How to cite this paper
Matiichuk, Y., Drapak, I., Darmograi, N., Bartoshyk, N., Drapak, Y & Matiychuk, V. (2024). Synthesis and biological activity of rhodanine-furan conjugates: A review.Current Chemistry Letters, 13(2), 287-302.
Refrences
1. Kaminskyy D., Kryshchyshyn A., and Lesyk R. (2017) Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin Drug Discov., 12 (12) 1233-1252.
2. Tomasić T., Masic L. P. (2009) Rhodanine as a privileged scaffold in drug discovery. Curr. Med. Chem., 16 (13) 1596–1629.
3. Kaminskyy D., Kryshchyshyn A., and Lesyk R. (2017) 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry. Eur. J. Med. Chem., 140 542-594.
4. Asif M. (2016) Mini Review on Important Biological Properties of Benzofuran Derivatives. J. Anal. Pharm. Res., 3 (2) 00050.
5. Lukevits É., and Demicheva L. (1993) Biological activity of furan derivatives (review) Chem. Heterocycl. Compd., 29 243-267.
6. Alawadhi M. M., and El-Kashef H. (2012) Synthesis of Some Heterocyclic Compounds Derived From Furan. AP LAMBERT Academic Publishing.
7. Banerjee R. HKS K., and Banerjee M. (2015) Medicinal significance of furan derivatives: A Review. Int. J. Res. Phytochem. Pharmacological Sci., 5 (3) 48-57.
8. Mech D., Kurowska A., and Trotsko N. (2021) The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int. J. Mol. Sci, 22 11533.
9. Trotsko N. Antitubercular properties of thiazolidin-4-ones - A review. (2021) Eur. J. Med. Chem., 215:113266.
10. Tripathi A. C., Gupta S. J., Fatima G. N., Sonar P. K., Verma A., and Saraf S. K. (2014) 4-Thiazolidinones: the advances continue…. Eur. J. Med. Chem., 72 52-77.
11. Jain A. K, Vaidya A., Ravichandran V., Kashaw S. K., and Agrawal R. K. (2012) Recent developments and biological activities of thiazolidinone derivatives: a review. Bioorg. Med. Chem., 20 (11) 3378-95.
12. Agrawal N. (2021) Synthetic and therapeutic potential of 4-thiazolidinone and its analogs. Curr. Chem. Lett., 10 (2) 119-138.
13. Havrylyuk D., Zimenkovsky B., and Lesyk R. (2015) Synthesis, Biological Activity of Thiazolidinones Bearing Indoline Moiety and Isatin Based Hybrids. Mini-Rev. Org. Chem., 12 (1) 66-87.
14. Devinyak O., Zimenkovsky B., and Lesyk R. (2012) Biologically active 4-thiazolidinones: a review of QSAR studies and QSAR modeling of antitumor activity. Curr. Top. Med. Chem. 12 (24) 2763-84.
15. Lesyk R. (2020) Drug design: 4-thiazolidinones applications. Part 2. Pharmacological profiles. J. Med. Sci., 89 (2) e407.
16. Lesyk R. (2020) Drug design: 4-thiazolidinones applications. Part 1. Synthetic routes to the drug-like molecules. J. Med. Sci., 89 (1) e406.
17. Nirwan S., Chahal V., and Kakkar R. (2019) Thiazolidinones: Synthesis, Reactivity, and Their Biological Applications. J. Heterocycl. Chem., 56 (4) 1239-1253.
18. Kumar R., and Patil S. (2017) Biological prospective of 4-thiazolidinone: a review. Hygeia. J. D. Med., 9 (1) 80-97.
19. Arunlal V. B., Vandana K., and Biju C. R. (2015) A brief review on recent developments and exploring activities of 4-thiazolidinone. Int J Curr Pharm Res., 7 (2).
20. Abhinit M., Ghodke M., and Pratima N. A. (2009) Exploring potential of 4-thiazolidinone: A brief review. Int. J. Pharm. Pharm. Sci., 1 (1) 47-64.
21. Sahiba N., Sethiya A., Soni J., Agarwal D. K., and Agarwal S. (2020) Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications. Top. Curr. Chem., 378 (2) 34.
22. Shaveta Mishra S., and Singh P. (2016) Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 124 500-536.
23. Liang Y., Tang M. L., Huo Z., Zhang C., and Sun X. (2020) A Concise Approach to N-Substituted Rhodanines through a Base-Assisted One-Pot Coupling and Cyclization Process. Molecules., 25 (5) 1138.
24. Nguyen D. T., Pham N. K., Nguyen X. T., Luu T. X. T., and Luong Q. N. N. (2023) Ultrasound accelerated solvent-free condensation reaction of rhodanines and carbonyls using Amberlyst 26 as a green and efficient base catalyst. J. Sulphur Chem., 44 (4), 447-461.
25. Hesse S. (2023). Synthesis of 5-arylidenerhodanines in L-proline-based deep eutectic solvent. Beilstein J. Org. Chem., 19, 1537–1544.
26. Chinchilli K. K, Akunuri R., Ghouse S. M., Soujanya D., Angeli A., Parupalli R., Arifuddin M., Yaddanapudi V. M., Supuran C. T., and Nanduri S. (2023) Design, synthesis, and structure-activity studies of new rhodanine derivatives as carbonic anhydrase II, IX inhibitors. Arch. Pharm., 356 (9) e2300205.
27. Bataille C. J. R., Brennan M. B., Byrne S., Davies S. G., Durbin M., Federov O., Huber K. V., Jones A. M., Knapp S., Liu G., et al. (2017) Thiazolidine derivatives as potent and selective inhibitors of the PIM kinase family. Bioorg. Med. Chem., 25 (9) 2657-2665. Jung M. E., Jin-Mo K., Liutao D., Hailiang H., and Gatti R. A. (2011) Synthesis and evaluation of compounds that induce readthrough of premature termination codons. Bioorganic Med. Chem. Lett., 21 (19) 5842-5848.
28. Zvarec O., Polyak S. W., Tieu W., Kuan K., Dai H., Pedersen D. S., Morona R., Zhang L., Booker G. W., and Abell A. D. (2012) 5-benzylidenerhodanine and 5-benzylidene-2-4-thiazolidinedione based antibacterials. Bioorganic Med. Chem. Lett., 22 (8) 2720-2722.
29. Mendgen T., Steuer C., and Klein C. D. (2012) Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. J. Med. Chem., 55 (2) 743-753.
30. Chauhan K., Sharma M., Saxena J., Singh S. V., Trivedi P., Srivastava K., Puri S. K., Saxena J. K., Chaturvedi V., and Chauhan P. M. (2013) Synthesis and biological evaluation of a new class of 4-aminoquinoline-rhodanine hybrid as potent anti-infective agents. Eur. J. Med. Chem., 62 693-704.
31. Liang D., Robinson E., Hom K., Yu W., Nguyen N., Li Y., Zong Q., Wilks A., and Xue F. (2018) Structure-based design and biological evaluation of inhibitors of the pseudomonas aeruginosa heme oxygenase (pa-HemO). Bioorganic Med. Chem. Lett., 28 (6) 1024-1029.
32. Prashantha Kumar B. R., Baig N. R., Sudhir S., Kar K., Kiranmai M., Pankaj M., and Joghee N. M. (2012) Discovery of novel glitazones incorporated with phenylalanine and tyrosine: synthesis, antidiabetic activity and structure-activity relationships. Bioorg. Chem., 45 12-28.
33. Niu T., Wang P., Li C., Dou T., Piao H., Li J., and Sun L. (2021) 5-Aryl-furan derivatives bearing a phenylalanine- or isoleucine-derived rhodanine moiety as potential PTP1B inhibitors. Bioorg Chem., 106 104483.
34. Vance N. R., Witkin K. R., Rooney P. W., Li Y., Pope M., and Spies M. A. (2018) Elucidating the Catalytic Power of Glutamate Racemase by Investigating a Series of Covalent Inhibitors. Chem. Med. Chem., 13 (23) 2514-2521.
35. Dhaduka M. F. and Joshib H. S. (2022) Synthesis, characterization and antimicrobial activity of some new isoxazole derivatives. Curr. Chem. Lett., 11 255–262.
36. Johnson S. L., Jung D., Forino M., Chen Y., Satterthwait A., Rozanov D. V., Strongin A. Y., and Pellecchia M. (2006) Anthrax lethal factor protease inhibitors: synthesis, SAR, and structure-based 3D QSAR studies. J. Med. Chem., 49 (1) 27-30.
37. Volynets G. P., Bdzhola V. G., Golub A. G., Synyugin A. R., Chekanov M. A., Kukharenko O. P., and Yarmoluk S. M. (2013) Rational design of apoptosis signal-regulating kinase 1 inhibitors: discovering novel structural scaffold. Eur. J. Med. Chem., 61 104-115.
38. Chandrappa S., Chandru H., Sharada A.C., Vinaya K., Ananda Kumar C. S., Thimmegowda N. R., Nagegowda P., Karuna Kumar M., and Rangappa K. S. (2010) Synthesis and in vivo anticancer and antiangiogenic effects of novel thioxothiazolidin-4-one derivatives against transplantable mouse tumor. Med. Chem. Res., 19 (3) 236-249.
39. Chandrappa S., Kavitha C.V., Shahabuddin M. S., Vinaya K., Ananda Kumar C. S., Ranganatha S. R., Raghavan S. C., and Rangappa K. S. (2009) Synthesis of 2-(5-((5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid derivatives and evaluation of their cytotoxicity and induction of apoptosis in human leukemia cells. Bioorg. Med. Chem., 17 (6) 2576-84.
40. Jian Che, Chang-Ji Zheng, Ming-Xia Song, Ya-Jing Bi, Yi Liu, Yin-Jing Li, Yan Wu, Liang-Peng Sun, and Hu-Ri Piao. (2014) Synthesis and antibacterial evaluation of furan derivatives bearing a rhodanine moiety. Med. Chem. Res., 23 (1) 426-435.
41. Niu T., Wang P., Li C., Dou T., Piao H., Li J., and Sun L. (2021) 5-Aryl-furan derivatives bearing a phenylalanine- or isoleucine-derived rhodanine moiety as potential PTP1B inhibitors. Bioorg Chem., 106 104483.
42. Song M. X., Deng X. Q., Wei Z. Y.; Zheng C. J., Wu Y., An C. S., and Piao H. R. (2015) Synthesis and Antibacterial Evaluation of (S,Z)-4-methyl-2-(4-oxo-5-((5-substituted phenylfuran-2-yl)methylene)-2-thioxothiazolidin-3-yl)Pentanoic Acids. Iran. J. Pharm. Res., 14 (1) 89-96.
43. Anumala U. R., Gu J., Lo Monte F., Kramer T., Heyny-von Haußen R., Hölzer J., Goetschy-Meyer V., Schön C., Mall G., Hilger I., et al. (2013) Fluorescent rhodanine-3-acetic acids visualize neurofibrillary tangles in Alzheimer's disease brains. Bioorg. Med. Chem., 21 (17) 5139-5144.
44. Rajamaki S., Innitzer A., Falciani C., Tintori C., Christ F., Witvrouw M., Debyser Z., Massa S., and Botta M. (2009) Exploration of novel thiobarbituric acid-, rhodanine- and thiohydantoin-based HIV-1 integrase inhibitors. Bioorganic Med. Chem. Lett., 19 (13) 3615-3618.
45. Xie Y., Liu Y., Gong G., Rinderspacher A., Deng S. X., Smith D. H., Toebben U., Tzilianos E., Branden L., Vidović D., et al. (2008) Discovery of a novel submicromolar inhibitor of the lymphoid specific tyrosine phosphatase. Bioorganic Med. Chem. Lett., 18 (9) 2840-2844.
46. Johnson S. L., Jung D., Forino M., Chen Y., Satterthwait A., Rozanov D. V., Strongin A. Y., and Pellecchia M. (2006) Anthrax lethal factor protease inhibitors: synthesis, SAR, and structure-based 3D QSAR studies. J. Med. Chem., 49 (1) 27-30.
47. Zhou X., Liu J., Meng J., Fu Y., Wu Z., Ouyang G., and Wang Z. (2021) Discovery of facile amides-functionalized rhodanine-3-acetic acid derivatives as potential anticancer agents by disrupting microtubule dynamics. J. Enzyme Inhib. Med. Chem., 36 (1) 1996-2009.
48. Samy M. Ibrahim, Ahmed S. Abdelkhalek, Shaban A. A. Abdel-Raheem, Nada E. Freah, Nada H. El Hady, Nada K. Aidia, Nada A. Tawfeq, Nora I. Gomaa, Nora M. Fouad, Hager A. Salem, Hager M. Ibrahim, Mahmoud M. Sebaiy. (2024) An overview on 2-indolinone derivatives as anticancer agents. Curr. Chem. Lett., 13 241-254.
49. Suree N., Yi S. W., Thieu W., Marohn M., Damoiseaux R., Chan A., Jung M. E., and Clubb R. T. (2009) Discovery and structure-activity relationship analysis of Staphylococcus aureus sortase A inhibitors. Bioorg. Med. Chem., 17 (20) 7174-7185.
50. Gentili V., Turrin G., Marchetti P., Rizzo S., Schiuma G., Beltrami S., Cristofori V., Illuminati D., Compagnin G., Trapella C., Rizzo R., Bortolotti D., and Fantinati A. (2022) Synthesis and biological evaluation of novel rhodanine-based structures with antiviral activity towards HHV-6 virus. Bioorganic chemistry, 119, 105518.
51. Katritzky A.R., Tala S.R., Lu H., Vakulenko A.V., Chen Q.Y., Sivapackiam J., Pandya K., Jiang S., and Debnath A.K. (2009) Design, synthesis, and structure-activity relationship of a novel series of 2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl)furans as HIV-1 entry inhibitors. J. Med. Chem., 52 (23) 7631-7639.
52. Jiang S., Tala S. R., Lu H., Abo-Dya N. E., Avan I., Gyanda K., Lu L., Katritzky A. R., and Debnath A. K. (2011) Design, synthesis, and biological activity of novel 5-((arylfuran/1H-pyrrol-2-yl)methylene)-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-4-ones as HIV-1 fusion inhibitors targeting gp41. J. Med. Chem., 54 (2) 572-579.
53. Villain-Guillot P., Gualtieri M., Bastide L., Roquet F., Martinez J., Amblard M., Pugniere M., and Leonetti J.P. (2007) Structure-activity relationships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms. J. Med. Chem., 50 (17) 4195-4204.
54. Botta L., Maccari G., Calandro P., Tiberi M., Brai A., Zamperini C., Canducci F., Chiariello M., Martí-Centelles R., Falomir E., et al. (2017) One drug for two targets: Biological evaluation of antiretroviral agents endowed with antiproliferative activity. Bioorganic Med. Chem. Lett., 27 (11) 2502-2505.
55. Song H., Lee Y. S., Roh E. J., Seo J. H., Oh K. S., Lee B. H., Han H., and Shin K. J. (2012) Discovery of potent and selective rhodanine type IKKβ inhibitors by hit-to-lead strategy. Bioorganic Med. Chem. Lett., 22 (17) 5668-5674.
56. Khodair A. I., Awad M. K., Gesson J.-P., and Elshaier Y. A. M. M. (2020) New N-ribosides and N-mannosides of rhodanine derivatives with anticancer activity on leukemia cell line: Design, synthesis, DFT and molecular modelling studies. Carbohydr. Res., 487, 107894.
57. Brown N. (2012) Bioisosteres in Medicinal Chemistry. 1st Ed, Wiley-VCH.
58. Jayashree B.S., Nikhil P.S., and Paul S. (2022) Bioisosterism in Drug Discovery and Development - An Overview. Med Chem.18 (9) 915-925.
59. Myrko I., Chaban T., Demchuk Y., Drapak Y., Chaban I., Drapak I., Pankiv M., and Matiychuk V. (2024) Current trends of chemoinformatics and computer chemistry in drug design: A review. Curr. Chem. Lett., 13 (1) 151-162.