How to cite this paper
Sadowski, M & Kula, K. (2024). Nitro-functionalized analogues of 1,3-Butadiene: An overview of characteristic, synthesis, chemical transformations and biological activity.Current Chemistry Letters, 13(1), 15-30.
Refrences
1 Ballini R., and Palmieri A. (2021) Nitroalkanes: Synthesis, Reactivity, and Applications, 1st Ed, Wiley-VCH Press, Weinheim, Germany.
2 Zawadzińska K., Gaurav G. K., and Jasiński R. (2022) Preparation of conjugated nitroalkenes: short review. Sci. Rad., 1 (1) 69-83.
3 Boguszewska-Czubara A., Łapczuk-Krygier A., Rykała K., Biernasiuk A., Wnorowski A., Popiolek Ł., Maziarka A., Hordyjewska A., and Jasiński R. (2016) Novel synthesis scheme and in vitro antimicrobial evaluation of a panel of (E)-2-aryl-1-cyano-1-nitroethenes. J. Enzyme Inhib. Med. Chem., 31 (6) 900- 907.
4 Boguszewska-Czubara A., Kula K., Wnorowski A., Biernasiuk A., Popiołek Ł., Miodowski D., Demchuk O. M., and Jasiński R. (2019) Novel functionalized β-nitrostyrenes: Promising candidates for new antibacterial drugs. Saudi Pharm. J., 27 (4) 593-601.
5 Namboothiri I. N., Bhati M., Ganesh M., Hosamani B., Baiju T. V., Manchery S., and Bera K. (2020) Catalytic Asymmetric Reactions of Conjugated Nitroalkenes, 1st Ed, CRC Press, Boca Raton, Florida, USA.
6 Łapczuk-Krygier A., Kącka-Zych A., and Kula K. (2019) Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Curr. Chem. Lett., 8 (1) 13-38.
7 Fryźlewicz A., Łapczuk-Krygier A., Kula K., Demchuk O. M., Dresler E., and Jasiński R. (2020) Regio- and stereoselective synthesis of nitrofunctionalized 1,2-oxazolidine analogs of nicotine. Chem. Heterocycl. Compd., 56 (1) 120-122.
8 Kula K., Łapczuk A., Sadowski M., Kras J., Zawadzińska K., Demchuk O. M., Gaurav G. K., Wróblewska A., and Jasiński R. (2022). On the question of the formation of nitro-functionalized 2, 4-pyrazole analogs on the basis of nitrylimine molecular systems and 3, 3, 3-trichloro-1-nitroprop-1-ene. Molecules, 27 (23) 8409.
9 Kula K., and Zawadzińska K. (2021) Local nucleophile-electrophile interactions in [3+2] cycloaddition reactions between benzonitrile N-oxide and selected conjugated nitroalkenes in the light of MEDT computational study. Curr. Chem. Lett., 10 (1) 9-16.
10 Zawadzińska K., and Kula K. (2021) Application of β-phosphorylated nitroethenes in [3+2] cycloaddition reactions involving benzonitrile N-oxide in the light of DFT computational study. Organics, 2 (1) 26-37.
11 Sadowski M., Utnicka J., Wójtowicz A., and Kula K. (2023). The global and local reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Curr. Chem. Lett., 12 (2) 421-430.
12 Kula K., and Sadowski M. (2023). Regio-and stereoselectivity of [3+2] cycloaddition reactions between (Z)-1-(anthracen-9-yl)-N-methyl nitrone and analogs of trans-β-nitrostyrene on the basis of MEDT computational study. Chem. Heterocycl. Compd., 59 (3) 138-144.
13 Kula K., and Łapczuk-Krygier A. (2018). A DFT computational study on the [3+2] cycloaddition between parent thionitrone and nitroethene. Curr. Chem. Lett., 7 (1) 27-34.
14 Latif N., Girgis N. S., Assad F. M., and Grant N. (1985) (Nitroethenyl) salicylic acid anilides and related substances, a new group of molluscicidal and microbicidal compounds. Liebigs Ann., 6 1202-1209.
15 Scopus. Scopus preview. ; [Accessed 31.07.2023].
16 Domingo L. R., Kula K., Rios-Gutierrez M., & Jasinski, R. (2021). Understanding the participation of fluorinated azomethine ylides in carbenoid-type [3+ 2] cycloaddition reactions with ynal systems: A molecular electron density theory study. J. Org. Chem., 86 (18) 12644-12653.
17 Kula K., Kącka-Zych A., Łapczuk-Krygier A., Wzorek Z., Nowak A. K., and Jasiński R. (2021) Experimental and theoretical mechanistic study on the thermal decomposition of 3,3-diphenyl-4-(trichloromethyl)-5-nitropyrazoline. Molecules, 26 (5) 1364.
18 Zawadzińska K., Ríos-Gutiérrez M., Kula K., Woliński P., Mirosław B., Krawczyk T., and Jasiński R. (2021) The participation of 3,3,3-trichloro-1-nitroprop-1-ene in the [3+2] cycloaddition reaction with selected nitrile N-oxides in the light of the experimental and MEDT quantum chemical study. Molecules, 26 (22) 6774.
19 Moskal J., and Van Leusen A. M. (1986) A new synthesis of indoles by electrocyclic ring closure of dialkenylpyrroles. Synthesis of alkenylpyrroles from 1-tosylalkenyl isocyanides and Michael acceptors. J. Org. Chem., 51 (22) 4131-4139.
20 Muruganantham R., Mobin S. M., and Namboothiri I. N. (2007) Base-mediated reaction of the Bestmann-Ohira reagent with nitroalkenes for the regioselective synthesis of phosphonylpyrazoles. Org. Lett., 9 (6) 1125-1128.
21 Bianchi L., Dell’Erba C., Maccagno M., Morganti S., Petrillo G., Rizzato E., Sancassan F., Severi E., Spinelli D., and Tavani C. (2006) Nitrobutadienes from β-nitrothiophenes: valuable building-blocks in the overall ring-opening/ring-closure protocol to homo-or hetero-cycles. Arkivoc, 7 169-185.
22 Rowley G. L., and Frankel M. B. (1969) Synthesis of aliphatic dinitrodienes. J. Org. Chem., 34 (5) 1512-1513.
23 Durden J. A., Heywood D. L., Sousa A. A., and Spurr H. W. (1970) Synthesis and microbial toxicity of dinitrobutadienes and related compounds. J. Agric. Food Chem., 18 (1) 50-56.
24 Bianchi L., Giorgi G., Maccagno M., Petrillo G., Scapolla C., and Tavani C. (2012). An original route to newly-functionalized indoles and carbazoles starting from the ring-opening of nitrothiophenes. Tetrahedron Lett., 53 (7) 752-757.
25 Belot S., Massaro A., Tenti A., Mordini A., and Alexakis, A. (2008). Enantioselective organocatalytic conjugate addition of aldehydes to nitrodienes. Org. Lett., 10 (20) 4557-4560.
26 Horiike M., Hino A., Urairi M., and Katayama Sh. (2004) Rewritable optical element material. Japanese Patent 2004-347642A
27 Guseinov I. I., and Vasil'ev G. S. (1963) The chemistry of some 1-substituted alka-1,3-dienes. Russ. Chem. Rev., 32 (1) 20.
28 Petrzilka M., and Grayson, J. I. (1981) Preparation and Diels-Alder reactions of hetero-substituted 1,3-dienes. Synthesis, 1981 (10) 753-786.
29 Perekalin V. V., Lipina E. S., Berestovitskaya V. M., and Efremov D. A. (1994) Nitroalkenes. Conjugated nitro compounds, 1st Ed, John Wiley and Sons, New York, USA.
30 Kaberdin R. V., Potkin V. I., and Zapol'skii V. A. (1997). Nitrobutadienes and their halogen derivatives: Synthesis and reactions. Russ. Chem. Rev., 66 (10) 827.
31 Ballini R., Araujo N., Gil M. V., Roman E., and Serrano J. A. (2013) Conjugated nitrodienes. Synthesis and reactivity. Chem. Rev., 113 (5) 3493-3515.
32 Petrillo G., Benzi A., Bianchi L., Maccagno M., Pagano A., Tavani C., and Spinelli D. (2020) Recent advances in the use of conjugated nitro or dinitro-1,3-butadienes as building-blocks for the synthesis of heterocycles. Tetrahedron Lett., 61 (36) 152297.
33 Reaxys database ; [Accessed 04.09.2023].
34 ChemSpider database ; [Accessed 04.09.2023].
35 PubChem database ; [Accessed 04.09.2023].
36 Chemical Book database ; [Accessed 04.09.2023].
37 Google Scholar ; [Accessed 04.09.2023].
38 Petrov A. A., Rall K. B., and Vildavskaya A. I. (1964) Production of nitrodienes and nitroenynes. Zh. Obshch. Khim., 34 (10) 3513-3514.
39 Startsev V. V., Zubritskii L. M., and Petrov A. A. (1988) Regio- and stereoselectivity in the catalytic addition of polyhalogenated derivatives to 1,3-dienes containing electron-withdrawing substituents. Zh. Obshch. Khim., 58 (7) 1592-1599.
40 Bloom A. J., and Mellor J. M. (1987) Preparation of 1-nitro-1,3-dienes via nitrotrifluoroacetoxylation of 1, 3-dienes. J. Chem. Soc. Perkin Trans., 1 (1) 2737-2741.
41 Nekrasova G. V., Lipina E. S., Boldysh E. E., and Perekalin V. V. (1988) Tetralithium derivatives of 1,4-dinitro-compounds. Zh. Org. Khim., 24 (6) 1144-1150.
42 Roth W. R., Bastigkeit T., and Borner S. (1996) On the energy well of diradicals. The energy profile for the NO2 addition to conjugated double bonds: A reaction with negative activation energy. Liebigs Annalen., 8 (1) 1323-1328.
43 Bloom A. J., and Mellor, J. M. (1986) Synthesis of 1-nitro-1,3-dienes via nitrotrifluoroacetoxylation of 1, 3-dienes. Tetrahedron Lett., 27 (7) 873-876.
44 Petrov A. A., Rall K. B., and Vildavskaya A. I. (1965) Synthesis and properties of nitro-1,3-alkadien. Zh. Obshch. Khim., 1 (2) 229-232.
45 Sulimov I. G., Samoilovich T. I., Perekalin V. V., Polyanskaya A. S., and Usik, N. V. (1972) Synthesis of precimsors of lysine from 1-nitrobutenyl nitrates J. Org. Chem. USSR, 8, 1343-1345.
46 Lipina E. S., Perekalin V. V., and Bobovich Ya. S. (1964) Synthesis and properties of ninconjugated dinitro dienes and conjugated dinitro trienes. Zh. Obshch. Khim., 34 (11) 3635-3640.
47 Lipina E. S., Perekalin V. V., and Bobovich Y. S. (1964) Synthesis and structure of nitro-l,3-butadienes. Zh. Obshch. Khim., 34 (11) 3640-3644.
48 Lipina E. S., and Perekalin V. V. (1964) Chemical transformations of 1,4-dinitro-l,3-butadienes. Zh. Obshch. Khim., 34 (11) 3644-3652.
49 Jasiński R. (2015) A new mechanistic insight on β-lactam systems formation from 5-nitroisoxazolidines. RSC Adv., 5 (62) 50070-50072.
50 Jasiński R. (2015) On the question of zwitterionic intermediates in 1,3-dipolar cycloadditions between hexafluoroacetone and sterically crowded diazocompounds. J. Fluor. Chem., 176 35-39.
51 Łapczuk-Krygier A., Korotaev V. Y., Barkov A. Y., Sosnovskikh V. Y., Jasińska E., and Jasiński R. (2014). A DFT computational study on the molecular mechanism of the nitro group migration in the product derived from 3-nitro-2-(trifluoromethyl)-2H-chromene and 2-(1-phenylpropylidene) malononitrile. J. Fluor. Chem., 168 236-239.
52 Berestovitskaya V. M., Speranskii E. M. Perekalin V. V. (1979) Zh. Org. Khim., 15 164-173.
53 Jasiński R., and Dresler E. (2016). A desulfonylation process as easy route for synthesis of 1,4-dinitro-1,3-dienes: Mechanistic study. Phosphorus, Sulfur, and Silicon and the Relat. Elem., 191 (2) 311-315.
54 Nicolinski P., and Spasov G. (1956) Godishnik Khim.-Tekhnol. Inst., 3 94-96.
55 Kataev E. G. (1955) Soobshcheniya o Nauchnykh Rabotakh Chlenov Vses. Khim. O-va im. D.I. Mendeleeva, 49 49-52.
56 Aleksiev D. I., Mladenov I. T., Perekalin V. V., and Lipina E. S. (1976) Dokl. Bolg. Akad. Nauk, 29 1451-1455.
57 Vil'davskaya A. I., Rall K. B., and Petrov A. A. (1967) Orientation in electrophilic and nucleophilic additions to nitro dienes and nitro enynes. Zh. Org. Khim., 3 (3) 434-441.
58 Samoilovich T. I., Polyanskaya A. S., and Perekalin V. V. (1967) Synthesis of DL-lysine. Zh. Org. Khim., 3 (9) 1532-1533.
59 Samoilovich T. I., Polyanskaya A. S., and Perekalin V. V. (1969) DL-lysine from 1-nitro-1,3-butadiene. Zh. Org. Khim., 5 (3) 579-590.
60 Startsev V. V., Zubritskii L. M., and Petrov A. A. (1988) Zh. Obshch. Khim., 58 (7) 1418-1424.
61 Houlden C. E., Bailey C. D., Ford J. G., Gagné M. R., Lloyd-Jones G. C., and Booker-Milburn K. I. (2008) Distinct reactivity of Pd(OTs)2: The intermolecular Pd (II)-catalyzed 1,2-carboamination of dienes. J. Am. Chem. Soc., 130 (31) 10066-10067.
62 Chen S. S., Wu M. S., and Han, Z. Y. (2017) Palladium‐catalyzed cascade sp2 C−H functionalization /intramolecular asymmetric allylation: from aryl ureas and 1,3‐dienes to chiral indolines. Angew. Chem. Int. Ed. Eng., 56 (23) 6641-6645.
63 Perekalin V. V., and Lepner O. M. (1959) Sintez Sopryazhennogo dinitrodiena. Dokl. Akad. Nauk SSSR, 129 1303-1305.
64 Novikov S. S., Korsakova I. S., and Babievskii K. K. (1960) Synthesis of 1,4-dinitro-1,3-butadiene. Bull. Acad. Sci. USSR, Div. Chem. Sci., 9 882-884.
65 Carroll F. I., Kerbow S. C., and Wall M. E. (1966) The synthesis of 1,4-dichloro-1,4-dinitro-1,3-butadiene. Can. J. Chem., 44 2115-2117.
66 Durden Jr. J. A., Heywood D. L., Sousa A. A., and Spurr H. W. (1970) Synthesis and microbial toxicity of dinitrobutadienes and related compounds. J. Agric. Food Chem., 18 50-56.
67 Pavlova Z. F., Kasem J. A., Lipina E. S., Berkova G. A., and Perekalin V. V. (1985) Sintez i stroenie 1-nitro-4-ariltio-1,3-dienov. Zh. Org. Khim., 21 2300-2304.
68 Carroll F. I. (1966) Structure of the isomers of 1,4-dinitro-2,3-butanediol. J. Org. Chem., 31 366-368.
69 Herman P. (1952) Dinitrodiols and their alkali and alkaline earth metal salts, and method of preparation thereof. US Patent 2,616,923.
70 Mostyaeva L. V. (1975) Nauch. Tr. Tyumensk. Univ. 24 84.
71 Lipina E. S., Pavlova Z. F., Paperno T. Ya., Perekalin V. V., and Prikhod'ko L. V. (1970) Nucleophilic addition-substitution reaction of 1,2-dinitroalkenes and 1,4-dinitrodienes with aniline. Zh. Org. Khim., 6 1123.
72 Nekrasova G. V., Lipina E. S., Pozdnyakov V. P., and Perekalin V. V. (1984) Zh. Org. Khim., 20 2502-2507.
73 Mukhina E. S., Berkova G. A., Pavlova Z. F., Lipina E. S., and PerekalinV. V. (1990) Stereochemistry of the thiylation of 1,2-dinitroalkenes and 1,4-dinitro-1,3-dienes. Zh. Org. Khim., 26 1447.
74 Kretser T. Y., Lipina E., Berkova G., Evsyukova O., and Kuz’mina N. (2005) Synthesis and structure of 1-nitro-4-benzothiazolylsulfanyl- and -sulfonyldienes. Rus. J. Org. Chem., 41 1199-1201.
75 Kretser T. Y., and Lipina E. S. (2010) Reactions of δ-functionalized α-nitrodienes with N-mono- and N,S-binucleophiles. Rus. J. Org. Chem., 46 1092-1094.
76 Schlubach H. H., and Rott W. (1955) Acetylenes. XI. The action of N2O4 on acetylenic compounds. Liebigs Ann., 594 59-66.
77 Zhang C. (2009) Review of the establishment of nitro group charge method and its applications. J. Hazard. Mater., 161 (1) 21-28.
78 Gustin J. L. (1998) Runaway reaction hazards in processing organic nitro compounds. Org. Process Res. Dev., 2(1), 27-33.
79 Kumar D., and Elias A. J. (2019) The explosive chemistry of nitrogen: A fascinating journey from 9th century to the present. Resonance, 24, 1253-1271.
80 Pagoria P. F., Lee G. S., and Mitchelll A. R. (2002) A review of energetic materials synthesis. Thermochim. Acta, 384 (1-2) 187-204.