How to cite this paper
Champa, R., Vishnumurthy, K., Bodke, Y., BhojyaNaik, H., IttePushpavathi, I., Satyanarayan, N & Nippu, B. (2024). Facile ZnO NPs catalyzed synthesis of substituted 4-amino-6-(1H-benzimidazol-2-ylsulfanyl)benzene-1,3-dicarbonitrile new derivatives as Potent biological agents.Current Chemistry Letters, 13(3), 569-592.
Refrences
1. Karaca Gençer, H., Acar Çevik, U., Levent, S., Sağlık, B.N., Korkut, B., Özkay, Y., Ilgın, S., and Öztürk, Y. (2017). New Benzimidazole-1,2,4-Triazole Hybrid Compounds: Synthesis, Anticandidal Activity and Cytotoxicity Evaluation. Molecules 22, 507. 10.3390/molecules22040507.
2. Kazachenko, A.S., Tanış, E., Akman, F., Medimagh, M., Issaoui, N., Al-Dossary, O., Bousiakou, L.G., Kazachenko, A.S., Zimonin, D., and Skripnikov, A.M. (2022). A Comprehensive Study of N-Butyl-1H-Benzimidazole. Molecules 27, 7864. 10.3390/molecules27227864.
3. Wubulikasimu, R., Yang, Y., Xue, F., Luo, X., Shao, D., Li, Y., Gao, R., and Ye, W. (2013). Synthesis and Biological Evaluation of Novel Benzimidazole Derivatives Bearing a Heterocyclic Ring at 4/5 Position. Bull Korean Chem Soc 34, 2297–2304. 10.5012/BKCS.2013.34.8.2297.
4. Xiang, P., Zhou, T., Wang, L., Sun, C.-Y., Hu, J., Zhao, Y.-L., and Yang, L. (2012). Novel Benzothiazole, Benzimidazole and Benzoxazole Derivatives as Potential Antitumor Agents: Synthesis and Preliminary in Vitro Biological Evaluation. Molecules 17, 873–883. 10.3390/molecules17010873.
5. Singh, M., and Tandon, V. (2011). Synthesis and biological activity of novel inhibitors of topoisomerase I: 2-Aryl-substituted 2-bis-1H-benzimidazoles. Eur. J. Med. Chem. 46, 659–669. 10.1016/j.ejmech.2010.11.046.
6. Antoci, V., Cucu, D., Zbancioc, G., Moldoveanu, C., Mangalagiu, V., Amariucai-Mantu, D., Aricu, A., and Mangalagiu, I.I. (2020). Bis -(imidazole/benzimidazole)-pyridine derivatives: synthesis, structure and antimycobacterial activity. Future Med. Chem. 12, 207–222. 10.4155/fmc-2019-0063.
7. Gobis, K., Foks, H., Serocki, M., Augustynowicz-Kopeć, E., and Napiórkowska, A. (2015). Synthesis and evaluation of in vitro antimycobacterial activity of novel 1H-benzo[d]imidazole derivatives and analogues. Eur. J. Med. Chem. 89, 13–20. 10.1016/j.ejmech.2014.10.031.
8. Awasthi, D., Kumar, K., Knudson, S.E., Slayden, R.A., and Ojima, I. (2013). SAR Studies on Trisubstituted Benzimidazoles as Inhibitors of Mtb FtsZ for the Development of Novel Antitubercular Agents. J. Med. Chem. 56, 9756–9770. 10.1021/jm401468w.
9. Morcoss, M.M., Abdelhafez, E.S.M.N., Ibrahem, R.A., Abdel-Rahman, H.M., Abdel-Aziz, M., and Abou El-Ella, D.A. (2020). Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents. Bioorg. Chem. 101, 103956. 10.1016/j.bioorg.2020.103956.
10. Padalkar, V.S., Borse, B.N., Gupta, V.D., Phatangare, K.R., Patil, V.S., Umape, P.G., and Sekar, N. (2016). Synthesis and antimicrobial activity of novel 2-substituted benzimidazole, benzoxazole and benzothiazole derivatives. Arab. J. Chem. 9, S1125–S1130. 10.1016/j.arabjc.2011.12.006.
11. Chandrika, N.T., Shrestha, S.K., Ngo, H.X., and Garneau-Tsodikova, S. (2016). Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg. Med. Chem. 24, 3680–3686. 10.1016/j.bmc.2016.06.010.
12. El-Gohary, N.S., and Shaaban, M.I. (2017). Synthesis and biological evaluation of a new series of benzimidazole derivatives as antimicrobial, antiquorum-sensing and antitumor agents. Eur. J. Med. Chem. 131, 255–262. 10.1016/j.ejmech.2017.03.018.
13. Yadav, S., Narasimhan, B., and Kaur, H. (2016). Perspectives of Benzimidazole Derivatives as Anticancer Agents in the New Era. ACAMC 16, 1403–1425. 10.2174/1871520616666151103113412.
14. Ferro, S., Buemi, M.R., De Luca, L., Agharbaoui, F.E., Pannecouque, C., and Monforte, A.-M. (2017). Searching for novel N 1 -substituted benzimidazol-2-ones as non-nucleoside HIV-1 RT inhibitors. Bioorg. Med. Chem. 25, 3861–3870. 10.1016/j.bmc.2017.05.040.
15. Monforte, A.M., De Luca, L., Buemi, M.R., Agharbaoui, F.E., Pannecouque, C., and Ferro, S. (2018). Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains. Bioorg. Med. Chem. 26, 661–674. 10.1016/j.bmc.2017.12.033.
16. Srivastava, R., Gupta, S.K., Naaz, F., Sen Gupta, P.S., Yadav, M., Singh, V.K., Singh, A., Rana, M.K., Gupta, S.K., Schols, D., et al. (2020). Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput Biol Chem 89, 107400. 10.1016/j.compbiolchem.2020.107400.
17. Veerasamy, R., Roy, A., Karunakaran, R., and Rajak, H. (2021). Structure–Activity Relationship Analysis of Benzimidazoles as Emerging Anti-Inflammatory Agents: An Overview. Pharmaceuticals 14, 663. 10.3390/ph14070663.
18. Baldisserotto, A., Demurtas, M., Lampronti, I., Tacchini, M., Moi, D., Balboni, G., Vertuani, S., Manfredini, S., and Onnis, V. (2020). In-Vitro Evaluation of Antioxidant, Antiproliferative and Photo-Protective Activities of Benzimidazolehydrazone Derivatives. Pharmaceuticals 13, 68. 10.3390/ph13040068.
19. Mariappan, G., Hazarika, R., Alam, F., Karki, R., Patangia, U., and Nath, S. (2015). Synthesis and biological evaluation of 2-substituted benzimidazole derivatives. Arab. J. Chem. 8, 715–719. 10.1016/j.arabjc.2011.11.008.
20. Brishty, S.R., Hossain, M.J., Khandaker, M.U., Faruque, M.R.I., Osman, H., and Rahman, S.M.A. (2021). A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Front. Pharmacol. 12, 762807. 10.3389/fphar.2021.762807.
21. Chojnacki, K., Wińska, P., Skierka, K., Wielechowska, M., and Bretner, M. (2017). Synthesis, in vitro antiproliferative activity and kinase profile of new benzimidazole and benzotriazole derivatives. Bioorg. Chem. 72, 1–10. 10.1016/j.bioorg.2017.02.017.
22. Gümrükçüoğlu, N. (2021). Synthesis and Antioxidant Properties of New Benzimidazole Derivatives. Politeknik Dergisi 24, 1699–1706. 10.2339/politeknik.718979.
23. Singh, V.K., and Parle, A. (2020). Synthesis, Characterization and Antioxidant Activity of 2-Aryl Benzimidazole Derivatives. Asian J Pharm Res Dev 8, 35–44. 10.22270/ajprd.v8i2.582.
24. Jian-Song, Gao, Q.-L., Wu, B.-W., Li, D., Shi, L., Zhu, T., Lou, J.-F., Jin, C.-Y., Zhang, Y.-B., Zhang, S.-Y., et al. (2019). Novel tertiary sulfonamide derivatives containing benzimidazole moiety as potent anti-gastric cancer agents: Design, synthesis and SAR studies. Eur. J. Med. Chem. 183, 111731. 10.1016/j.ejmech.2019.111731.
25. Bharadwaj, S.S., Poojary, B., Nandish, S.K.M., Kengaiah, J., Kirana, M.P., Shankar, M.K., Das, A.J., Kulal, A., and Sannaningaiah, D. (2018). Efficient Synthesis and in Silico Studies of the Benzimidazole Hybrid Scaffold with the Quinolinyloxadiazole Skeleton with Potential α-Glucosidase Inhibitory, Anticoagulant, and Antiplatelet Activities for Type-II Diabetes Mellitus Management and Treating Thrombotic Disorders. ACS Omega 3, 12562–12574. 10.1021/acsomega.8b01476.
26. Siddig, L.A., Khasawneh, M.A., Samadi, A., Saadeh, H., Abutaha, N., and Wadaan, M.A. (2021). Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents. Open Chem.19, 1062–1073. 10.1515/chem-2021-0093.
27. Sharma, K., Shrivastava, A., Mehra, R.N., Deora, G.S., Alam, M.M., Zaman, M.S., and Akhter, M. (2018). Synthesis of novel benzimidazole acrylonitriles for inhibition of Plasmodium falciparum growth by dual target inhibition. Arch. Pharm. Chem. Life Sci. 351, 1700251. 10.1002/ardp.201700251.
28. Mueller, R., Reddy, V., Nchinda, A.T., Mebrahtu, F., Taylor, D., Lawrence, N., Tanner, L., Barnabe, M., Eyermann, C.J., Zou, B., et al. (2020). Lerisetron Analogues with Antimalarial Properties: Synthesis, Structure–Activity Relationship Studies, and Biological Assessment. ACS Omega 5, 6967–6982. 10.1021/acsomega.0c00327.
29. Lee, Y.T., Tan, Y.J., and Oon, C.E. (2023). Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm. Sin. B. B 13, 478–497. 10.1016/j.apsb.2022.09.010.
30. Jasiński, R. (2015). A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett. 56, 532–535. 10.1016/j.tetlet.2014.12.007.
31. Jasiński, R. (2023). On the question of selective protocol for the preparation of juglone via (4+2) cycloaddition involving 3-hydroxypyridazine: DFT mechanistic study. Chem Heterocycl Comp 59, 179–182. 10.1007/s10593-023-03180-4.
32. Kras, J., Sadowski, M., Zawadzińska, K., Nagatsky, R., Woliński, P., Kula, K., and Łapczuk, A. (2023). Thermal [3+2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles. Sci. Rad. 2, 247–267. 10.58332/scirad2023v2i3a03.
33. Sadowski, M., Utnicka, J., Wójtowicz, A., and Kula, K. (2023). The global and local Reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Curr. Chem. Lett. 12, 421–430. 10.5267/j.ccl.2022.11.004.
34. Kula, K., and Łapczuk-Krygier, A. (2018). A DFT computational study on the [3+2] cycloaddition between parent thionitrone and nitroethene. Curr. Chem. Lett. 27–34. 10.5267/j.ccl.2018.02.001.
35. Zawadzińska, K., and Kula, K. (2021). Application of β-Phosphorylated Nitroethenes in [3+2] Cycloaddition Reactions Involving Benzonitrile N-Oxide in the Light of a DFT Computational Study. Organics 2, 26–37. 10.3390/org2010003.
36. Sadowski, M., and Kula, K. (2024). Nitro-functionalized analogues of 1,3-Butadiene: An overview of characteristic, synthesis, chemical transformations and biological activity. Curr. Chem. Lett. 13, 15–30. 10.5267/j.ccl.2023.9.003.
37. Boguszewska-Czubara, A., Kula, K., Wnorowski, A., Biernasiuk, A., Popiołek, Ł., Miodowski, D., Demchuk, O.M., and Jasiński, R. (2019). Novel functionalized β-nitrostyrenes: Promising candidates for new antibacterial drugs. Saudi Pharm J 27, 593–601. 10.1016/j.jsps.2019.02.007.
38. Pathare, B., and Bansode, T. (2021). Review- biological active benzimidazole derivatives. Results Chem 3, 100200. 10.1016/j.rechem.2021.100200.
39. Küçükbay, H., Uçkun, M., Apohan, E., and Yeşilada, Ö. (2021). Cytotoxic and antimicrobial potential of benzimidazole derivatives. Arch Pharm 354, 2100076. 10.1002/ardp.202100076.
40. Blanckaert, P., Cannaert, A., Van Uytfanghe, K., Hulpia, F., Deconinck, E., Van Calenbergh, S., and Stove, C. (2020). Report on a novel emerging class of highly potent benzimidazole NPS opioids: Chemical and in vitro functional characterization of isotonitazene. Drug Test Anal 12, 422–430. 10.1002/dta.2738.
41. Alaqeel, S.I. (2017). Synthetic approaches to benzimidazoles from o-phenylenediamine: A literature review. J. Saudi Chem. Soc. 21, 229–237. 10.1016/j.jscs.2016.08.001.
42. Morais, G.R., Palma, E., Marques, F., Gano, L., Oliveira, M.C., Abrunhosa, A., Miranda, H.V., Outeiro, T.F., Santos, I., and Paulo, A. (2017). Synthesis and Biological Evaluation of Novel 2-Aryl Benzimidazoles as Chemotherapeutic Agents: Fluoroalkylated 2-Aryl Benzimidazoles as Lead Candidates for the Generation of Chemotherapeutic Agents. J. Heterocyclic Chem. 54, 255–267. 10.1002/jhet.2575.
43. Bugday, N., Kucukbay, F.F.Z., Apohan, E., Kucukbay, H., Serindag, A., and Yesilada, O. (2017). Synthesis and Evaluation of Novel Benzimidazole Conjugates Incorporating Amino Acids and Dipeptide Moieties. LOC 14, 198–206. 10.2174/1570178614666170203093406.
44. Yılmaz, Ü., Küçükbay, H., Deniz, S., and Şireci, N. (2013). Synthesis, Characterization and Microwave-Promoted Catalytic Activity of Novel N-phenylbenzimidazolium Salts in Heck-Mizoroki and Suzuki-Miyaura Cross-Coupling Reactions under Mild Conditions. Molecules 18, 2501–2517. 10.3390/molecules18032501.
45. Bektaş, H., Sökmen, B.B., Aydın, S., Menteşe, E., Bektaş, A., and Dilekçi, G. (2020). Design, synthesis, and characterization of some new benzimidazole derivatives and biological evaluation. Journal of Heterocyclic Chem 57, 2234–2242. 10.1002/jhet.3943.
46. Mulugeta, E., and Samuel, Y. (2022). Synthesis of Benzimidazole-Sulfonyl Derivatives and Their Biological Activities. Biochem. Res. Int. 2022, 1–13. 10.1155/2022/7255299.
47. Chari, M.A., Zaied-A-Mosaa, Shobha, D., and Malayalama, S. (2013). Synthesis of Multifunctionalised 2-Substituted Benzimidazoles Using Copper (II) Hydroxide as Efficient Solid Catalyst. IJOC 03, 243–250. 10.4236/ijoc.2013.34035.
48. Adharvana Chari, M., Shobha, D., and Sasaki, T. (2011). Room temperature synthesis of benzimidazole derivatives using reusable cobalt hydroxide (II) and cobalt oxide (II) as efficient solid catalysts. Tetrahedron Lett. 52, 5575–5580. 10.1016/j.tetlet.2011.08.047.
49. Chung, N.T., Dung, V.C., and Duc, D.X. (2023). Recent achievements in the synthesis of benzimidazole derivatives. RSC Adv. 13, 32734–32771. 10.1039/D3RA05960J.
50. Kim, Y., and Li, C.-J. (2020). Perspectives on green synthesis and catalysis. Green Synthesis and Catalysis 1, 1–11. 10.1016/j.gresc.2020.06.002.
51. Sachdeva, H., and Saroj, R. (2013). ZnO Nanoparticles as an Efficient, Heterogeneous, Reusable, and Ecofriendly Catalyst for Four-Component One-Pot Green Synthesis of Pyranopyrazole Derivatives in Water. Sci. World J. 2013, 1–8. 10.1155/2013/680671.
52. Mohammed, S.M., Shehab, W.S., Emwas, A.-H.M., Jaremko, M., Abdellattif, M.H., Zordok, W.A., and Tantawy, E.S. (2023). Eco-Friendly Synthesis of 1H-benzo[d]imidazole Derivatives by ZnO NPs Characterization, DFT Studies, Antioxidant and Insilico Studies. Pharmaceuticals 16, 969. 10.3390/ph16070969.
53. Alinezhad, H., Salehian, F., and Biparva, P. (2012). Synthesis of Benzimidazole Derivatives Using Heterogeneous ZnO Nanoparticles. Synth. Commun. 42, 102–108. 10.1080/00397911.2010.522294.
54. Paul, B., Vadivel, S., Dhar, S.S., Debbarma, S., and Kumaravel, M. (2017). One-pot green synthesis of zinc oxide nano rice and its application as sonocatalyst for degradation of organic dye and synthesis of 2-benzimidazole derivatives. J. Phys. Chem. Sol.104, 152–159. 10.1016/j.jpcs.2017.01.007.
55. Hao, D., Yun-lei, Z., Xiao-peng, S., Jin-ming, Y., and Dong, F. (2014). Synthesis of 2-amino-4-phenyl-6-(phenylsulfanyl)-3,5-dicyanopyridines by tandem reaction. Res. Chem. Intermed. 40, 587–594. 10.1007/s11164-012-0984-0.
56. Raoufi, D. (2013). Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renewable Energy 50, 932–937. 10.1016/j.renene.2012.08.076.
57. Özkay, Y., Tunalı, Y., Karaca, H., and Işıkdağ, İ. (2011). Antimicrobial activity of a new series of benzimidazole derivatives. Arch. Pharm. Res. 34, 1427–1435. 10.1007/s12272-011-0903-8.
58. Aroua, L.M., Alosaimi, A.H., Alminderej, F.M., Messaoudi, S., Mohammed, H.A., Almahmoud, S.A., Chigurupati, S., Albadri, A.E.A.E., and Mekni, N.H. (2023). Synthesis, Molecular Docking, and Bioactivity Study of Novel Hybrid Benzimidazole Urea Derivatives: A Promising α-Amylase and α-Glucosidase Inhibitor Candidate with Antioxidant Activity. Pharmaceutics 15, 457. 10.3390/pharmaceutics15020457.
59. Sukanya, S.H., Venkatesh, T., Aditya Rao, S.J., and Joy, M.N. (2022). Efficient L-Proline catalyzed synthesis of some new (4-substituted-phenyl)-1,5-dihydro-2H-pyrimido[4,5-d][1,3]thiazolo[3,2a]-pyrimidine-2,4(3H)-diones bearing thiazolopyrimidine derivatives and evaluation of their pharmacological activities. J. Mol. Struct. 1247, 131324. 10.1016/j.molstruc.2021.131324.
60. Cheke, R.S., Patil, V.M., Firke, S.D., Ambhore, J.P., Ansari, I.A., Patel, H.M., Shinde, S.D., Pasupuleti, V.R., Hassan, M.I., Adnan, M., et al. (2022). Therapeutic Outcomes of Isatin and Its Derivatives against Multiple Diseases: Recent Developments in Drug Discovery. Pharmaceuticals 15, 272. 10.3390/ph15030272.
61. Haredi Abdelmonsef, A., Eldeeb Mohamed, M., El-Naggar, M., Temairk, H., and Mohamed Mosallam, A. (2020). Novel Quinazolin-2,4-Dione Hybrid Molecules as Possible Inhibitors Against Malaria: Synthesis and in silico Molecular Docking Studies. Front. Mol. Biosci. 7, 105. 10.3389/fmolb.2020.00105.
62. Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D.W., Fasano, A., Miller, G.W., et al. (2019). Chronic inflammation in the etiology of disease across the life span. Nat Med 25, 1822–1832. 10.1038/s41591-019-0675-0.
63. Mantovani, A., Marchesi, F., Porta, C., Sica, A., and Allavena, P. (2007). Inflammation and cancer: Breast cancer as a prototype. The Breast 16, 27–33. 10.1016/j.breast.2007.07.013.
64. Montfort, A., Colacios, C., Levade, T., Andrieu-Abadie, N., Meyer, N., and Ségui, B. (2019). The TNF Paradox in Cancer Progression and Immunotherapy. Front. Immunol. 10, 1818. 10.3389/fimmu.2019.01818.
65. Ali, A., Khalid, M., Rehman, M.F.U., Haq, S., Ali, A., Tahir, M.N., Ashfaq, M., Rasool, F., and Braga, A.A.C. (2020). Efficient Synthesis, SC-XRD, and Theoretical Studies of O -Benzenesulfonylated Pyrimidines: Role of Noncovalent Interaction Influence in Their Supramolecular Network. ACS Omega 5, 15115–15128. 10.1021/acsomega.0c00975.
66. Öğretir, C., and Kanişkan, N. (1993). Frontier Orbital Theory and Chemical Reactivity: The Utility of Spectroscopy and Molecular Orbital Calculations. In Recent Experimental and Computational Advances in Molecular Spectroscopy, R. Fausto, ed. (Springer Netherlands), pp. 351–367. 10.1007/978-94-011-1974-0_20.
67. Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1, 104–113. 10.1016/S0031-8914(34)90011-2.
68. Matada, M.N., Jathi, K., Malingappa, P., and Pushpavathi, I. (2020). Synthesis, spectroscopic, DFT and electrochemical studies of heterocyclic azo dyes derived from 1-{[(E)-benzylideneamino](phenyl) methyl} naphthalen-2-ol. Chem. Data Coll.25, 100314. 10.1016/j.cdc.2019.100314.
69. Conradie, J. (2022). Redox Chemistry of tris(β-diketonate)cobalt(III) Complexes: A Molecular View. J. Electrochem. Soc. 169, 046522. 10.1149/1945-7111/ac6705.
70. Parr, R.G., Szentpály, L.V., and Liu, S. (1999). Electrophilicity Index. J. Am. Chem. Soc. 121, 1922–1924. 10.1021/ja983494x.
71. Megha, G.V., Bodke, Yadav.D., and Shanavaz, H. (2023). Synthesis of novel 2, 5-disubstituted tetrazole derivatives as potent biological agents. Curr. Chem. Lett. 12, 397–412. 10.5267/j.ccl.2022.11.006.
72. Ononamadu, C., and Ibrahim, A. (2021). Molecular docking and prediction of ADME/drug-likeness properties of potentially active antidiabetic compounds isolated from aqueous-methanol extracts of Gymnema sylvestre and Combretum micranthum. bta 102, 85–99. 10.5114/bta.2021.103765.
73. Pal, D., Kwatra, D., Minocha, M., Paturi, D.K., Budda, B., and Mitra, A.K. (2011). Efflux transporters- and cytochrome P-450-mediated interactions between drugs of abuse and antiretrovirals. Life Sci.88, 959–971. 10.1016/j.lfs.2010.09.012.
74. Champa, R., Vishnumurthy, K.A., Bodke, Y.D., Bhojya Naik, H.S., Pushpavathi, I., Meghana, P., and Kadam, P.R. (2023). Synthesis, characterization, and biological investigations of potentially bioactive heterocyclic compounds containing benzimidazole nucleus. Results Chem. 6, 101018. 10.1016/j.rechem.2023.101018.
75. Poovitha, S., and Parani, M. (2016). In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement Altern Med 16, 185. 10.1186/s12906-016-1085-1.
76. N., N.B., R., S.K.J., Rahman, A., Kumaraswamy, H., and Satyanarayan, N. (2022). Design and synthesis of novel tetrazolo quinoline bridged isatin derivatives as potential anticancer leads against MIA PaCa-2 human pancreatic cancer cell line. J. Mol. Struct. 1263, 133103. 10.1016/j.molstruc.2022.133103.
77. Anjan Kumar, G.C., Bodke, Y.D., Manjunatha, B., Satyanarayan, N.D., Nippu, B.N., and Joy, M.N. (2022). Novel synthesis of 3-(Phenyl) (ethylamino) methyl)-4-hydroxy-2H-chromen-2-one derivatives using biogenic ZnO nanoparticles and their applications. Chim.Tech.Acta 9, 20229104, 5495. 10.15826/chimtech.2022.9.1.04.
78. McTigue, M., Murray, B.W., Chen, J.H., Deng, Y.-L., Solowiej, J., and Kania, R.S. (2012). Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proc. Natl. Acad. Sci. U.S.A. 109, 18281–18289. 10.1073/pnas.1207759109.
79. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612. 10.1002/jcc.20084.
80. B N, N., Rahman, A., Jain R, S.K., K S, M., Kumaraswamy, H.M., Mahadevan, K.M., and Satyanarayan, N.D. (2023). Design, Synthesis and Anticancer Screening of Cu-Catalyzed SnAr Substituted Pyridine Bridged Ring Systems. J. Mol. Struct. 1277, 134829. 10.1016/j.molstruc.2022.134829.
81. Gaillard, T. (2018). Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. J. Chem. Inf. Model. 58, 1697–1706. 10.1021/acs.jcim.8b00312.
82. Dallakyan, S., and Olson, A.J. (2015). Small-Molecule Library Screening by Docking with PyRx. In Chemical Biology Methods in Molecular Biology., J. E. Hempel, C. H. Williams, and C. C. Hong, eds. (Springer New York), pp. 243–250. 10.1007/978-1-4939-2269-7_19.
83. Rigsby, R.E., and Parker, A.B. (2016). Using the PyMOL application to reinforce visual understanding of protein structure: PyMOL Application to Understand Protein Structure. Biochem. Mol. Biol. Educ. 44, 433–437. 10.1002/bmb.20966.
84. Rahman, A., N, P., N, N.B., Kumaraswamy, H.M., Rajeshwara, A.N., and Satyanarayan, N.D. (2022). Synthesis and anticancer screening of some novel Pd-catalysed 3-methyl indole based analogues on Mia PaCa-2 cell line. J. Mol. Struct. 1264, 133211. 10.1016/j.molstruc.2022.133211.
85. Patil, P., Yadav, A., Bavkar, L., N, N.B., Satyanarayan, N.D., Mane, A., Gurav, A., Hangirgekar, S., and Sankpal, S. (2021). [MerDABCO-SO3H]Cl catalyzed synthesis, antimicrobial and antioxidant evaluation and molecular docking study of pyrazolopyranopyrimidines. J. Mol. Struct. 1242, 130672. 10.1016/j.molstruc.2021.130672.
86. Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100. 10.1103/PhysRevA.38.3098.
87. Lee, C., Yang, W., and Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789. 10.1103/PhysRevB.37.785.
88. Nagaraja, O., Bodke, Y.D., Pushpavathi, I., and Ravi Kumar, S. (2020). Synthesis, characterization and biological investigations of potentially bioactive heterocyclic compounds containing 4-hydroxy coumarin. Heliyon 6, e04245. 10.1016/j.heliyon.2020.e04245.
89. Pandith, A., and Seo, Y.J. (2020). Label-free sensing platform for miRNA-146a based on chromo-fluorogenic pyrophosphate recognition. J. Inorg. Biochem.203, 110867. 10.1016/j.jinorgbio.2019.110867.
90. Yadav, P., Tandon, H., Malik, B., and Chakraborty, T. (2022). A New Approach to Find Out the Correlation Between Nucleophilicity Index (N) and Hammett Constant. Acta Pharmacol. Sin. 3, 13–16.
91. Chattaraj, P.K., and Maiti, B. (2001). Reactivity Dynamics in Atom−Field Interactions: A Quantum Fluid Density Functional Study. J. Phys. Chem. A 105, 169–183. 10.1021/jp0019660.
92. Pratihar, S., and Roy, S. (2010). Nucleophilicity and Site Selectivity of Commonly Used Arenes and Heteroarenes. J. Org. Chem. 75, 4957–4963. 10.1021/jo100425a.
93. Prasad, S.R., Satyanarayan, N.D., Shetty, A.S.K., and Thippeswamy, B. (2022). Synthesis, antimicrobial, and antitubercular evaluation of new Schiff bases with in silico ADMET and molecular docking studies. Eur. J. Chem. 13, 109–116. 10.5155/eurjchem.13.1.109-116.2216.
94. Kadam, P.R., Bodke, Y.D., B, Manjunatha., Pushpavathi, Itte., Satyanarayan, N.D., and Nippu, B.N. (2023). Synthesis, characterization, DFT and biological study of new methylene thio-linked coumarin derivatives. J. Mol. Struct. 1278, 134918. 10.1016/j.molstruc.2023.134918.
95. Kadam, P.R., Bodke, Y.D., Naik, M.D., Nagaraja, O., and Manjunatha, B. (2022). One-pot three-component synthesis of thioether linked 4-hydroxycoumarin-benzothiazole derivatives under ambient condition and evaluation of their biological activity. Results Chem 4, 100303. 10.1016/j.rechem.2022.100303.