How to cite this paper
Slyvka, N., Saliyeva, L., Holota, S., Litvinchuk, M., Shishkina, S & Vovk, M. (2023). Synthesis and anti-inflammatory activity of S-oxides of pyridinyloxy substituted imidazo[2,1-b][1,3]thiazines.Current Chemistry Letters, 12(2), 335-342.
Refrences
1. Mangiavacchi F., Crociani L., Sancineto L., Marini F., Santi C. (2020) Continuous Bioinspired Oxidation of Sulfides. Molecules. 25 (11) 2711-2721.
2. Salom-Roig X., Bauder C. (2020) Recent Applications in the Use of Sulfoxides as Chiral Auxiliaries for the Asymmetric Synthesis of Natural and Biologically Active Products. Synthesis. 52 964-978.
3. Bäckvall J.-E. (2010) Modern Oxidation Methods, 2nd ed.; Completely rev. and enlarged ed.; Wiley-VCH:Weinheim, Germany. ISBN 978-3-527-32320-3.
4. Anselmi S., Aggarwal N., Moody T., Castagnolo D. (2020) Unconventional biocatalytic approaches for the synthesis of chiral sulfoxides. ChemBioChem. 22 (2) 298-307.
5. Xu F., Chen Y., Fan E., Sun Z. (2016) Synthesis of 3-Substituted Aryl [4,5] isothiazoles through an All-Heteroatom Wittig-Equivalent Process. Org. Lett. 18 2777-2779.
6. Spencer C.M., Faulds D. (2000) Esomeprazole. Drugs. 60 321–329.
7. Barraclough P., Black J.W., Cambridge D., Collard D., Firmin D., Gerskowitch V.P., Glen R.C., Giles H., Hill A.P. (1990) Inotropic "A" ring substituted sulmazole and isomazole analogues. J. Med. Chem. 33 (8) 2231-9.
8. Aono Y., Horinaka M., Iizumi Y., Watanabe M., Taniguchi T., Yasuda S., Sakai T. (2018) Sulindac sulfone inhibits the mTORC1 pathway in colon cancer cells by directly targeting voltage-dependent anion channel 1 and 2. Biochem. Biophys. Res. Commun. 505 1203–1210.
9. Engber T.M., Koury E.J., Dennis S.A., Miller M.S., Contreras P.C., Bhat R.V. (1998) Differential patterns of regional c-Fos induction in the rat brain by amphetamine and the novel wakefulness-promoting agent modafinil. Neurosc. Lett. 241 (2-3) 95-98.
10. Seto M., Aikawa K., Miyamoto N., Aramaki Y., Kanzaki N., Takashima K., Kuze Y., Iizawa Y., Baba M., Shiraishi M. (2006) Highly Potent and Orally Active CCR5 Antagonists as Anti-HIV-1 Agents: Synthesis and Biological Activities of 1-Benzazocine Derivatives Containing a Sulfoxide Moiety. J. Med. Chem. 49 2037-2048.
11. Nohara T., Fujiwara Y., Ikeda T., Murakami K., Ono M., Nakano D. and Kinjo J. (2013) Cyclic Sulfoxides Garlicnins B2, B3, B4, C2, and C3 from Allium sativum. Chem. Pharm. Bull. 61 (7) 695-699.
12. Hasato A., Tanaka T., Kurozumi S. (1983) Teijin. JP Patent 59 175 465.
13. Alessio E. et al. (1990) Boehringer Biochemia Robin. EP Patent 471 709.
14. Reinholz E. et al. (1987) Boehringer. EP Patent 232 820.
15. Gramec D., Mašič L.P., Dolenc M.S. (2014) Bioactivation Potential of Thiophene-Containing Drugs. Chem. Res. Toxicol. 27 (8) 1344-1358.
16. Nohara T., Fujiwara Y., Komota Y., Kondo Y., Saku T., Yamaguchi K., Komohara Y. and Takeya M. (2015) Cyclic Sulfoxides-Garlicnins K1, K2, and H1-Extracted from Allium sativum. Chem. Pharm. Bull. 63 (2) 117-121.
17. Nohara T., Fujiwara Y., El-Aasr M., Ikeda T., Ono M., Nakano D. and Kinjo J. (2017) Antitumor Allium Sulfides. Chem. Pharm. Bull. 65 (3) 209-217.
18. He Zh., Shrives H., Fernández-Salas J. A., Abengózar A., Neufeld J., Yang K., Pulis A.P., Procter D.J. (2018) Synthesis of C2 Substituted Benzothiophenes via an Interrupted Pummerer/[3,3]-Sigmatropic/1,2-Migration Cascade of Benzothiophene S-Oxides. Angew. Chem. Int. Ed. 57 (20) 5759-5764.
19. Yang K., Pulis A. P., Perry G.J.P., Procter D.J. (2018) Transition-Metal-Free Synthesis of C3-Arylated Benzofurans from Benzothiophenes and Phenols. Org. Lett. 20 (23) 7498-7503.
20. Sato J., Kusano H., Aoki T., Shibuya S., Yokoo K., Komano K., Oguma T., Matsumoto S., Sato T., Yasuo K., Yamawaki K. (2021) A novel tricyclic β-lactam exhibiting potent antibacterial activities against carbapenem-resistant Enterobacterales: Synthesis and structure-activity-relationships. Bioorg. Med. Chem. 46 116343.
21. Thompson A.M., Blaser A., Anderson R.F., Shinde S.S., Franzblau S.G., Ma Zh., Denny W.A., Palmer B.D. (2009) Synthesis, reduction potentials, and antitubercular activity of ring A/B analogues of the bioreductive drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). J. Med. Chem. 52 (3) 637-645.
22. Kim P., Kang S., Boshoff H.I., Jiricek J., Collins M., Singh R., Manjunatha U.H., Niyomrattanakit P., Zhang L., Goodwin M., Dick T., Keller T.H., Dowd C.S., Barry C.E. (2009) Structure-Activity Relationships of Antitubercular Nitroimidazoles. II. Determinants of aerobic activity and quantitative structure-activity relationships. J. Med. Chem. 52 (5) 1329-1344.
23. Wang R., Qian W., Bao W. (2012) Imidazobenzothiazine and primidobenzothiazine derivatives synthesis via an aliphatic SN2 substitution/Cu (I) catalyzed Ullmann coupling cascade process. Tetrahedron Lett. 53 (4) 442-445.
24. Teng Q., Singh C., Hana Y. and Huynh H.V. (2020) Fused azole-thiazolines via one-pot cyclization of functionalized N-heterocyclic carbene precursors. Org. Biomol. Chem. 18 (13) 2487-2491.
25. Thompson A.M., Marshall A.J., Maes L., Yarlett N., Bacchi C.J. (2018) Assessment of a pretomanid analogue library for African trypanosomiasis: Hit-to-lead studies on 6-substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorg. Med. Chem. Lett. 28 (2) 207-213.
26. Saliyeva L., Slyvka N., Litvinchuk M., Holota S., Grozav A., Yakovychuk N., Vovk M. (2022) Synthesis and evaluation of bioactivity of (2-pyridinyloxy)substituted (benzo)imidazo[2,1-b][1,3]thiazines. Biointerface Res. Appl. Chem. 12 (4) 5031 – 5044.
27. Slyvka N., Saliyeva L., Holota S., Tkachuk V., Vaskevych A., Vaskevych R.,Vovk M. (2023) Convenient synthesis of 4-pyridinyloxy-modified imidazo[2,1-b][1,3]thiazines as potential anti-inflammatory agents. Biointerface Res. Appl. Chem. 13 (1) 6033 – 6044.
28. Slyvka N., Saliyeva L., Holota S., Khyluk D., Tkachuk V. and Vovk M. (2023) Sulfones of Pyridinyloxy-Substituted Imidazo[2,1-b][1,3]thiazines: Synthesis, Anti-Inflammatory Activity Evaluation In Vivo and Docking Studies. Lett. Drug Des. Discov. (DOI: 10.2174/1570180819666220812144409).
29. Zefirov Yu.V. (1997) Kristallographiya. 42 (5) 936-958.
30. Potapov V.A., Amosova S.V., Doron’kina I.V., Korsun O.V. (2003) A synthesis of 1-thia-4-chalcogenacyclohexane-1-oxides and 1,1-dioxides. J. Organomet. Chem. 674 (1-2) 104-106.
31. Winter, C.A.; Risley, E.A.; Nuss, G.W. (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med. 111544-547.
32. Sheldrick G.M. (2015) SHELXT - Integrated space-group and crystal-structure determination Acta Crystallogr. A. 71 3-8.
33. Sheldrick G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallogr. С. 71 3-8.
34. Pathania S, Narang R.K, Rawal R.K. (2019) Role of sulphur-heterocycles in medicinal chemistry: An update. Eur J Med Chem. 180 486-508.
35. Garella D., Borretto E., Di Stilo A., Katia Martina K. Cravotto G. and Cintas P. (2013) Microwave-assisted synthesis of N-heterocycles in medicinal chemistry. Med. Chem. Commun. 4 1323-1343.
36. Henary M., Kananda C., Rotolo L., Savino B., Owens E.A. and Cravotto G. (2020) Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Adv. 10 14170-14197.
37. Wu G., Yin W., Shen H.C., Huang Y. (2012) One-pot synthesis of useful heterocycles in medicinal chemistry using a cascade strategy Green Chem. 14 580-585.
38. Baumann M., Baxendale I.R., Ley S.V. (2011) The flow synthesis of heterocycles for natural product and medicinal chemistry applications. Mol. Divers. 15 613–630.
39. Marson C.M. (2017) Saturated Heterocycles with Applications in Medicinal Chemistry. Adv. Heterocycl. Chem. 121 13-33.
40. Al-Mulla A. (2017) A Review: Biological Importance of Heterocyclic Compounds. Der Pharm. Chem. 9 (13) 141-147.
41. Luo Y., Li B., Wang W., Wu K., Tan B. (2012) Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2 Capturing Materials. Adv. Mater. 24 (42) 5703-5707.
42. Smith C.A., Narouz M.R., Lummis P.A., Singh I., Nazemi A., Li C-H. and Crudden C.M. (2019) N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 119 (8) 4986–5056.
43. Gao H., Zhang Q. and Shreeve J.M. (2020) Fused heterocycle-based energetic materials (2012–2019). J. Mater. Chem. A 8 4193-4216.
44. Chen D., Su S-J. and Cao Y. (2014) Nitrogen heterocycle-containing materials for highly efficient phosphorescent OLEDs with low operating voltage. J. Mater. Chem. C 2 9565-9578.
45. Thanneeru S., Ayers K.M., Anuganti M., Zhang L., Kumar C.V., Ung G., He J. (2020) N-Heterocyclic Carbene-Ended Polymers as Surface Ligands of Plasmonic Metal Nanoparticles. J. Mater. Chem. C 8 2280-2288.
2. Salom-Roig X., Bauder C. (2020) Recent Applications in the Use of Sulfoxides as Chiral Auxiliaries for the Asymmetric Synthesis of Natural and Biologically Active Products. Synthesis. 52 964-978.
3. Bäckvall J.-E. (2010) Modern Oxidation Methods, 2nd ed.; Completely rev. and enlarged ed.; Wiley-VCH:Weinheim, Germany. ISBN 978-3-527-32320-3.
4. Anselmi S., Aggarwal N., Moody T., Castagnolo D. (2020) Unconventional biocatalytic approaches for the synthesis of chiral sulfoxides. ChemBioChem. 22 (2) 298-307.
5. Xu F., Chen Y., Fan E., Sun Z. (2016) Synthesis of 3-Substituted Aryl [4,5] isothiazoles through an All-Heteroatom Wittig-Equivalent Process. Org. Lett. 18 2777-2779.
6. Spencer C.M., Faulds D. (2000) Esomeprazole. Drugs. 60 321–329.
7. Barraclough P., Black J.W., Cambridge D., Collard D., Firmin D., Gerskowitch V.P., Glen R.C., Giles H., Hill A.P. (1990) Inotropic "A" ring substituted sulmazole and isomazole analogues. J. Med. Chem. 33 (8) 2231-9.
8. Aono Y., Horinaka M., Iizumi Y., Watanabe M., Taniguchi T., Yasuda S., Sakai T. (2018) Sulindac sulfone inhibits the mTORC1 pathway in colon cancer cells by directly targeting voltage-dependent anion channel 1 and 2. Biochem. Biophys. Res. Commun. 505 1203–1210.
9. Engber T.M., Koury E.J., Dennis S.A., Miller M.S., Contreras P.C., Bhat R.V. (1998) Differential patterns of regional c-Fos induction in the rat brain by amphetamine and the novel wakefulness-promoting agent modafinil. Neurosc. Lett. 241 (2-3) 95-98.
10. Seto M., Aikawa K., Miyamoto N., Aramaki Y., Kanzaki N., Takashima K., Kuze Y., Iizawa Y., Baba M., Shiraishi M. (2006) Highly Potent and Orally Active CCR5 Antagonists as Anti-HIV-1 Agents: Synthesis and Biological Activities of 1-Benzazocine Derivatives Containing a Sulfoxide Moiety. J. Med. Chem. 49 2037-2048.
11. Nohara T., Fujiwara Y., Ikeda T., Murakami K., Ono M., Nakano D. and Kinjo J. (2013) Cyclic Sulfoxides Garlicnins B2, B3, B4, C2, and C3 from Allium sativum. Chem. Pharm. Bull. 61 (7) 695-699.
12. Hasato A., Tanaka T., Kurozumi S. (1983) Teijin. JP Patent 59 175 465.
13. Alessio E. et al. (1990) Boehringer Biochemia Robin. EP Patent 471 709.
14. Reinholz E. et al. (1987) Boehringer. EP Patent 232 820.
15. Gramec D., Mašič L.P., Dolenc M.S. (2014) Bioactivation Potential of Thiophene-Containing Drugs. Chem. Res. Toxicol. 27 (8) 1344-1358.
16. Nohara T., Fujiwara Y., Komota Y., Kondo Y., Saku T., Yamaguchi K., Komohara Y. and Takeya M. (2015) Cyclic Sulfoxides-Garlicnins K1, K2, and H1-Extracted from Allium sativum. Chem. Pharm. Bull. 63 (2) 117-121.
17. Nohara T., Fujiwara Y., El-Aasr M., Ikeda T., Ono M., Nakano D. and Kinjo J. (2017) Antitumor Allium Sulfides. Chem. Pharm. Bull. 65 (3) 209-217.
18. He Zh., Shrives H., Fernández-Salas J. A., Abengózar A., Neufeld J., Yang K., Pulis A.P., Procter D.J. (2018) Synthesis of C2 Substituted Benzothiophenes via an Interrupted Pummerer/[3,3]-Sigmatropic/1,2-Migration Cascade of Benzothiophene S-Oxides. Angew. Chem. Int. Ed. 57 (20) 5759-5764.
19. Yang K., Pulis A. P., Perry G.J.P., Procter D.J. (2018) Transition-Metal-Free Synthesis of C3-Arylated Benzofurans from Benzothiophenes and Phenols. Org. Lett. 20 (23) 7498-7503.
20. Sato J., Kusano H., Aoki T., Shibuya S., Yokoo K., Komano K., Oguma T., Matsumoto S., Sato T., Yasuo K., Yamawaki K. (2021) A novel tricyclic β-lactam exhibiting potent antibacterial activities against carbapenem-resistant Enterobacterales: Synthesis and structure-activity-relationships. Bioorg. Med. Chem. 46 116343.
21. Thompson A.M., Blaser A., Anderson R.F., Shinde S.S., Franzblau S.G., Ma Zh., Denny W.A., Palmer B.D. (2009) Synthesis, reduction potentials, and antitubercular activity of ring A/B analogues of the bioreductive drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). J. Med. Chem. 52 (3) 637-645.
22. Kim P., Kang S., Boshoff H.I., Jiricek J., Collins M., Singh R., Manjunatha U.H., Niyomrattanakit P., Zhang L., Goodwin M., Dick T., Keller T.H., Dowd C.S., Barry C.E. (2009) Structure-Activity Relationships of Antitubercular Nitroimidazoles. II. Determinants of aerobic activity and quantitative structure-activity relationships. J. Med. Chem. 52 (5) 1329-1344.
23. Wang R., Qian W., Bao W. (2012) Imidazobenzothiazine and primidobenzothiazine derivatives synthesis via an aliphatic SN2 substitution/Cu (I) catalyzed Ullmann coupling cascade process. Tetrahedron Lett. 53 (4) 442-445.
24. Teng Q., Singh C., Hana Y. and Huynh H.V. (2020) Fused azole-thiazolines via one-pot cyclization of functionalized N-heterocyclic carbene precursors. Org. Biomol. Chem. 18 (13) 2487-2491.
25. Thompson A.M., Marshall A.J., Maes L., Yarlett N., Bacchi C.J. (2018) Assessment of a pretomanid analogue library for African trypanosomiasis: Hit-to-lead studies on 6-substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorg. Med. Chem. Lett. 28 (2) 207-213.
26. Saliyeva L., Slyvka N., Litvinchuk M., Holota S., Grozav A., Yakovychuk N., Vovk M. (2022) Synthesis and evaluation of bioactivity of (2-pyridinyloxy)substituted (benzo)imidazo[2,1-b][1,3]thiazines. Biointerface Res. Appl. Chem. 12 (4) 5031 – 5044.
27. Slyvka N., Saliyeva L., Holota S., Tkachuk V., Vaskevych A., Vaskevych R.,Vovk M. (2023) Convenient synthesis of 4-pyridinyloxy-modified imidazo[2,1-b][1,3]thiazines as potential anti-inflammatory agents. Biointerface Res. Appl. Chem. 13 (1) 6033 – 6044.
28. Slyvka N., Saliyeva L., Holota S., Khyluk D., Tkachuk V. and Vovk M. (2023) Sulfones of Pyridinyloxy-Substituted Imidazo[2,1-b][1,3]thiazines: Synthesis, Anti-Inflammatory Activity Evaluation In Vivo and Docking Studies. Lett. Drug Des. Discov. (DOI: 10.2174/1570180819666220812144409).
29. Zefirov Yu.V. (1997) Kristallographiya. 42 (5) 936-958.
30. Potapov V.A., Amosova S.V., Doron’kina I.V., Korsun O.V. (2003) A synthesis of 1-thia-4-chalcogenacyclohexane-1-oxides and 1,1-dioxides. J. Organomet. Chem. 674 (1-2) 104-106.
31. Winter, C.A.; Risley, E.A.; Nuss, G.W. (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med. 111544-547.
32. Sheldrick G.M. (2015) SHELXT - Integrated space-group and crystal-structure determination Acta Crystallogr. A. 71 3-8.
33. Sheldrick G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallogr. С. 71 3-8.
34. Pathania S, Narang R.K, Rawal R.K. (2019) Role of sulphur-heterocycles in medicinal chemistry: An update. Eur J Med Chem. 180 486-508.
35. Garella D., Borretto E., Di Stilo A., Katia Martina K. Cravotto G. and Cintas P. (2013) Microwave-assisted synthesis of N-heterocycles in medicinal chemistry. Med. Chem. Commun. 4 1323-1343.
36. Henary M., Kananda C., Rotolo L., Savino B., Owens E.A. and Cravotto G. (2020) Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Adv. 10 14170-14197.
37. Wu G., Yin W., Shen H.C., Huang Y. (2012) One-pot synthesis of useful heterocycles in medicinal chemistry using a cascade strategy Green Chem. 14 580-585.
38. Baumann M., Baxendale I.R., Ley S.V. (2011) The flow synthesis of heterocycles for natural product and medicinal chemistry applications. Mol. Divers. 15 613–630.
39. Marson C.M. (2017) Saturated Heterocycles with Applications in Medicinal Chemistry. Adv. Heterocycl. Chem. 121 13-33.
40. Al-Mulla A. (2017) A Review: Biological Importance of Heterocyclic Compounds. Der Pharm. Chem. 9 (13) 141-147.
41. Luo Y., Li B., Wang W., Wu K., Tan B. (2012) Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2 Capturing Materials. Adv. Mater. 24 (42) 5703-5707.
42. Smith C.A., Narouz M.R., Lummis P.A., Singh I., Nazemi A., Li C-H. and Crudden C.M. (2019) N-Heterocyclic Carbenes in Materials Chemistry. Chem. Rev. 119 (8) 4986–5056.
43. Gao H., Zhang Q. and Shreeve J.M. (2020) Fused heterocycle-based energetic materials (2012–2019). J. Mater. Chem. A 8 4193-4216.
44. Chen D., Su S-J. and Cao Y. (2014) Nitrogen heterocycle-containing materials for highly efficient phosphorescent OLEDs with low operating voltage. J. Mater. Chem. C 2 9565-9578.
45. Thanneeru S., Ayers K.M., Anuganti M., Zhang L., Kumar C.V., Ung G., He J. (2020) N-Heterocyclic Carbene-Ended Polymers as Surface Ligands of Plasmonic Metal Nanoparticles. J. Mater. Chem. C 8 2280-2288.