How to cite this paper
Tambe, A., Shirole, G., Dange, C., Gavande, J., Narode, R., Uphade, B & Rana, S. (2024). Efficient and reusable Pumice supported perchloric acid catalyst for concise and effective synthesis of 1,8-dioxo-octahydroxanthenes under solvent free condition.Current Chemistry Letters, 13(1), 73-80.
Refrences
1. Valadi K., Gharibi S., Ledari R.T., and Maleki A. (2020) Ultrasound-assisted synthesis of 1,4-dihydropyridine derivatives by an efficient volcanic-based hybrid nanocomposite. Solid State Sci. 101 106141.
2. Tambe A., Gadhave A., Pathare A., and Shirole G. (2021) Novel Pumice@SO3H catalyzed efficient synthesis of 2,4,5-triarylimidazoles and acridine-1,8-diones under microwave assisted solvent-free path. Sustain. Chem. Pharm., 22 100485.
3. Tambe A., Dange C., Gavande J., Dhawale R., Kadnor V., Gadhave A., and Shirole G. (2023) Novel pumice supported perchloric acid promoted protocol for the synthesis of tetrahydrobenzo[b]pyran via multi-component approach. Polycycl. Aromat. Compd., Accepted Manuscript (DOI:10.1080/10406638.2023.2179080).
4. Maleki A., Gharibi S., Valadi K., and Ledari R. T. (2020) Pumice-modified cellulose fiber: An environmentally benign solid state hybrid catalytic system for the synthesis of 2,4,5-triarylimidazole derivatives. J. Phys. Chem. Solids., 142 109443.
5. Alver A., and Kilic A. (2018) Catalytic ozonation by iron coated pumice for the degradation of natural organic matters. Catalyst, 8(5) 219.
6. Tambe A., Sadaphal G., Dhawale R., and Shirole G. (2022) Pumice-based sulfonic acid: a sustainable and recyclable acidic catalyst for one-pot synthesis of pyrazole anchored 1,4-dihydropyridine derivatives at room temperature. Res. Chem. Intermed., 48(3) 1273-1286.
7. Ahmad M., King T. A., Ko D. K., Cha B. H., and Lee J. (2002) Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J. Phys. D: Appl. Phys., 35(13) 1473-1476.
8. Zolfigol M. A., Moosavi-Zare A. R., Arghavani-Hadi P., Zare A., Khakyzadeh V., and Darvishi G. (2012) WCl6 as an efficient heterogeneous and reusable catalyst for the preparation of 14-aryl-14H-dibenzo[a,j]xanthenes with high TOF. RSC Adv., 2(9) 3618-3620.
9. Knight C. G., and Stephens T. (1989) Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochem. J., 258(3) 683-687.
10. Liu J., Diwu Z., and Leung W. Y. (2001) Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorg. Med. Chem. Lett., 11(22) 2903-2905.
11. Niu S. L., Li Z. L., Ji F., Liu G. Y., Zhao N., Liu X. Q., Jing Y. K., and Hua H. M. (2012) Xanthones from the stem bark of Garcinia bracteata with growth inhibitory effects against HL-60 cells. Phytochemistry., 77 280-286.
12. Moosophon P., Kanokmedhakul S., Kanokmedhakul K., and Soytong K. (2009) Cytotoxic polyprenylated xanthones from the resin of garcinia hanburyi. J. Nat. Prod., 72(1) 117-124.
13. Laphookhieo S., Syers J. K., Kiattansakul R., and Chantrapromma K. (2006) Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochinchinense. Chem. Pharm. Bull., 54(5) 745-747.
14. Lee K. H., Chai H. B., Tamez P. A., Pezzuto J. M., Cordell G. A., Win K. K., and Wa M. T. (2003) Biologically active alkylated coumarins from kayea assamica. Phytochemistry., 64(2) 535-541.
15. Diniz T. F., Pereira A. C., Capettini L. S. A., Santos M. H., Nagem T. J., Lemos V. S., and Cortes S. F. (2013) Mechanism of the vasodilator effect of mono-oxygenated xanthones: A structure-activity relationship study. Planta Med., 79(16) 1495-1500.
16. Bruno O., Brullo C., Schenone S., Bondavalli F., Ranise A., Tognolini M., Ballabeni V., and Barocelli E. (2004) Synthesis and pharmacological evaluation of 5H-[1]benzopyrano[4,3-d]pyrimidines effective as antiplatelet/analgesic agents. Bioorg. Med. Chem., 12(3) 553-561.
17. Kasabe U. I., Kale K. B., Rode N. R., Shelar A. V., Patil R. H., Mhaske P. C., and Chaskar M. G. (2022) Synthesis and antifungal screening of tetramethyl hexahydro-1H-xanthene-1,8(2H)-dione derivatives as potential inhibitors of morphogenesis and biofilm formation in Candida albicans. New J. Chem., 46(5) 2128-2139.
18. Bruno O., Brullo C., Schenone S., Bondavalli F., Ranise A., and Tognolini M. (2006) Synthesis antiplatelet and antithrombotic activities of new 2-substituted benzopyrano[4,3-d]pyrimidin-4-cycloamines and 4-amino/cycloamino-benzopyrano[4,3-d]pyrimidin-5-ones. Bioorg. Med. Chem., 14(1) 121-130.
19. Hashim N., Rahmani M., Sukari M. A., Ali A. M., Alitheen N. B., Go R., and Ismail H. B. M. (2010) Two new xanthones from Artocarpus obtusus. J. Asian Nat. Prod. Res., 12(2) 106-112.
20. Thirumalai D., and Gajalakshmi S. (2020) An efficient heterogeneous iron oxide nanoparticle catalyst for the synthesis of 9-substituted xanthenes-1,8-dione. Res. Chem. Intermed., 46(5) 2657-2668.
21. Kantevari S., Bantu R., and Nagarapu L. (2006) TMSCl mediated highly efficient one-pot synthesis of octahydroquinazolinone and 1,8-dioxo-octahydroxanthene derivatives. ARKIVOC, 16(16) 136-148.
22. Moradi L., and Mirzaei M. (2019) Immobilization of Lewis acidic ionic liquid on perlite nanoparticle surfaces as a highly efficient solid acid catalyst for the solvent-free synthesis of xanthene derivatives. RSC Adv., 9(35) 19940-19948.
23. Gong K., Wang H., Wang S., Wang Y., and Chen J. (2015) Efficient synthesis of 1,8-dioxo-octahydroxanthenes catalyzed by β-cyclodextrin grafted with butyl sulfonic acid in aqueous media. Chin. J. Catal., 36(8) 1249-1255.
24. Sunkara J. R., and Botsa S. M. (2020) Facile Synthesis of 1,8-dioxooctahydro Xanthenes by Reusable Zinc Sulfide based Ternary Nanocomposite via Hydrothermal Route. Current Catal., 9(1) 72-79.
25. Sadat S. N., and Hatamjafari F. (2015) One-pot synthesis of 1,8-dioxo-octahydroxanthene derivatives. Orient. J. Chem., 31(02) 1191-1193.
26. Jin T. S., Zhang J. S., Wang A. Q., and Li T. S. (2005) Solid-state condensation reactions between aldehydes and 5,5-dimethyl-1,3-cyclohexanedione by grinding at room temperature. Synth. Commun., 35(17) 2339-2345.
27. Bhale P. S., Dongare S. B., and Mule Y. B. (2015) An efficient synthesis of 1,8-dioxooctahydroxanthenes catalysed by thiourea dioxide (TUD) in aqueous media. Chem. Sci. Trans., 4(1) 246-250.
28. Rajabi F., Abdollahi M., Diarjani E. S., Osmolowsky M. G., Osmolovskaya O.M., Gómez-López P., Puente-Santiago A. R., and Luque R. (2019) Solvent-free preparation of 1,8-dioxo-octahydroxanthenes employing iron oxide nanomaterials. Materials, 12(15) 2386-2394.
29. Safaei-Ghomi J., Ghasemzadeh M. A., and Zahedi S. (2013) ZnO Nanoparticles: A highly effective and readily recyclable catalyst for the one-pot synthesis of 1,8-dioxo-decahydroacridine and 1,8-dioxooctahydro-xanthene derivatives. J. Mex. Chem. Soc., 57(1) 1-7.
30. Jin T. S., Wang A. Q., Ma H., Zhang J. S., and Li T. S. (2006) The reaction of aromatic aldehydes and 5,5-dimethyl-1,3-cyclohexanedione under solvent-free grinding conditions. Indian. J. Chem., 45B(02) 470-474.
31. Venkatesan K., Pujari S. S., Lahoti R. J., and Srinivasan K. V. (2008) An efficient synthesis of 1,8-dioxo-octahydro-xanthene derivatives promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation. Ultrason. Sonochem., 15(4) 548-553.
32. Das B., Thirupathi P., Mahender I., Reddy V. S., and Rao Y. K. (2006) Amberlyst-15: An efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines. J. Mol. Catal. A Chem., 247(1-2) 233-239.
33. Zhang Z. H., and Tao X. Y. (2008) 2,4,6-trichloro-1,3,5-triazine-promoted synthesis of 1,8-dioxo-octahydroxanthenes under solvent-free conditions. Aust. J. Chem., 61(2) 77-79.
34. Imani Shakibaei G., Mirzaei P., and Bazgir A. (2007) Dowex-50W promoted synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Appl. Catal. A Gen., 325(1) 188-192.
35. Jin T. S., Zhang J. S., Xiao J. C., Wang A. Q., and Li T. S. (2004) Clean synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenezenesulfonic acid in aqueous media. Synlett, 5 866-870.
36. Zhang Z. H., and Liu Y. H. (2008) Antimony trichloride/SiO2 promoted synthesis of 9-aryl-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. Catal. Commun., 9(8) 1715-1719.
37. Seyyedhamzeh M., Mirzaei P., and Bazgir A. (2008) Solvent-free synthesis of aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst. Dyes. Pigm., 76(3) 836-869.
38. Kantevari S., Bantu R., and Nagarapu L. J. (2007) HClO4-SiO2 and PPA-SiO2 catalyzed efficient one-pot Knoevenagel condensation Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile aqueous and solvent free conditions: Scope and limitations. Mol. Catal. A Chem., 269(1-2) 53-57.
39. Das B., Thirupathi P., Mahender I., Reddy K. R., Ravikanth B., and Nagarapu L. (2007) An efficient synthesis of 1,8-dioxo-octahydroxanthenes using heterogeneous catalysts. Catal. Commun., 8(3) 535-538.
40. Wang X. S., Shi D. Q., Li Y. L., Chen H., Wei X. Y., and Zong Z. M. (2005) A clean synthesis of 1-oxo-hexahydroxanthene derivatives in aqueous media catalyzed by TEBA. Synth. Commun., 35(1) 97-104.
41. Darweesh A. F., Salama S. K., Abdelhamid I. A., and Elwahy A. H. M. (2021) Green synthesis of novel bis(hexahydro-1H-xanthene-1,8(2H)-diones) employing p-toluenesulfonic acid (p-TSA) as a solid acid catalyst. Synth. Commun., 51(3) 471-484.
42. Sadowski M., Utnicka J., Wójtowicz A., and Kula K. (2023) The global and local Reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Current Chem. Lett., 12(2) 421-430.
43. Kula K., and Zawadzińska K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Current Chem. Lett., 10(1) 9-16.
44. Alanazi N. M. M., Althobaiti I. O., El-Ossaily Y. A., Arafa W. A. A., El-Sayed M. Y., Altaleb H. A., Ahmed H. Y., and Tolba M. S. (2023) Green synthesis of some tetrahydroquinoline derivatives and evaluation as anticancer agents. Arabian J. Chem., 16(3) 104543.
45. Shamsan A. Q. S., Fouad M. R., Yacoob W. A. R. M., Abdul-Malik M. A., and Abdel-Raheem S. A. A. (2023) Performance of a variety of treatment processes to purify waste water in the food industry, Current Chem. Lett., 12(2) 431-438.
46. Ahmed A. A., Mohamed S. K., and Abdel-Raheemd S. A. A. (2022) Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm, Current Chem. Lett., 11(4) 359-370.
2. Tambe A., Gadhave A., Pathare A., and Shirole G. (2021) Novel Pumice@SO3H catalyzed efficient synthesis of 2,4,5-triarylimidazoles and acridine-1,8-diones under microwave assisted solvent-free path. Sustain. Chem. Pharm., 22 100485.
3. Tambe A., Dange C., Gavande J., Dhawale R., Kadnor V., Gadhave A., and Shirole G. (2023) Novel pumice supported perchloric acid promoted protocol for the synthesis of tetrahydrobenzo[b]pyran via multi-component approach. Polycycl. Aromat. Compd., Accepted Manuscript (DOI:10.1080/10406638.2023.2179080).
4. Maleki A., Gharibi S., Valadi K., and Ledari R. T. (2020) Pumice-modified cellulose fiber: An environmentally benign solid state hybrid catalytic system for the synthesis of 2,4,5-triarylimidazole derivatives. J. Phys. Chem. Solids., 142 109443.
5. Alver A., and Kilic A. (2018) Catalytic ozonation by iron coated pumice for the degradation of natural organic matters. Catalyst, 8(5) 219.
6. Tambe A., Sadaphal G., Dhawale R., and Shirole G. (2022) Pumice-based sulfonic acid: a sustainable and recyclable acidic catalyst for one-pot synthesis of pyrazole anchored 1,4-dihydropyridine derivatives at room temperature. Res. Chem. Intermed., 48(3) 1273-1286.
7. Ahmad M., King T. A., Ko D. K., Cha B. H., and Lee J. (2002) Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J. Phys. D: Appl. Phys., 35(13) 1473-1476.
8. Zolfigol M. A., Moosavi-Zare A. R., Arghavani-Hadi P., Zare A., Khakyzadeh V., and Darvishi G. (2012) WCl6 as an efficient heterogeneous and reusable catalyst for the preparation of 14-aryl-14H-dibenzo[a,j]xanthenes with high TOF. RSC Adv., 2(9) 3618-3620.
9. Knight C. G., and Stephens T. (1989) Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochem. J., 258(3) 683-687.
10. Liu J., Diwu Z., and Leung W. Y. (2001) Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorg. Med. Chem. Lett., 11(22) 2903-2905.
11. Niu S. L., Li Z. L., Ji F., Liu G. Y., Zhao N., Liu X. Q., Jing Y. K., and Hua H. M. (2012) Xanthones from the stem bark of Garcinia bracteata with growth inhibitory effects against HL-60 cells. Phytochemistry., 77 280-286.
12. Moosophon P., Kanokmedhakul S., Kanokmedhakul K., and Soytong K. (2009) Cytotoxic polyprenylated xanthones from the resin of garcinia hanburyi. J. Nat. Prod., 72(1) 117-124.
13. Laphookhieo S., Syers J. K., Kiattansakul R., and Chantrapromma K. (2006) Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochinchinense. Chem. Pharm. Bull., 54(5) 745-747.
14. Lee K. H., Chai H. B., Tamez P. A., Pezzuto J. M., Cordell G. A., Win K. K., and Wa M. T. (2003) Biologically active alkylated coumarins from kayea assamica. Phytochemistry., 64(2) 535-541.
15. Diniz T. F., Pereira A. C., Capettini L. S. A., Santos M. H., Nagem T. J., Lemos V. S., and Cortes S. F. (2013) Mechanism of the vasodilator effect of mono-oxygenated xanthones: A structure-activity relationship study. Planta Med., 79(16) 1495-1500.
16. Bruno O., Brullo C., Schenone S., Bondavalli F., Ranise A., Tognolini M., Ballabeni V., and Barocelli E. (2004) Synthesis and pharmacological evaluation of 5H-[1]benzopyrano[4,3-d]pyrimidines effective as antiplatelet/analgesic agents. Bioorg. Med. Chem., 12(3) 553-561.
17. Kasabe U. I., Kale K. B., Rode N. R., Shelar A. V., Patil R. H., Mhaske P. C., and Chaskar M. G. (2022) Synthesis and antifungal screening of tetramethyl hexahydro-1H-xanthene-1,8(2H)-dione derivatives as potential inhibitors of morphogenesis and biofilm formation in Candida albicans. New J. Chem., 46(5) 2128-2139.
18. Bruno O., Brullo C., Schenone S., Bondavalli F., Ranise A., and Tognolini M. (2006) Synthesis antiplatelet and antithrombotic activities of new 2-substituted benzopyrano[4,3-d]pyrimidin-4-cycloamines and 4-amino/cycloamino-benzopyrano[4,3-d]pyrimidin-5-ones. Bioorg. Med. Chem., 14(1) 121-130.
19. Hashim N., Rahmani M., Sukari M. A., Ali A. M., Alitheen N. B., Go R., and Ismail H. B. M. (2010) Two new xanthones from Artocarpus obtusus. J. Asian Nat. Prod. Res., 12(2) 106-112.
20. Thirumalai D., and Gajalakshmi S. (2020) An efficient heterogeneous iron oxide nanoparticle catalyst for the synthesis of 9-substituted xanthenes-1,8-dione. Res. Chem. Intermed., 46(5) 2657-2668.
21. Kantevari S., Bantu R., and Nagarapu L. (2006) TMSCl mediated highly efficient one-pot synthesis of octahydroquinazolinone and 1,8-dioxo-octahydroxanthene derivatives. ARKIVOC, 16(16) 136-148.
22. Moradi L., and Mirzaei M. (2019) Immobilization of Lewis acidic ionic liquid on perlite nanoparticle surfaces as a highly efficient solid acid catalyst for the solvent-free synthesis of xanthene derivatives. RSC Adv., 9(35) 19940-19948.
23. Gong K., Wang H., Wang S., Wang Y., and Chen J. (2015) Efficient synthesis of 1,8-dioxo-octahydroxanthenes catalyzed by β-cyclodextrin grafted with butyl sulfonic acid in aqueous media. Chin. J. Catal., 36(8) 1249-1255.
24. Sunkara J. R., and Botsa S. M. (2020) Facile Synthesis of 1,8-dioxooctahydro Xanthenes by Reusable Zinc Sulfide based Ternary Nanocomposite via Hydrothermal Route. Current Catal., 9(1) 72-79.
25. Sadat S. N., and Hatamjafari F. (2015) One-pot synthesis of 1,8-dioxo-octahydroxanthene derivatives. Orient. J. Chem., 31(02) 1191-1193.
26. Jin T. S., Zhang J. S., Wang A. Q., and Li T. S. (2005) Solid-state condensation reactions between aldehydes and 5,5-dimethyl-1,3-cyclohexanedione by grinding at room temperature. Synth. Commun., 35(17) 2339-2345.
27. Bhale P. S., Dongare S. B., and Mule Y. B. (2015) An efficient synthesis of 1,8-dioxooctahydroxanthenes catalysed by thiourea dioxide (TUD) in aqueous media. Chem. Sci. Trans., 4(1) 246-250.
28. Rajabi F., Abdollahi M., Diarjani E. S., Osmolowsky M. G., Osmolovskaya O.M., Gómez-López P., Puente-Santiago A. R., and Luque R. (2019) Solvent-free preparation of 1,8-dioxo-octahydroxanthenes employing iron oxide nanomaterials. Materials, 12(15) 2386-2394.
29. Safaei-Ghomi J., Ghasemzadeh M. A., and Zahedi S. (2013) ZnO Nanoparticles: A highly effective and readily recyclable catalyst for the one-pot synthesis of 1,8-dioxo-decahydroacridine and 1,8-dioxooctahydro-xanthene derivatives. J. Mex. Chem. Soc., 57(1) 1-7.
30. Jin T. S., Wang A. Q., Ma H., Zhang J. S., and Li T. S. (2006) The reaction of aromatic aldehydes and 5,5-dimethyl-1,3-cyclohexanedione under solvent-free grinding conditions. Indian. J. Chem., 45B(02) 470-474.
31. Venkatesan K., Pujari S. S., Lahoti R. J., and Srinivasan K. V. (2008) An efficient synthesis of 1,8-dioxo-octahydro-xanthene derivatives promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation. Ultrason. Sonochem., 15(4) 548-553.
32. Das B., Thirupathi P., Mahender I., Reddy V. S., and Rao Y. K. (2006) Amberlyst-15: An efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines. J. Mol. Catal. A Chem., 247(1-2) 233-239.
33. Zhang Z. H., and Tao X. Y. (2008) 2,4,6-trichloro-1,3,5-triazine-promoted synthesis of 1,8-dioxo-octahydroxanthenes under solvent-free conditions. Aust. J. Chem., 61(2) 77-79.
34. Imani Shakibaei G., Mirzaei P., and Bazgir A. (2007) Dowex-50W promoted synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Appl. Catal. A Gen., 325(1) 188-192.
35. Jin T. S., Zhang J. S., Xiao J. C., Wang A. Q., and Li T. S. (2004) Clean synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenezenesulfonic acid in aqueous media. Synlett, 5 866-870.
36. Zhang Z. H., and Liu Y. H. (2008) Antimony trichloride/SiO2 promoted synthesis of 9-aryl-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. Catal. Commun., 9(8) 1715-1719.
37. Seyyedhamzeh M., Mirzaei P., and Bazgir A. (2008) Solvent-free synthesis of aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst. Dyes. Pigm., 76(3) 836-869.
38. Kantevari S., Bantu R., and Nagarapu L. J. (2007) HClO4-SiO2 and PPA-SiO2 catalyzed efficient one-pot Knoevenagel condensation Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile aqueous and solvent free conditions: Scope and limitations. Mol. Catal. A Chem., 269(1-2) 53-57.
39. Das B., Thirupathi P., Mahender I., Reddy K. R., Ravikanth B., and Nagarapu L. (2007) An efficient synthesis of 1,8-dioxo-octahydroxanthenes using heterogeneous catalysts. Catal. Commun., 8(3) 535-538.
40. Wang X. S., Shi D. Q., Li Y. L., Chen H., Wei X. Y., and Zong Z. M. (2005) A clean synthesis of 1-oxo-hexahydroxanthene derivatives in aqueous media catalyzed by TEBA. Synth. Commun., 35(1) 97-104.
41. Darweesh A. F., Salama S. K., Abdelhamid I. A., and Elwahy A. H. M. (2021) Green synthesis of novel bis(hexahydro-1H-xanthene-1,8(2H)-diones) employing p-toluenesulfonic acid (p-TSA) as a solid acid catalyst. Synth. Commun., 51(3) 471-484.
42. Sadowski M., Utnicka J., Wójtowicz A., and Kula K. (2023) The global and local Reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Current Chem. Lett., 12(2) 421-430.
43. Kula K., and Zawadzińska K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Current Chem. Lett., 10(1) 9-16.
44. Alanazi N. M. M., Althobaiti I. O., El-Ossaily Y. A., Arafa W. A. A., El-Sayed M. Y., Altaleb H. A., Ahmed H. Y., and Tolba M. S. (2023) Green synthesis of some tetrahydroquinoline derivatives and evaluation as anticancer agents. Arabian J. Chem., 16(3) 104543.
45. Shamsan A. Q. S., Fouad M. R., Yacoob W. A. R. M., Abdul-Malik M. A., and Abdel-Raheem S. A. A. (2023) Performance of a variety of treatment processes to purify waste water in the food industry, Current Chem. Lett., 12(2) 431-438.
46. Ahmed A. A., Mohamed S. K., and Abdel-Raheemd S. A. A. (2022) Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm, Current Chem. Lett., 11(4) 359-370.