How to cite this paper
Kemskyi, S., Fedoriv, M., Palamar, A., Grozav, A., Chornous, V., Kutsyk, R., Dorokhov, V & Vovk, M. (2023). Synthesis and evaluation of antimicrobial activity of some new 3-(pyrrol-4-yl)acrylamide derivatives.Current Chemistry Letters, 12(3), 519-528.
Refrences
1 World health organization (2022) Antimicrobial resistance. World health statistics 2022: monitoring health for the SDGs, sustainable development goals, 33-34.
2 Chen L., Yang D., Pan Z., Lai L., Liu J. Fang B., and Shi S. (2015) Synthesis and antimicrobial activity of the hybrid molecules between sulfonamides and active antimicrobial pleuromutilin derivative. Chem. Biol. Drug. Des., 86 239-245.
3 Lee Y., Puumala E., Robbins N., Cowen L.E. (2021) Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem. Rev., 121 (6) 3390-3411.
4 Grozav A. M., Chornous V. O., Diichuk I. V., Kemskyi S.V., Yakovychuk N.D., Fedoriv M.Z., and Vovk M.V. (2022) Synthesis and biological evaluation of O-acyloximes of 5-chloro-4-formyl-1H-pyrrol-3-carboxylates as antimicrobial agents. Biopol. and Cell, 38(1), 48-57.
5 Grozav A., Fedoriv M., Chornous V., Yakovychuk N., Kemskyi S., and Vovk M. (2021) Synthesis and bioevaluation of 5-chloro-4-(1,3-oxazol-5-yl)-1Н-pyrrole-3-carboxyamides as antimicrobial agents. Biointerf. Res. Appl. Chem., 11 (3) 10595-10606.
6 Grozav A.M., Fedoriv M.Z., Chornous V.O., Yakovychuk N.D., Deineka S. Ye., and Kemskyi S.V. (2019) Synthesis and antimicrobial activity of 5-aroxy-2,6-dihydro-1Н-pyrrolo[3,4-d]pyridazine-1-ones. J. Org. Pharm. Chem., 17 (2) 11-16.
7 Ducrocq C., Bisagni E., Lhoste J-M., Mispelter J., and Defaye J. (1976) Aza-indoles-III: Synthese de l'amino-4 aza-5 indole et du N-5 ribonucleoside correspondant (Iso-deaza-1 tubercidine). Tetrahedron, 32 (7) 773-778.
8 Ojika M., Shizuri Y., Niwa H., Yamada K., and Iwadare S. (1982) Structure and synthesis of reductiline, a novel metabolite from a variant of streptomyces orientalis. Tetrahedron Lett., 23 (47) 4977-4980..
9 Wasley J.W.F. (1990) Certain pyrrolyl-substituted hydroxamic acid derivatives. US Patent 4,960,787.
10 Sala R., Kiala G., Veiros L.F., Broggini G., Poli G., and Oble J. (2022) Redox-neutral Ru(0)-natalyzed alkenylation of 2-carboxaldimine-heterocyclopentadienes. J Org. Chem., 87 (7) 4640-4648.
11 Guzman J.D. (2014) Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules, 19 (12) 19292-19349.
12 Ruwizhi N., and Aderibigbe B.A. (2020) Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci, 21 (16) 5712-5746.
13 Korošec B., Sova M., Turk S., Kraševec N., Novak M., Lah L., Stojan J., Podobnik B., Berne S., Zupanec N., Bunc M., Gobec S., and Komel R. (2014) Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J. Appl. Microbiol., 116 (4) 955-966.
14 Narasimhan B., Belsare D., Pharande D., Mourya V., and Dhake A. (2004) Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. Eur. J. Med. Chem., 39 (10) 827-834.
15 Samwel S., Odalo J.O., Nkunya M.H.H., Joseph C.C., Koorbanally N.A. (2011) Toussaintines A–E: Antimicrobial indolidinoids, a cinnamoylhydrobenzofuranoid and a cinnamoylcyclohexenoid from Toussaintia orientalis leaves. Phytochemistry, 72 (14-15) 1826-1832.
16 Jin G., Lee S., Choi M., Son S., Kim G.-W., Oh J.-W., Lee C., and Lee K. (2014) Chemical genetics-based discovery of indole derivatives as HCV NS5B polymerase inhibitors. Eur. J. Med. Chem., 75 413-425.
17 Zhao Y., Chen C.-H., Morris-Natschke S.L., and Lee K.-H. (2021) Design, synthesis, and structure activity relationship analysis of new betulinic acid derivatives as potent HIV inhibitors. Eur. J. Med. Chem., 215 113287.
18 Lee K., Kim M., Lee B., Goo J., Kim J., Naik R., Seo J.H., Kim M.O., Byun Y., Song G.-Y., Lee H.S. and Choi Y. (2013) Discovery of indolyl acrylamide derivatives as human diacylglycerol acyltransferase-2 selective inhibitors. Org. Biomol. Chem., 11 (5) 849-858.
19 Baytas N. S., Inceler N., Yılmaz A., Olgac A., Menevse S., Banoglu E., Hamel E., Bortolozzi R., and Viola G. (2014) Synthesis, biological evaluation and molecular docking studies of trans-indole-3-acrylamide derivatives, a new class of tubulin polymerization inhibitors. Bioorg. Med. Chem., 22 (12) 3096-3104.
20 Li Y., Wang Y., Xie N., Xu M., Qian P., Zhao Y., and Li S. (2015) Design, synthesis and antiproliferative activities of novel benzamides derivatives as HDAC inhibitors. Eur. J. Med. Chem., 100 270-276.
21. Gholap S.S. (2016) Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem., 110 13-31.
22 Ahmad S., Alam O., Naim M.J., Shaquiquzzaman M., Alam M.M., and Iqbal M. (2018) Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem., 157 527-651.
23 Singh N., Singh S., Kohli S., Singh A., Asiki H., Rathee G., Chandra R., and Anderson E.A. (2021) Recent progress in the total synthesis of pyrrole-containing natural products (2011–2020). Org. Chem. Front., 8 5550-5573.
24 Buchini S., Buschiazzo A., and Withers S. G. (2008). A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors. Angew. Chem. Int. Ed., 47 (14) 2700-2703.
25 Leite A.C.L., Moreira D.R.M., Cardoso M.V.O., Hernandes M.Z., Pereira V.R.A., Silva R.O., Kiperstok A.C., Lima M.S., and Soares M.B.P. (2009) Synthesis, cruzain docking, and in vitro studies of aryl-4-oxothiazolylhydrazones against Trypanosoma cruzi. ChemMedChem., 2 (9) 1339-1345.
26 Gerebtzoff G., Li-Blatter X., Fischer H, Frentzel A., and Seelig A. (2004) Halogenation of Drugs Enhances Membrane Binding and Permeation. ChemBioChem., 5 676-684.
27 Siegal G., Ab E., and Schultz J. (2007) Integration of fragment screening and library design. Drug Discov. Today, 12 (23-24) 1032-1039.
28 Grozav A. N., Fedoriv M. Z., Chornous V. A., Palamar A. A., Bratenko M. K., and Vovk M. V. (2019) Synthesis of thieno[2,3-b]pyrrole-2(4)-carboxylic and 2,4-dicarboxylic acids. Chem. Heterocyclic Compd., 55 (4-5) 435-441.
29 Metten B., Kostermans M., Van Boelen G., Smet M., and Dehaen W. (2006) Synthesis of 5-aryl-2-oxopyrrole derivatives as synthons for highly substituted pyrroles. Tetrahedron, 62 (25) 6018.
30 Grozav A. N., Fedoriv M. Z., Chornous V.A., Kemskiy S.V., Polishchuk V.M., Shandura N.P., Rusanov E.B., and Vovk M.V. (2021) Cyclocondensation of 5-chloro-4-formylpyrrole-3-carboxylates with arylamines. Synthesis and fluorescent properties of pyrrolo[2,3-b]quinoline-3-carboxylates and their benzo[f]analogs. Chem. Heterocyclic Compd., 57 1024-1030.
31 Grozav A. N., Kemskiy S.V., Fedoriv M. Z., Chornous V.A., Palamar A.А., Dorokhov V.I., Rusanov E.B., and Vovk M.V. (2022) Synthesis, hydrolysis, and reductive cyclization of ethyl 5-chloro-4-(4-nitropyrrolidin-3-yl)pyrrole-3-carboxylates. Chem. Heterocyclic Compd., 58 24-31.
32 Karpiński T.M., and Szkaradkiewicz A.K. (2015) Chlorhexidine – pharmaco-biological activity and application. Eur Rev Med Pharmacol Sci., 19 (7) 1321-1326.
33 Nazarchuk O.A. (2016) Antiseptics: modern strategy of struggle with causing agents of the іnfection complications. Klin. Khir., 9 59-61.
34 Mondal P., and Mondal S. (2022) Synthesis, characterization and SAR studies of Novel Series of Spiro β-Lactam of 5-methyl-indole-2,3-dione derivatives as a potential antibacterial and anthelmintic agent Curr. Chem. Lett., 11 403-414.