How to cite this paper
Penieres-Carrillo, G., Luna-Mora, R., Barrera-Téllez, F., Martínez-Záldivar, A., Hernández-Campos, A., Castillo-Bocanegra, R., Sousa, A & Ríos-Guerra, H. (2024). Preparation of N-heterylarenes from the perspective of phenylhydrazine-based under the principles green chemistry.Current Chemistry Letters, 13(4), 753-760.
Refrences
1. Lang, D. K., Kaur, R., Arora, R., Saini, B. & Arora, S. (2020). Nitrogen-containing heterocycles as anticancer agents: an overview, Anti-Cancer Agents in Medicinal Chemistry. 20, 2150-2168. 10.2174/1871520620666200705214917.
2. Alam, M. A. (2023). Pyrazole: an emerging privileged scaffold in drug discovery. Future Medicinal Chemistry. 15, 21. https://doi.org/10.4155/fmc-2023-0207.
3. (a) Penieres-Carrillo, et al. (2020). Reevaluating the synthesis of 2,5-disubstituted-1H- benzimidazole derivatives by different green activation techniques and their biological activity as antifungal and antimicrobial inhibitor, 57, 1, 436-455. https://doi.org/10.1002/jhet.3801.; (b) Ríos-Guerra, H. et al. (2022). Household infrared technology as an energy-efficient approach to achieve C-Cπ bond construction reactions. J. Braz. Chem. Soc. 33, 1, 60-73. https://dx.doi.org/10.21577/0103-5053.20210124.
4. Cloc, R. C., Ruijter, E. & Orru, R. V. A. (2014). Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem. 16, 2958-2975. https://doi.org/10.1039/C4GC00013G.
5. (a) Abed, H. B., Mammoliti, O., Bande, O.; Lommen, G. V, & Herdewijn, P. (2013). Strategy for the Synthesis of Pyridazine heterocycles and their derivatives. J. Org. Chem. 78, 7845−7858. https://doi.org/10.1021/jo400989q. (b) Li, X., Yu, Y. & Tu, Z. (2021). Pyrazole scaffold synthesis, functionalization, and applications in Alzheimer’s disease and Parkinson’s disease treatment (2011–2020), Molecules, 26, 1202. https://doi.org/10.3390/molecules26051202. (c) Alam, M. A. (2022). Antibacterial pyrazoles: tackling resistant bacteria, Future Med. Chem. 14, 343–362. https://doi.org/10.4155/fmc-2021-0275. (d) Nagwade, R. R., Khanna, V. V., Bhagwat, S.S. & Shinde, D.B. (2005). Synthesis of new series of 1-Aryl-1,4-dihydro-4-oxo-6-methyl pyridazine-3-carboxylic acid as potential antibacterial agents. Eur. J. Med. Chem. 40, 1325-1330. https://doi.org/10.1016/j.ejmech.2005.05.012. (e) Sivakumar, R., Anbalagan, N., Vedachalam, G. & Joseph, T. L. (2003). Synthesis and Anticonvulsant Activity of Novel 1-Substituted-1,2-dihydro-pyridazine-3,6-diones. Biol. Pharm. Bull. 26, 1407-1411. https://doi.org/10.1248/bpb.26.1407.
6. (a) Singh, S. P., Kumar, D., Jones, B. G. & Threadgill, M. D. (1999). Formation and dehydration of a series of 5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazoles. Journal of Fluorine Chemistry. 94, 199-203. https://doi.org/10.1016/S0022-1139(99)00011-1., (b) Sentezlenmesi, B. Y. P. (2017). Synthesis of some new Pyrazoles. Karaelmas Fen ve Müh. Derg. 7, 352-355. http://fbd.beun.edu.tr.
7. Tierney, J. P. & Lidström, P. (2007). Microwave-assisted organic synthesis, Blackwell Publishing Ltd, ISBN 978-1-4051-7590-6.
8. Hansen, T., Vermeeren, P., Bickelhaupt, F. M. & Hamlin, T. A. (2021). Origin of the -Effect in SN2 Reactions. Angew. Chem. Int. Ed. 60, 20840–20848. https://doi.org/10.1002/anie.202106053.
9. a) Blake, J. F., Lim, D. & Jorgensen, W. L. (1994). Enhanced hydrogen bonding of water to Diels-Alder transition states. Ab Initio evidence, J. Org. Chem. 59, 803-805. https://doi.org/10.1021/jo00083a021. (b) Rideout, D. C. & Breslow, R. (1980). Hydrophobic Acceleration of Diels-Alder Reactions. J. Am. Chem. Soc. 102, 26, 7816-7817. https://doi.org/10.1021/ja00546a048.
10. Hu, Q., et al. (2021). Microwave technology: a novel approach to the transformation of natural metabolites. Chin Med. 16, 87, 1-122. https://doi.org/10.1186/s13020-021-00500-8.
11. Juaristi, E. et al. (2017). Stereoelectronic Interactions as a Probe for the Existence of the Intramolecular α‑Effect. J. Am. Chem. Soc. 139, 10799−10813. https://doi.org/10.1021/jacs.7b05367
12. Mikołaj, S. and Karolina K. (2024) Nitro-functionalized analogues of 1,3-Butadiene: An overview of characteristic, synthesis, chemical transformations and biological activity. Current Chemistry Letters. 13, 15-30. https://doi.org/10.5267/j.ccl.2023.9.003.
2. Alam, M. A. (2023). Pyrazole: an emerging privileged scaffold in drug discovery. Future Medicinal Chemistry. 15, 21. https://doi.org/10.4155/fmc-2023-0207.
3. (a) Penieres-Carrillo, et al. (2020). Reevaluating the synthesis of 2,5-disubstituted-1H- benzimidazole derivatives by different green activation techniques and their biological activity as antifungal and antimicrobial inhibitor, 57, 1, 436-455. https://doi.org/10.1002/jhet.3801.; (b) Ríos-Guerra, H. et al. (2022). Household infrared technology as an energy-efficient approach to achieve C-Cπ bond construction reactions. J. Braz. Chem. Soc. 33, 1, 60-73. https://dx.doi.org/10.21577/0103-5053.20210124.
4. Cloc, R. C., Ruijter, E. & Orru, R. V. A. (2014). Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem. 16, 2958-2975. https://doi.org/10.1039/C4GC00013G.
5. (a) Abed, H. B., Mammoliti, O., Bande, O.; Lommen, G. V, & Herdewijn, P. (2013). Strategy for the Synthesis of Pyridazine heterocycles and their derivatives. J. Org. Chem. 78, 7845−7858. https://doi.org/10.1021/jo400989q. (b) Li, X., Yu, Y. & Tu, Z. (2021). Pyrazole scaffold synthesis, functionalization, and applications in Alzheimer’s disease and Parkinson’s disease treatment (2011–2020), Molecules, 26, 1202. https://doi.org/10.3390/molecules26051202. (c) Alam, M. A. (2022). Antibacterial pyrazoles: tackling resistant bacteria, Future Med. Chem. 14, 343–362. https://doi.org/10.4155/fmc-2021-0275. (d) Nagwade, R. R., Khanna, V. V., Bhagwat, S.S. & Shinde, D.B. (2005). Synthesis of new series of 1-Aryl-1,4-dihydro-4-oxo-6-methyl pyridazine-3-carboxylic acid as potential antibacterial agents. Eur. J. Med. Chem. 40, 1325-1330. https://doi.org/10.1016/j.ejmech.2005.05.012. (e) Sivakumar, R., Anbalagan, N., Vedachalam, G. & Joseph, T. L. (2003). Synthesis and Anticonvulsant Activity of Novel 1-Substituted-1,2-dihydro-pyridazine-3,6-diones. Biol. Pharm. Bull. 26, 1407-1411. https://doi.org/10.1248/bpb.26.1407.
6. (a) Singh, S. P., Kumar, D., Jones, B. G. & Threadgill, M. D. (1999). Formation and dehydration of a series of 5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazoles. Journal of Fluorine Chemistry. 94, 199-203. https://doi.org/10.1016/S0022-1139(99)00011-1., (b) Sentezlenmesi, B. Y. P. (2017). Synthesis of some new Pyrazoles. Karaelmas Fen ve Müh. Derg. 7, 352-355. http://fbd.beun.edu.tr.
7. Tierney, J. P. & Lidström, P. (2007). Microwave-assisted organic synthesis, Blackwell Publishing Ltd, ISBN 978-1-4051-7590-6.
8. Hansen, T., Vermeeren, P., Bickelhaupt, F. M. & Hamlin, T. A. (2021). Origin of the -Effect in SN2 Reactions. Angew. Chem. Int. Ed. 60, 20840–20848. https://doi.org/10.1002/anie.202106053.
9. a) Blake, J. F., Lim, D. & Jorgensen, W. L. (1994). Enhanced hydrogen bonding of water to Diels-Alder transition states. Ab Initio evidence, J. Org. Chem. 59, 803-805. https://doi.org/10.1021/jo00083a021. (b) Rideout, D. C. & Breslow, R. (1980). Hydrophobic Acceleration of Diels-Alder Reactions. J. Am. Chem. Soc. 102, 26, 7816-7817. https://doi.org/10.1021/ja00546a048.
10. Hu, Q., et al. (2021). Microwave technology: a novel approach to the transformation of natural metabolites. Chin Med. 16, 87, 1-122. https://doi.org/10.1186/s13020-021-00500-8.
11. Juaristi, E. et al. (2017). Stereoelectronic Interactions as a Probe for the Existence of the Intramolecular α‑Effect. J. Am. Chem. Soc. 139, 10799−10813. https://doi.org/10.1021/jacs.7b05367
12. Mikołaj, S. and Karolina K. (2024) Nitro-functionalized analogues of 1,3-Butadiene: An overview of characteristic, synthesis, chemical transformations and biological activity. Current Chemistry Letters. 13, 15-30. https://doi.org/10.5267/j.ccl.2023.9.003.