How to cite this paper
Hirri, A., Bouchafra, H., Zarayby, L., Kasrati, A & Otmani, I. (2023). Development of fast analytical method for the detection and quantification of Moroccan picholine extra virgin olive oil adulteration using MIR spectroscopy and chemometrics tools.Current Chemistry Letters, 12(3), 579-586.
Refrences
1. Vossen P. (2007) Olive oil: History, production, and characteristics of the world’s classic oils. HortScience 42 (5):1093–100. doi: 10.21273/ HORTSCI.42.5.1093.
2. COI. (2016) International trade standard applying to olive oils and olive-pomace oils. International Olive Council, Madrid. https://goo. gl/NNDLMR.
3. Cicerale S., Conlan X. A., Sinclair A. J., and Keast R. S. J. (2009) Chemistry and health of olive oil phenolics. Crit. Rev. Food. Sci. Nutr., 49 (3), 218–36. doi: 10.1080/ 10408390701856223.
4. Covas M. I. (2007) Olive oil and the cardiovascular system. Pharmacol; Res., 55 (3),175–86. doi: 10.1016/j.phrs.2007.01. 010.
5. Angelova A., Drechsler M., Garamus V. M., and Angelov B. (2018) Liquid crystalline nanostructures as pegylated reservoirs of omega-3 polyunsaturated fatty acids: structural insights toward delivery for- mulations against neurodegenerative disorders. J. Am. Chem. Soc., 3, 3235–47. doi: 10.1021/ACSOMEGA.7B01935.
6. Kulawik‐Pióro, A., Klimaszewska, E., Ogorzałek, M., Ruman, J., and Rożnawska, K. (2020) Effectiveness of protective preparations: Impact of vegetable oil additives to recipes. Eur. J. Lipid Sci. Technol., 122(12), 2000130.
7. Kulawik‐Pióro, A., and Tal‐Figiel, B. (2017) Influence of preparation method on size distribution of the dispersed phase of primary emulsions. Chem. Eng. Technol., 40(2), 412-420.
8. Di Giovacchino L., Sestili S., and Di Vincenzo D. (2002) Influence of olive processing on virgin olive oil quality. Eur. J. Lipid Sci. Technol., 104, 587–601.
9. Cerretani L., Bendini A., Del Caro A., Piga A., Vacca V., Caboni MF., and Gallina Toschi T. (2006) Preliminary characterisation of virgin olive oils obtained from different cultivars in Sardinia. Eur. Food Res. Technol., 222, 354–361.
10. Arvanitoyannis I. S., and Vlachos A. (2007) Implementation of physi- cochemical and sensory analysis in conjunction with multivariate analysis towards assessing olive oil authentication/adulteration. Crit. Rev. Food. Sci. Nutr., 47 (5), 441–98. doi: 10.1080/10408390600846325.
11. Valli, E., Bendini A., Berardinelli A., Ragni L., Ricc B., Grossi M., and Gallina Toschi T. (2016) Rapid and innovative instrumental approaches for quality and authenticity of olive oils. Eur. J. Lipid. Sci. Technol., 118 (11), 1601–19. doi: 10. 1002/ejlt.201600065.
12. Hirri A., Bassbasi M., Platikanov S., Tauler R., and Oussama A. (2016) FTIR spectroscopy and PLS-DA classification and prediction of four commercial grade virgin olive oils from Morocco. Food Anal. Methods, 9(4), 974–981.
13. Vanstone N., Moore A., Martos P., and Neethirajan S. (2018) Detection of the adulteration of extra virgin olive oil by near-infra- red spectroscopy and chemometric techniques. Food Qual., Saf., 2 (4),189–98. doi: 10.1093/fqsafe/fyy018.
14. Ruisanchez., and Callao M. P. (2019) Authentication of the geograph- ical origin of extra-virgin olive oil of the Arbequina cultivar by chromatographic fingerprinting and chemometrics. Talanta, 203, 194–202. doi: 10.1016/j.talanta.2019.05.064.
15. Willenberg I., Mathaus B., and Gertz C. (2019) A new statistical approach to describe the quality of extra virgin olive oils using near infrared spectroscopy (NIR) and traditional analytical parameters. Eur. J. Lipid. Sci. Technol.,121 (2),1800361–34. doi: 10.1002/ejlt.201800361.
16. Zaroual H., El Hadrami., Mestafa E., and Karoui R. (2020) A prelimin- ary study on the potential of front face fluorescence spectroscopy for the discrimination of Moroccan virgin olive oil and the prediction of their quality. Anal. Methods, doi: 10.1039/ D0AY01746A.
17. El Orche A., Bouatia M., and Mbarki M. (2020) Rapid analytical method to characterize the freshness of olive oils using fluorescence spectroscopy and chemometric algorithms,” J. Anal. Methods Chem., Doi:8860161, 9 pages, 2020.
18. Rusak D. A., Brown L. M., and Martin S. D. (2003) Classification of vegetable oils by principal component analysis of FTIR spectra. J. Chem.Educ., 80, 541–543.
19. Lai Y. W., Kemsley E. K., and Wilson R. H. (1999) Potential of Fourier transform infrared spectroscopy for the authentication of vegetable oils. J. Agric. Food Chem.,, 42, 1154–1159.
20. Bendini A., Cerretani L., Di Virgilio F., Belloni P., Bonoli-Carbognin M., and Lercker G. (2007) Preliminary evaluation of the application of the FTIR spectroscopy to control the geographic origin and quality of virgin olive oils. . Food Qual., 30, 424–437.
21. Galtier O., Dupuy N., Le Dréau Y., Ollivier D., Pinatel C., Kister J., et al. (2007) Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR data. Anal. Chim. Acta., 595, 136– 144.
22. Tapp H. S., Defernez M., and Kemsley E. K. (2003) FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils.J. Agric. Food Chem. , 51, 6110–6115.
23. Gurdeniz G., Tokatli F., and Ozen B. (2007) Differentiation of mixtures of monovarietal olive oils by mid-infrared spectroscopy and chemometrics. Eur. J. Lipid. Sci. Technol., 109, 1194–1202.
24. Vlachos N., Skopelitis Y., Psaroudaki M., Konstantinidou V., Chatzilazarou A., and Tegou E. (2006) Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta, 573–574, 459–465.
25. Baeten V., Fernández Pierna J. A., Dardenne P., Meurens M., García-González D. L., and Aparicio-Ruiz R. (2005) Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. J. Agric. Food Chem., 53, 6201–6206.
26. Sinelli N., Cosio M. S., Gigliotti C., and Casiraghi E. (2007) Preliminary study on application of mid infrared spectroscopy for the evaluation of the virgin olive oil freshness. Anal. Chim. Acta, 598, 128–134.
27. Muik B., Lendl B., Molina-Diaz A., Valcarcel M., and Ayora-Canada M. J. (2007) Twodimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman. Anal. Chim. Acta, 593, 54–67.
28. Vernon L., Singleton.,Rudolf Orthofer.,Rosa M., and Lamuela R. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol., 299, 152–178.
29. El Orche A., Bouatia M., and Mbarki M. (2020) Rapid analytical method to characterize the freshness of olive oils using fluorescence spectroscopy and chemometric algorithms,” J. Anal. Methods Chem., Doi: 8860161, 9 pages.
30. Martens H., and Naes T. (1989) Multivariate calibration,” Chemometrics, Vol. 132, Wiley, Chichester, UK.
31. Naes T., Isaksson T., Fearn T., and Davies T. (2002) Multivariate Calibration and Classification, NIR Publications: Chichester.
32. Yap K. Y.L., Chan S. Y., and Lim C. S. (2007) Infrared-based protocol for the identification and categorisation of ginseng and its products. Food Res. Int., 40, 643–652.
33. Dupuy N., Galtier O., Ollivier D., Vanloot P., and Artaud J. (2010) Comparison between NIR, MIR, concatenated NIR and MIR analysis and hierarchical PLS model. Application to virgin olive oil analysis. Anal. Chim. Acta, 666 (1-2), 23–31.
34. Guillen M.D., and Cabo N. (1997) Characterization of edible oils and lard by Fourier transform infrared spectroscopy.Relationships between composition and frequency of concrete bands in the fingerprint region. J. Am. Oil Chem. Soc., 74, 1281–1286.
35. Che Man Y. B., Syahariza Z. A., Mirghani M. E. S., Jinap S., and Bakar J. (2005).Analysis of potential lard adulteration in chocolate and chocolate products using Fourier transform infrared spectroscopy. Food Chem., 90, 815–819.
36. Smith B. C. (2002) Quantitative spectroscopy: Theory and practice. Amsterdam: Academic Press (pp. 125–179).
2. COI. (2016) International trade standard applying to olive oils and olive-pomace oils. International Olive Council, Madrid. https://goo. gl/NNDLMR.
3. Cicerale S., Conlan X. A., Sinclair A. J., and Keast R. S. J. (2009) Chemistry and health of olive oil phenolics. Crit. Rev. Food. Sci. Nutr., 49 (3), 218–36. doi: 10.1080/ 10408390701856223.
4. Covas M. I. (2007) Olive oil and the cardiovascular system. Pharmacol; Res., 55 (3),175–86. doi: 10.1016/j.phrs.2007.01. 010.
5. Angelova A., Drechsler M., Garamus V. M., and Angelov B. (2018) Liquid crystalline nanostructures as pegylated reservoirs of omega-3 polyunsaturated fatty acids: structural insights toward delivery for- mulations against neurodegenerative disorders. J. Am. Chem. Soc., 3, 3235–47. doi: 10.1021/ACSOMEGA.7B01935.
6. Kulawik‐Pióro, A., Klimaszewska, E., Ogorzałek, M., Ruman, J., and Rożnawska, K. (2020) Effectiveness of protective preparations: Impact of vegetable oil additives to recipes. Eur. J. Lipid Sci. Technol., 122(12), 2000130.
7. Kulawik‐Pióro, A., and Tal‐Figiel, B. (2017) Influence of preparation method on size distribution of the dispersed phase of primary emulsions. Chem. Eng. Technol., 40(2), 412-420.
8. Di Giovacchino L., Sestili S., and Di Vincenzo D. (2002) Influence of olive processing on virgin olive oil quality. Eur. J. Lipid Sci. Technol., 104, 587–601.
9. Cerretani L., Bendini A., Del Caro A., Piga A., Vacca V., Caboni MF., and Gallina Toschi T. (2006) Preliminary characterisation of virgin olive oils obtained from different cultivars in Sardinia. Eur. Food Res. Technol., 222, 354–361.
10. Arvanitoyannis I. S., and Vlachos A. (2007) Implementation of physi- cochemical and sensory analysis in conjunction with multivariate analysis towards assessing olive oil authentication/adulteration. Crit. Rev. Food. Sci. Nutr., 47 (5), 441–98. doi: 10.1080/10408390600846325.
11. Valli, E., Bendini A., Berardinelli A., Ragni L., Ricc B., Grossi M., and Gallina Toschi T. (2016) Rapid and innovative instrumental approaches for quality and authenticity of olive oils. Eur. J. Lipid. Sci. Technol., 118 (11), 1601–19. doi: 10. 1002/ejlt.201600065.
12. Hirri A., Bassbasi M., Platikanov S., Tauler R., and Oussama A. (2016) FTIR spectroscopy and PLS-DA classification and prediction of four commercial grade virgin olive oils from Morocco. Food Anal. Methods, 9(4), 974–981.
13. Vanstone N., Moore A., Martos P., and Neethirajan S. (2018) Detection of the adulteration of extra virgin olive oil by near-infra- red spectroscopy and chemometric techniques. Food Qual., Saf., 2 (4),189–98. doi: 10.1093/fqsafe/fyy018.
14. Ruisanchez., and Callao M. P. (2019) Authentication of the geograph- ical origin of extra-virgin olive oil of the Arbequina cultivar by chromatographic fingerprinting and chemometrics. Talanta, 203, 194–202. doi: 10.1016/j.talanta.2019.05.064.
15. Willenberg I., Mathaus B., and Gertz C. (2019) A new statistical approach to describe the quality of extra virgin olive oils using near infrared spectroscopy (NIR) and traditional analytical parameters. Eur. J. Lipid. Sci. Technol.,121 (2),1800361–34. doi: 10.1002/ejlt.201800361.
16. Zaroual H., El Hadrami., Mestafa E., and Karoui R. (2020) A prelimin- ary study on the potential of front face fluorescence spectroscopy for the discrimination of Moroccan virgin olive oil and the prediction of their quality. Anal. Methods, doi: 10.1039/ D0AY01746A.
17. El Orche A., Bouatia M., and Mbarki M. (2020) Rapid analytical method to characterize the freshness of olive oils using fluorescence spectroscopy and chemometric algorithms,” J. Anal. Methods Chem., Doi:8860161, 9 pages, 2020.
18. Rusak D. A., Brown L. M., and Martin S. D. (2003) Classification of vegetable oils by principal component analysis of FTIR spectra. J. Chem.Educ., 80, 541–543.
19. Lai Y. W., Kemsley E. K., and Wilson R. H. (1999) Potential of Fourier transform infrared spectroscopy for the authentication of vegetable oils. J. Agric. Food Chem.,, 42, 1154–1159.
20. Bendini A., Cerretani L., Di Virgilio F., Belloni P., Bonoli-Carbognin M., and Lercker G. (2007) Preliminary evaluation of the application of the FTIR spectroscopy to control the geographic origin and quality of virgin olive oils. . Food Qual., 30, 424–437.
21. Galtier O., Dupuy N., Le Dréau Y., Ollivier D., Pinatel C., Kister J., et al. (2007) Geographic origins and compositions of virgin olive oils determinated by chemometric analysis of NIR data. Anal. Chim. Acta., 595, 136– 144.
22. Tapp H. S., Defernez M., and Kemsley E. K. (2003) FTIR spectroscopy and multivariate analysis can distinguish the geographic origin of extra virgin olive oils.J. Agric. Food Chem. , 51, 6110–6115.
23. Gurdeniz G., Tokatli F., and Ozen B. (2007) Differentiation of mixtures of monovarietal olive oils by mid-infrared spectroscopy and chemometrics. Eur. J. Lipid. Sci. Technol., 109, 1194–1202.
24. Vlachos N., Skopelitis Y., Psaroudaki M., Konstantinidou V., Chatzilazarou A., and Tegou E. (2006) Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta, 573–574, 459–465.
25. Baeten V., Fernández Pierna J. A., Dardenne P., Meurens M., García-González D. L., and Aparicio-Ruiz R. (2005) Detection of the presence of hazelnut oil in olive oil by FT-Raman and FT-MIR spectroscopy. J. Agric. Food Chem., 53, 6201–6206.
26. Sinelli N., Cosio M. S., Gigliotti C., and Casiraghi E. (2007) Preliminary study on application of mid infrared spectroscopy for the evaluation of the virgin olive oil freshness. Anal. Chim. Acta, 598, 128–134.
27. Muik B., Lendl B., Molina-Diaz A., Valcarcel M., and Ayora-Canada M. J. (2007) Twodimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman. Anal. Chim. Acta, 593, 54–67.
28. Vernon L., Singleton.,Rudolf Orthofer.,Rosa M., and Lamuela R. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol., 299, 152–178.
29. El Orche A., Bouatia M., and Mbarki M. (2020) Rapid analytical method to characterize the freshness of olive oils using fluorescence spectroscopy and chemometric algorithms,” J. Anal. Methods Chem., Doi: 8860161, 9 pages.
30. Martens H., and Naes T. (1989) Multivariate calibration,” Chemometrics, Vol. 132, Wiley, Chichester, UK.
31. Naes T., Isaksson T., Fearn T., and Davies T. (2002) Multivariate Calibration and Classification, NIR Publications: Chichester.
32. Yap K. Y.L., Chan S. Y., and Lim C. S. (2007) Infrared-based protocol for the identification and categorisation of ginseng and its products. Food Res. Int., 40, 643–652.
33. Dupuy N., Galtier O., Ollivier D., Vanloot P., and Artaud J. (2010) Comparison between NIR, MIR, concatenated NIR and MIR analysis and hierarchical PLS model. Application to virgin olive oil analysis. Anal. Chim. Acta, 666 (1-2), 23–31.
34. Guillen M.D., and Cabo N. (1997) Characterization of edible oils and lard by Fourier transform infrared spectroscopy.Relationships between composition and frequency of concrete bands in the fingerprint region. J. Am. Oil Chem. Soc., 74, 1281–1286.
35. Che Man Y. B., Syahariza Z. A., Mirghani M. E. S., Jinap S., and Bakar J. (2005).Analysis of potential lard adulteration in chocolate and chocolate products using Fourier transform infrared spectroscopy. Food Chem., 90, 815–819.
36. Smith B. C. (2002) Quantitative spectroscopy: Theory and practice. Amsterdam: Academic Press (pp. 125–179).