101, 171–176.
29. Sotomayor P. T., Raimundo Jr I. M., Zarbin A. J. G., Rohwedder J. J. R., Alves O. L. (2001) Construction and evaluation of an optical pH sensor based on polyaniline-porous Vycor glass nanocomposite. Sens. Actuators B: Chem. 74, 157–162.
30. Ling L., Zhao Y., Du J., Xiao D. (2012) An optical sensor for mercuric ion based on immobilization of Rhodamine B derivative in PVC membrane Talanta 91, 65-71.
31. Vukovic J., Avidad M. A., Capitan-Vallvey L. F. (2012) Characterization of disposable optical sensors for heavy metal determination. Talanta 94, 123-132.
32. Jones T. P., Porter M. D. (1988) Optical pH sensor based on the chemical modification of a porous polymer film. Anal. Chem. 60, 404-406.
33. Ganjali M. R., Norouzi P., Daftari A., Faridbod F., Salavati-Niasari M. (2007) Fabrication of a highly selective Eu(III) membrane sensor based on a new S-N hexadentates Schiff & apos; s base. Sens. Actuator B: Chem. 120, 673-678.
34. Kuswandi B., Narayanaswamy R. (1999) Characterisation of a Hg(II) ion optrode based on Nafion–1-(2-thiazolylazo)-2-naphthol composite thin films. J. Environ. Monit. 1, 109-114.
35. Marczenko Z. (1986) Separation and Spectrophotometric Determination of Elements, Elis Horwood Limited, Chichester, pp. 470.