How to cite this paper
Miditana, S., Tirukkovalluri, S., Raju, I & Alim, S. (2024). Photocatalytic degradation of Orange-II by surfactant assisted Mn/Mg co-doped TiO2 nanoparticles under visible light irradiation.Current Chemistry Letters, 13(1), 265-276.
Refrences
1. Radetic M. (2013) Functionalization of textile materials with TiO2 nanoparticles. J. Photochem. Photobiol. C: Photochem. Rev.,16 62-76.
2. Li S Q., Zhu R R., Zhu H., Xue M., Sun X Y., Yao S D., and Wang S L. (2008) Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food. Chem. Toxicol., 46 (12) 3626-3631.
3. Wang Z., Chen C., Wu F., Zou B., Zhao M., Wang J., and Caihui F. (2019) Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals. J. Hazard. Mater., 164 (2-3) 615-620.
4. Malika M., Rao Ch. V., Das R. K., Giri A. S., and Golder A. K. (2016) Evaluation of bimetal doped TiO2 in dye fragmentation and its comparison to mono-metal doped and bare catalysts. Appl. Surf. Sci., 368 316-324.
5. Chelli V. R., and Golder A. K. (2017) Bimetal doping on TiO2 for photocatalytic water treatment: a green route. Eur. Water., 58 53-60.
6. Wang Y., Zhang R., Li J., Li L., and Lin S. (2014) First-principles study on transition metal-doped anatase TiO2. Nanoscale Res. Lett., 9 46.
7. Lakshmi K. V. D., Rao T. S., Padmaja J. S., Raju I. M., Alim S. K. A., and Kalyani P. (2018) Visible light driven mesoporous Mn and S co-doped TiO2 nano material: characterization and applications in photocatalytic degradation of indigo carmine dye and antibacterial activity. Env. Nanotech. Monit. Manage., 10 494-504.
8. Zhang C., Chen S., Mo L., Huang Y., Tian H., Hu L., Huo Z., Dai S., Kong F., and Pan X. (2011) Charge recombination and band-edge shift in the dye-sensitized Mg2+ doped TiO2 solar cells. J. Phys. Chem. C., 115 (33) 16418-16424.
9. Meshesha D. S., Matangi R. C., Tirukkovalluri S. R., and Bojja S. (2017) Synthesis, characterization and visible light photocatalytic activity of Mg2+ and Zr4+ co-doped TiO2 nanomaterial for degradation of methylene blue. J. Asian Ceram. Soc., 5 (2) 136-143.
10. Sofianou M. V., Tassi M., Boukos N., Thanos S., Vaimakis T., Yu J., and Trapalis C. (2014) Solvothermal synthesis and photocatalytic performance of Mg2+ -doped anatase nanocrystals with exposed {001} facets. Catal. Today., 230 125-130.
11. Chekuri R. D., and Tirukkovalluri S. R. (2017) Synthesis of Cobalt doped titania nano assisted by gemini surfactant: characterization and application of Acid Red under visible light irradiation. South Afric. J. Chem. Eng., 24 183-195.
12. Akpan U. G., and Hameed B. H. (2010) The advancements in sol-gel method of doped -TiO2 photocatalysts. Appl. Catal. A: Gen., 375 (1) 1–11.
13. Ikhmayies S. J. (2014) Characetrization of nanomaterials. JOM., 66 28-29.
14. Buitron G., Quezada M., and Moreno G. (2004) Aerobic degradation of the azo dye acid red 151 in a sequencing batch biofilter. Bioresour. Technol., 92 (2) 143-149.
15. Lachheb H., Puzenat E., Houas A., Ksibi M., Elaloui E., Guillard C., and Herrmann J. M. (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Methylene Blue). Appl. Catal. B: Environ., 39 (1) 75-90.
16. Sahoo C., Gupta A. K., and Pal A. (2005) Photocatalytic degradation of Methyl Red dye in aqueous solution under UV irradiation using Ag+ doped TiO2. Desalination 181 (1-3) 91-100.
17. Wu J. C. S., and Chen C. H. (2004) A visible light-response Vanadium-doped titania nanocatalyst by solgel method. J. Photochem. Photobiol. A: Chem., 163 (3) 509-515.
18. Lakshmi K. V. D., Rao T. S., Padmaja J. S., Raju I. M., and Kumar M. R. (2019) Structure, photocatalytic and antibacterial activity study of meso porous Ni and S co-doped TiO2 nano material under visible light irradiation. Chin. J. Chem. Eng., 27 1630-1641.
19. Raju I. M., Rao T. S., Lakshmi K. V. D., Chandra M. R., Padmaja J. S., and Divya G. (2019) Poly 3-Thenoic acid sensitized, Copper doped anatase/brookite TiO2 nanohybrids for enhanced photocatalytic degradation of an organophosphorous pesticide. J. Environ. Chem. Eng., 7 103211.
20. Shannon R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalogenides. Acta. Cryst. A., 32 751-767.
21. Venkatachalam N., Palanichamy M., and Murugesan M. (2007) Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J. Mol. Catal. A: Chem., 273 (1-2) 177-185.
22. Jeong, E. D., Borse, P. H., Jang, J. S., Lee, J. S., Jung, O. S., Chang, H., Jin J. S., Won. M. S., and Kim H. G. (2008) Hydrothermal synthesis of Cr and Fe co-doped TiO2 nanoparticle photocatalyst. J. Ceram. Process. Res., 9 (3) 250-253.
23. Padmaja J. S., Rao T. S., Lakshmi K. V. D., and Raju I. M. (2018) Fabrication of hetero-structured mesoporous TiO2-SrTiO3 nanocomposite in presence of Gemini Surfactant: characterization and application in catalytic degradation of Acid Orange. J. Environ. Chem. Eng. 6 (5) 6457-6467.
24. Ghobadi N. (2013) Band gap determination of by using absorption spectrum fitting procedure. Int. Nano Lett., 3 2.
25. Jaiswal R., Patel N., Kothari D. C., and Miotello A. (2012) Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen. Appl. Catal. B: Environ., 126 47-54.
26. Venkatachalam N., Palanichamy M., and Murugesan V. (2007) Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol. J. Mol. Catal. A: Chem., 273 (1-2) 177-185.
27. Meshesha D. S., Matangi R. C., Tirukkovalluri S. R., and Bojja S. (2017) Synthesis, characterization and visible light photocatalytic activity of Mg2+ and Zr4+ co- doped TiO2 nanomaterial for degradation of methylene blue. J. Asian Ceram. Soc., 5 (2) 136-143.
28. Sharotri N., Sharma D., and Sud D. (2019) Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induce degradation of organic pollutants. J. Mater. Res. Tech., 8 (5) 3995-4009.
29. Miditana S. R., Tirukkovalluri S. R., Raju I. M., Alim S. A., Jaishree G., and Chippada M. L. V. P. (2021) Gemini surfactant assisted Mn/Mg bimetal doped TiO2 nanomaterials: characterization and photocatalytic activity studies under visible light irradiation. Sustain. Environ. Res., 31 (6) 1-12.
30. Deng Q. R., Gao Y., Xia X. H., Chen R. S., Wan L., and Shoa G. (2009) V and Ga co-doping effect on optical absorption properties of TiO2 thin films. J. Phys.: Conf. Ser., 152 12073.
2. Li S Q., Zhu R R., Zhu H., Xue M., Sun X Y., Yao S D., and Wang S L. (2008) Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food. Chem. Toxicol., 46 (12) 3626-3631.
3. Wang Z., Chen C., Wu F., Zou B., Zhao M., Wang J., and Caihui F. (2019) Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals. J. Hazard. Mater., 164 (2-3) 615-620.
4. Malika M., Rao Ch. V., Das R. K., Giri A. S., and Golder A. K. (2016) Evaluation of bimetal doped TiO2 in dye fragmentation and its comparison to mono-metal doped and bare catalysts. Appl. Surf. Sci., 368 316-324.
5. Chelli V. R., and Golder A. K. (2017) Bimetal doping on TiO2 for photocatalytic water treatment: a green route. Eur. Water., 58 53-60.
6. Wang Y., Zhang R., Li J., Li L., and Lin S. (2014) First-principles study on transition metal-doped anatase TiO2. Nanoscale Res. Lett., 9 46.
7. Lakshmi K. V. D., Rao T. S., Padmaja J. S., Raju I. M., Alim S. K. A., and Kalyani P. (2018) Visible light driven mesoporous Mn and S co-doped TiO2 nano material: characterization and applications in photocatalytic degradation of indigo carmine dye and antibacterial activity. Env. Nanotech. Monit. Manage., 10 494-504.
8. Zhang C., Chen S., Mo L., Huang Y., Tian H., Hu L., Huo Z., Dai S., Kong F., and Pan X. (2011) Charge recombination and band-edge shift in the dye-sensitized Mg2+ doped TiO2 solar cells. J. Phys. Chem. C., 115 (33) 16418-16424.
9. Meshesha D. S., Matangi R. C., Tirukkovalluri S. R., and Bojja S. (2017) Synthesis, characterization and visible light photocatalytic activity of Mg2+ and Zr4+ co-doped TiO2 nanomaterial for degradation of methylene blue. J. Asian Ceram. Soc., 5 (2) 136-143.
10. Sofianou M. V., Tassi M., Boukos N., Thanos S., Vaimakis T., Yu J., and Trapalis C. (2014) Solvothermal synthesis and photocatalytic performance of Mg2+ -doped anatase nanocrystals with exposed {001} facets. Catal. Today., 230 125-130.
11. Chekuri R. D., and Tirukkovalluri S. R. (2017) Synthesis of Cobalt doped titania nano assisted by gemini surfactant: characterization and application of Acid Red under visible light irradiation. South Afric. J. Chem. Eng., 24 183-195.
12. Akpan U. G., and Hameed B. H. (2010) The advancements in sol-gel method of doped -TiO2 photocatalysts. Appl. Catal. A: Gen., 375 (1) 1–11.
13. Ikhmayies S. J. (2014) Characetrization of nanomaterials. JOM., 66 28-29.
14. Buitron G., Quezada M., and Moreno G. (2004) Aerobic degradation of the azo dye acid red 151 in a sequencing batch biofilter. Bioresour. Technol., 92 (2) 143-149.
15. Lachheb H., Puzenat E., Houas A., Ksibi M., Elaloui E., Guillard C., and Herrmann J. M. (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Methylene Blue). Appl. Catal. B: Environ., 39 (1) 75-90.
16. Sahoo C., Gupta A. K., and Pal A. (2005) Photocatalytic degradation of Methyl Red dye in aqueous solution under UV irradiation using Ag+ doped TiO2. Desalination 181 (1-3) 91-100.
17. Wu J. C. S., and Chen C. H. (2004) A visible light-response Vanadium-doped titania nanocatalyst by solgel method. J. Photochem. Photobiol. A: Chem., 163 (3) 509-515.
18. Lakshmi K. V. D., Rao T. S., Padmaja J. S., Raju I. M., and Kumar M. R. (2019) Structure, photocatalytic and antibacterial activity study of meso porous Ni and S co-doped TiO2 nano material under visible light irradiation. Chin. J. Chem. Eng., 27 1630-1641.
19. Raju I. M., Rao T. S., Lakshmi K. V. D., Chandra M. R., Padmaja J. S., and Divya G. (2019) Poly 3-Thenoic acid sensitized, Copper doped anatase/brookite TiO2 nanohybrids for enhanced photocatalytic degradation of an organophosphorous pesticide. J. Environ. Chem. Eng., 7 103211.
20. Shannon R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalogenides. Acta. Cryst. A., 32 751-767.
21. Venkatachalam N., Palanichamy M., and Murugesan M. (2007) Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J. Mol. Catal. A: Chem., 273 (1-2) 177-185.
22. Jeong, E. D., Borse, P. H., Jang, J. S., Lee, J. S., Jung, O. S., Chang, H., Jin J. S., Won. M. S., and Kim H. G. (2008) Hydrothermal synthesis of Cr and Fe co-doped TiO2 nanoparticle photocatalyst. J. Ceram. Process. Res., 9 (3) 250-253.
23. Padmaja J. S., Rao T. S., Lakshmi K. V. D., and Raju I. M. (2018) Fabrication of hetero-structured mesoporous TiO2-SrTiO3 nanocomposite in presence of Gemini Surfactant: characterization and application in catalytic degradation of Acid Orange. J. Environ. Chem. Eng. 6 (5) 6457-6467.
24. Ghobadi N. (2013) Band gap determination of by using absorption spectrum fitting procedure. Int. Nano Lett., 3 2.
25. Jaiswal R., Patel N., Kothari D. C., and Miotello A. (2012) Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen. Appl. Catal. B: Environ., 126 47-54.
26. Venkatachalam N., Palanichamy M., and Murugesan V. (2007) Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol. J. Mol. Catal. A: Chem., 273 (1-2) 177-185.
27. Meshesha D. S., Matangi R. C., Tirukkovalluri S. R., and Bojja S. (2017) Synthesis, characterization and visible light photocatalytic activity of Mg2+ and Zr4+ co- doped TiO2 nanomaterial for degradation of methylene blue. J. Asian Ceram. Soc., 5 (2) 136-143.
28. Sharotri N., Sharma D., and Sud D. (2019) Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induce degradation of organic pollutants. J. Mater. Res. Tech., 8 (5) 3995-4009.
29. Miditana S. R., Tirukkovalluri S. R., Raju I. M., Alim S. A., Jaishree G., and Chippada M. L. V. P. (2021) Gemini surfactant assisted Mn/Mg bimetal doped TiO2 nanomaterials: characterization and photocatalytic activity studies under visible light irradiation. Sustain. Environ. Res., 31 (6) 1-12.
30. Deng Q. R., Gao Y., Xia X. H., Chen R. S., Wan L., and Shoa G. (2009) V and Ga co-doping effect on optical absorption properties of TiO2 thin films. J. Phys.: Conf. Ser., 152 12073.