How to cite this paper
Hakimia, F & Mirjalili, B. (2013). Synthesis of quinoxalines in the presence of heteropoly acids.Current Chemistry Letters, 2(2), 105-108.
Refrences
1 Jaso, A.; Zarranz, B.; Aldana, I.; Monge, A. (2005), Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-mycobacterium tuberculosis agents, J. Med. Chem. 48, 2019-2025, PMID: 15771444.
2 Carta, A.; Paglietti, G.; Nikookar, M.E.R.; Sanna, P.; Sechi, L. Zanetti, S. (2002) Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity, Eur. J. Med. Chem. 37, 355-366. PMID: 12008050.
3 He, W.; Meyers, M.R.; Hanney, B.; Spada, A.; G.; Blider, H.; Galzeinski, D.; Amin, S.; Eedle, K.; Page, Jayyosi, Z.; Perrone, H. (2003), Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. part 2: the synthesis and biological activities of RPR127963 an orally bioavailable inhibitor, Bioorg. Med. Chem. Lett. 13, 3097-3100, doi:10.1016/S0960-894X(03)00655-3
4 Kim,Y. B.; Kim,Y. H.; Park, J.Y.; Kim, S. K. (2004) Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues, Bioorg. Med. Chem. Lett. 14, 541-544, doi:10.1016/j.bmcl.2003.09.086
5 Zhao, Z.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W. H.; Wang,Y.; Lindsley, C.W. (2004) General microwave-assisted protocols for the expedient synthesis of quinoxalines and heterocyclic pyrazines Tetrahedron Lett. 45, 4873-4876, doi:10.1016/j.tetlet.2004.04.144.
6 More, S.V.; Sastry, M.N.V.; Wang, C.C.; Yao, C. (2005) Molecular iodine: a powerful catalyst for the easy and efficient synthesis of quinoxalines, Tetrahedron Lett. 46, 6345-6348, doi:10.1016/j.tetlet.2005.07.026
7 Heravi, M. M.; Taheri, S.; Bakhtiari, K.; Oskooie, H. A. (2007) On water: A practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4.5H2O, Catal. Commun. 8, 211-214, doi:10.1016/j.catcom.2006.06.013.
8 Heravi, M. M.; Taheri, S.; Bakhtiari, K.; Oskooie, H. A. (2007) Zn[(L)proline]: A powerful catalyst for the very fast synthesis of quinoxaline derivatives at room temperature Catal. Commun. 8, 1341-1344, doi:10.1016/j.catcom.2006.11.026.
9 Kumar, A.; kumar, S.; Saxena, A.; De, A.; Mozumdar, S. (2008), Ni-nanoparticles: an efficient catalyst for the synthesis of quinoxalines, Catal. Commun. 9, 778, doi:10.1016/j.catcom.2007.08.021.
10 Cai, J.J.; Zou, J.P.; Pan, X.Q.; Zhang, W. (2008) Gallium (III) triflate-catalyzed synthesis of quinoxaline derivatives, Tetrahedron Lett. 49, 7386-7390, doi:10.1016/j.tetlet.2008.10.058.
11 Huang, T.K.; Wang, R.; Shi, L.; Lu, X.X. (2008) Montmorillonite K-10: An efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water, Catal. Commun. 9, 1143-1147, doi:10.1016/j.catcom.2007.10.024.
12 Dong, F.; Kai, G.; Zhenghao, F.; Xinli, Z.; Zuliang, L. (2008) A practical and efficient synthesis of quinoxaline derivative catalyzed by task-specific ionic liquid, Catal. Commun. 9, 317-320, doi:10.1016/j.catcom.2007.07.003.
13 Heravi, M. M.; Bakhtiari, K.; Oskooie, H.A.; Taheri, S. (2008) MnCl2-promoted synthesis of quinoxaline derivatives at room temperature, Heteroatom. Chem. 19, 218-220. doi 10.1002/hc.20401.
14 Ajaikumar, S.; Pandurangan, A. (2009) Efficient synthesis of quinoxaline derivatives over ZrO2/MxOy (M = Al, Ga, In and La) mixed metal oxides supported on MCM-41 mesoporous molecular sieves, Applied Catalysis A: General, 357, 184-192. doi:10.1016/j.apcata.2009.01.021.
15 Diego Ruiz, D.; Autino, J. C.; Quaranta, N.; Vazquez, P.; Romanelli, G. (2012) An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using recyclable alumina-supported heteropolyoxometalates, Scientific Word J., 1-8. doi: 10.1100/2012/174784.
16 Pope, M.T. (1983), Heteropoly and isopoly oxometalates. Washington D.C. 20057 USA.
2 Carta, A.; Paglietti, G.; Nikookar, M.E.R.; Sanna, P.; Sechi, L. Zanetti, S. (2002) Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity, Eur. J. Med. Chem. 37, 355-366. PMID: 12008050.
3 He, W.; Meyers, M.R.; Hanney, B.; Spada, A.; G.; Blider, H.; Galzeinski, D.; Amin, S.; Eedle, K.; Page, Jayyosi, Z.; Perrone, H. (2003), Potent quinoxaline-based inhibitors of PDGF receptor tyrosine kinase activity. part 2: the synthesis and biological activities of RPR127963 an orally bioavailable inhibitor, Bioorg. Med. Chem. Lett. 13, 3097-3100, doi:10.1016/S0960-894X(03)00655-3
4 Kim,Y. B.; Kim,Y. H.; Park, J.Y.; Kim, S. K. (2004) Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues, Bioorg. Med. Chem. Lett. 14, 541-544, doi:10.1016/j.bmcl.2003.09.086
5 Zhao, Z.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W. H.; Wang,Y.; Lindsley, C.W. (2004) General microwave-assisted protocols for the expedient synthesis of quinoxalines and heterocyclic pyrazines Tetrahedron Lett. 45, 4873-4876, doi:10.1016/j.tetlet.2004.04.144.
6 More, S.V.; Sastry, M.N.V.; Wang, C.C.; Yao, C. (2005) Molecular iodine: a powerful catalyst for the easy and efficient synthesis of quinoxalines, Tetrahedron Lett. 46, 6345-6348, doi:10.1016/j.tetlet.2005.07.026
7 Heravi, M. M.; Taheri, S.; Bakhtiari, K.; Oskooie, H. A. (2007) On water: A practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4.5H2O, Catal. Commun. 8, 211-214, doi:10.1016/j.catcom.2006.06.013.
8 Heravi, M. M.; Taheri, S.; Bakhtiari, K.; Oskooie, H. A. (2007) Zn[(L)proline]: A powerful catalyst for the very fast synthesis of quinoxaline derivatives at room temperature Catal. Commun. 8, 1341-1344, doi:10.1016/j.catcom.2006.11.026.
9 Kumar, A.; kumar, S.; Saxena, A.; De, A.; Mozumdar, S. (2008), Ni-nanoparticles: an efficient catalyst for the synthesis of quinoxalines, Catal. Commun. 9, 778, doi:10.1016/j.catcom.2007.08.021.
10 Cai, J.J.; Zou, J.P.; Pan, X.Q.; Zhang, W. (2008) Gallium (III) triflate-catalyzed synthesis of quinoxaline derivatives, Tetrahedron Lett. 49, 7386-7390, doi:10.1016/j.tetlet.2008.10.058.
11 Huang, T.K.; Wang, R.; Shi, L.; Lu, X.X. (2008) Montmorillonite K-10: An efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water, Catal. Commun. 9, 1143-1147, doi:10.1016/j.catcom.2007.10.024.
12 Dong, F.; Kai, G.; Zhenghao, F.; Xinli, Z.; Zuliang, L. (2008) A practical and efficient synthesis of quinoxaline derivative catalyzed by task-specific ionic liquid, Catal. Commun. 9, 317-320, doi:10.1016/j.catcom.2007.07.003.
13 Heravi, M. M.; Bakhtiari, K.; Oskooie, H.A.; Taheri, S. (2008) MnCl2-promoted synthesis of quinoxaline derivatives at room temperature, Heteroatom. Chem. 19, 218-220. doi 10.1002/hc.20401.
14 Ajaikumar, S.; Pandurangan, A. (2009) Efficient synthesis of quinoxaline derivatives over ZrO2/MxOy (M = Al, Ga, In and La) mixed metal oxides supported on MCM-41 mesoporous molecular sieves, Applied Catalysis A: General, 357, 184-192. doi:10.1016/j.apcata.2009.01.021.
15 Diego Ruiz, D.; Autino, J. C.; Quaranta, N.; Vazquez, P.; Romanelli, G. (2012) An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using recyclable alumina-supported heteropolyoxometalates, Scientific Word J., 1-8. doi: 10.1100/2012/174784.
16 Pope, M.T. (1983), Heteropoly and isopoly oxometalates. Washington D.C. 20057 USA.