How to cite this paper
Rezaei, I & Mamaghani, M. (2021). An efficient green synthesis of polyfunctional pyrazole-triazole hybrids and bis-triazoles via chromium incorporated fluorapatite encapsulated iron oxide nanocatalyst.Current Chemistry Letters, 10(4), 445-458.
Refrences
1. Al-Masoudi I. A., Al-Soud Y. A., Al-Salihi N. J., and Al-Masoudi N. A. (2006) 1,2,4-Triazoles: synthetic approaches and pharmacological importance. Chem. Heterocycl. Compd., 42 (11) 1377-1403.
2. Pearson M. M., Rogers D., Cleary J. D., and Chapman S. W. (2003) Voriconazole: a new triazole antifungal agent. Ann. Pharmacother., 37 (3) 420-432.
3. Greer N. D. (2007) Posaconazole (Noxafil): a new triazole antifungal agent. Proc. (Bayl. Univ. Med. Cent). 20 (2) 188-196.
4. Gural’skiy I. A., Reshetnikov V. A., Omelchenko I. V. Szebesczyk A., Gumienna-Konteckac E., and Fritskya I. O. (2017) Synthesis, crystal structures and spectral characterization of chiral 4-R-1,2,4-triazoles. J. Mol. Struct., 1127 164-168.
5. Fan Y. L., Ke X., and Liub M. (2018) Coumarin-triazole hybrids and their biological activities. J. Heterocycl. Chem., 55 (4) 791-802.
6. Süleymanoğlu N., Ustabaş R., Direkelc S., Alpasland Y. B., and Ünvere Y. (2017) 1,2,4-Triazole derivative with Schiff base; Thiol-thione tautomerism, DFT study and antileishmanial activity. J. Mol. Struct., 1150 82-87
7. Kharb R., Sharma P. C., and Yar M. S. (2011) Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 26 (1) 1-21.
8. Hu Y. Q., Zhang S., Xu Z., Lv Z. S., Liu M. L., and Feng L. S. (2017) 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem., 140 335-345
9. Chougala B. M., Samundeeswari S., Holiyachi M., Shastri L. A., Dodamani S., Jalapure S., Dixit S. R., Joshi S. D., and Sunagar V. A. (2017) Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 125 101-116.
10. Fu N., Wang S., Zhang Y., Zhang C., Yang D., Weng L., Zhao B., and Wang L. (2017) Efficient click chemistry towards fatty acids containing 1,2,3-triazole: design and synthesis as potential antifungal drugs for candida albicans. Eur. J. Med. Chem., 136 596-602.
11. Banu K. M., Dinaker A., and Ananthnarayan C. (1999) Synthesis, characterization of antimicrobial studies and pharmacological screening of some substituted 1,2,3-triazoles. Indian J. Pharm. Sci., 61 (4) 202-205.
12. Chen L. Z., Sun W. W., Bo L., Wang J. Q., Xiu C., Tang W. J., Shi J. B., Zhou H. P., and Liu X. H. (2017) New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 138 170-181.
13. Coskun D., Erkisa M., Ulukaya E., Coskun M. F., and Ari F. (2017) Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity. Eur. J. Med. Chem., 136 212-222.
14. Akhtar J., Khan A. A., Ali Z., Haider R., and Yar M. S. (2017) Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 125 143-189.
15. Gujjar R., Marwaha A., White J., White L., Creason S., Shackleford D. M., Baldwin J., Charman W. N., Buckner F. S., Charman S., Rathod P. K., and Phillips M. A. (2009) Identification of a metabolically stable triazolopyrimidinebased dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J. Med. Chem., 52 (7) 1864-1872.
16. Hu Y. Q., Gao C., Zhang S., Xu L., Xu Z., Feng L. S., Wu X., and Zhao F. (2017) Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 139 22-47.
17. Duran A., Dogan H. N., and Rollas H. (2002) Synthesis and preliminary anticancer activity of new 1,4-dihydro-3- (3-hydroxy-2- naphthyl)-4-substituted-5H-1,2,4-triazoline-5-thiones. Farmaco., 57 (7) 559-564.
18. Wen X., Zhou Y., Zeng J, and Liu X. (2020) Recent development of 1,2,4-triazole-containing compounds as anticancer agents. Curr. Top. Med. Chem. 20 (16) 1441-1460.
19. Appukkuttan P., Dehaen W., Fokin V. V., and Eycken E. V. (2004) A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. Org. Lett., 6 (23) 4223-4225.
20. Wamhoff H. (1984) In Comprehensive Heterocyclic Chemistry, Pergamon: Oxford., 5, 669-732.
21. Wu Y. M., Deng J., Fang X., and Chen Q. Y. (2004) Regioselective synthesis of fluoroalkylated [1,2,3]-triazoles by Huisgen cycloaddition. J. Fluor. Chem., 125 (10) 1415-1423.
22. (a) Whiting M., Muldoon J., Lin Y. C., Silverman S. M, Lindstrom W., Olson A. J., Kolb H. C., Finn M. G., Sharpless K. B., Elder J. H., and Fokin V. V. (2006) Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed., 45 (9) 1435-1439. (b) Lva J. S., Peng X. M., Kishore B., and Zhou C. H. (2014) 1,2,3-Triazole-derived naphthalimides as a novel type of potential antimicrobial agents: synthesis, antimicrobial activity, interaction with calf thymus DNA and human serum albumin. Bioorg. Med. Chem. Lett., 24 (1) 308-313.
23. Chandrika P. M., Yakaiah T., Gayatri G., Kumar K. P., Narsaiah B., Murthy U. S. N., and Rao A. R. R. (2010) Click chemistry: studies on the synthesis of novel fluorous tagged triazol-4-yl substituted quinazoline derivatives and their biological evaluation-theoretical and experimental validation. Eur. J. Med. Chem., 45 (1) 78-84.
24. Wang X., Wan K., and Zhou C. (2010) Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 45 4631-4639.
25. Puig-Basagoiti F, Qing M, Dong H., Zhang B, Zou G, Yuan Z, and Shi P. Y. (2009) Identification and characterization of inhibitors of west nile virus. Antiviral Res., 83 (1) 71-79.
26. Guantai E. M., Ncokazi K., Egan T. J., Gut J., Rosenthal P. J., Smith P. J., and Chibale K. (2010) Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem., 18 (23) 8243-8256.
27. Gangu K. K., Maddila S., Maddila S. N., and Jonnalagadda S. B. (2016) Nanostructured samarium doped fluorapatites and their catalytic activity towards synthesis of 1,2,4-triazoles. Molecules, 21 (10) 1281.
28. Patil J. D., and Pore D. M. (2014) [C16MPy]AlCl3Br: An efficient novel ionic liquid for synthesis of novel 1,2,4-triazolidine-3-thiones in water, RSC Adv., 4 (28) 14314–14319.
29. Koparır M., Çetin A., and Cansiz A. (2005) 5-Furan-2yl[1,3,4]oxadiazole-2-thiol, 5-furan-2yl-4H [1,2,4] triazole-3-thiol and their thiol-thione tautomerism. Molecules, 10 (2) 475-480.
30. Jasiński R., and Dresler E., (2020) Review on the question of zwitterionic intermediates in the[3+2] cycloaddition reactions: a critical review. Organics, 1 (1) 49-69.
31. Jahanshahi P., and Mamaghani M. (2019) Chemodivergent, multicomponent-tandem facile synthesis of novel 1H-pyrazolo[1,2-b]phthalazine-5,10-dione using acetic acid functionalized imidazolium salt {[cmdmim]I} as a recyclable catalyst. New J. Chem., 43 (21) 8266-8278.
32. Jahanshahi P., Mamaghani M., Haghbin F., Hossein Nia R., and Rassa M. (2017) One-pot chemoselective synthesis of novel pyrrole-substituted pyrido[2,3-d]pyrimidines using [γ-Fe2O3@ HAp-SO3H] as an efficient nanocatalyst. J. Mol. Struct., 1155 520-529.
33. Ahmadiazar M., and Mamaghani M. (2014) Synthesis of (2-iminomethyl)pyridine moiety supported on hydroxyapatite-encapsulated-γ-Fe2O3 as an inorganic-organic hybrid magnetic nanocatalyst for the synthesis of thiazole derivatives under ultrasonic irradiation. Curr. Org. Chem., 22 (13) 1326-1334.
34. Tavakoli F., Mamaghani M., Sheykhan M., Mohammadipour N., and Rassa M. (2018) Ultrasonic activated, highly efficient and regioselective synthesis of a novel pyrrole-linked benzo[f]chromene scaffold in a green media. Curr. Org. Synth., 15 (6) 872-880.
35. Tavakoli F., Mamaghani M., and Sheykhan M. (2019) Introduction of Ag/CuO/MCM-48 as an efficient catalyst for the one-pot synthesis of novel pyran-pyrrole hybrids. Appl. Organomet. Chem., 33 (9) e5083.
36. Saberikhah E., Mamaghani M., Mahmoodi N. O., and Fallah Shojaei A. (2020) Magnetic Fe3O4@TiO2@NH2@PMo12O40 nanoparticles: a recyclable and efficient catalyst for convergent one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives. Polycyclic Aromat. Compd., 40 (1) 1-19.
37. Mamaghani M., and Hossein Nia R. (2021) A review on the recent multicomponent synthesis of pyranopyrazoles. Polycyclic Aromat. Compd., 41 (2) 223-291.
38. Mirfarjood S. A., Mamahgani, M., and Sheykhan, M. (2017) Copper-exchanged magnetic-FAp: surface catalysis in decarboxylative coupling of a-oxocarboxylic acids with formamides. ChemistrySelect., 2 (27) 8650-8657.
39. Mirfarjood S. A., Mamaghani M., and Sheykhan M. (2017) Copper-incorporated fluorapatite encapsulated iron oxide nanocatalyst for synthesis of benzimidazoles. J. Nanostruct. Chem., 7 (4) 359-366.
40. Pourkarim Z., and Nikpassand M. (2020) Synthesis, characterization and application of Fe3O4@SiO2@Tannic acid nanoparticles: A novel and magnetically recyclable catalyst for one-pot sy nthesis of novel 5-pyrazolin-1,2,4-triazolidine-3-ones (thiones). J. Mol. Struct., 1217 128433.
41. Nikpassand M., and Farshami M. J. (2020) One-pot synthesis of novel 3-pyrazolyl-4H-1,2,4-triazoles using amino glucose-functionalized silica-coated NiFe2O4 nanoparticles as a magnetically separable catalyst. J. Clust. Sci., 1-8. https://doi.org/10.1007/s10876-020-01855-y
2. Pearson M. M., Rogers D., Cleary J. D., and Chapman S. W. (2003) Voriconazole: a new triazole antifungal agent. Ann. Pharmacother., 37 (3) 420-432.
3. Greer N. D. (2007) Posaconazole (Noxafil): a new triazole antifungal agent. Proc. (Bayl. Univ. Med. Cent). 20 (2) 188-196.
4. Gural’skiy I. A., Reshetnikov V. A., Omelchenko I. V. Szebesczyk A., Gumienna-Konteckac E., and Fritskya I. O. (2017) Synthesis, crystal structures and spectral characterization of chiral 4-R-1,2,4-triazoles. J. Mol. Struct., 1127 164-168.
5. Fan Y. L., Ke X., and Liub M. (2018) Coumarin-triazole hybrids and their biological activities. J. Heterocycl. Chem., 55 (4) 791-802.
6. Süleymanoğlu N., Ustabaş R., Direkelc S., Alpasland Y. B., and Ünvere Y. (2017) 1,2,4-Triazole derivative with Schiff base; Thiol-thione tautomerism, DFT study and antileishmanial activity. J. Mol. Struct., 1150 82-87
7. Kharb R., Sharma P. C., and Yar M. S. (2011) Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 26 (1) 1-21.
8. Hu Y. Q., Zhang S., Xu Z., Lv Z. S., Liu M. L., and Feng L. S. (2017) 4-Quinolone hybrids and their antibacterial activities. Eur. J. Med. Chem., 140 335-345
9. Chougala B. M., Samundeeswari S., Holiyachi M., Shastri L. A., Dodamani S., Jalapure S., Dixit S. R., Joshi S. D., and Sunagar V. A. (2017) Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem., 125 101-116.
10. Fu N., Wang S., Zhang Y., Zhang C., Yang D., Weng L., Zhao B., and Wang L. (2017) Efficient click chemistry towards fatty acids containing 1,2,3-triazole: design and synthesis as potential antifungal drugs for candida albicans. Eur. J. Med. Chem., 136 596-602.
11. Banu K. M., Dinaker A., and Ananthnarayan C. (1999) Synthesis, characterization of antimicrobial studies and pharmacological screening of some substituted 1,2,3-triazoles. Indian J. Pharm. Sci., 61 (4) 202-205.
12. Chen L. Z., Sun W. W., Bo L., Wang J. Q., Xiu C., Tang W. J., Shi J. B., Zhou H. P., and Liu X. H. (2017) New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 138 170-181.
13. Coskun D., Erkisa M., Ulukaya E., Coskun M. F., and Ari F. (2017) Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity. Eur. J. Med. Chem., 136 212-222.
14. Akhtar J., Khan A. A., Ali Z., Haider R., and Yar M. S. (2017) Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 125 143-189.
15. Gujjar R., Marwaha A., White J., White L., Creason S., Shackleford D. M., Baldwin J., Charman W. N., Buckner F. S., Charman S., Rathod P. K., and Phillips M. A. (2009) Identification of a metabolically stable triazolopyrimidinebased dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J. Med. Chem., 52 (7) 1864-1872.
16. Hu Y. Q., Gao C., Zhang S., Xu L., Xu Z., Feng L. S., Wu X., and Zhao F. (2017) Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 139 22-47.
17. Duran A., Dogan H. N., and Rollas H. (2002) Synthesis and preliminary anticancer activity of new 1,4-dihydro-3- (3-hydroxy-2- naphthyl)-4-substituted-5H-1,2,4-triazoline-5-thiones. Farmaco., 57 (7) 559-564.
18. Wen X., Zhou Y., Zeng J, and Liu X. (2020) Recent development of 1,2,4-triazole-containing compounds as anticancer agents. Curr. Top. Med. Chem. 20 (16) 1441-1460.
19. Appukkuttan P., Dehaen W., Fokin V. V., and Eycken E. V. (2004) A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. Org. Lett., 6 (23) 4223-4225.
20. Wamhoff H. (1984) In Comprehensive Heterocyclic Chemistry, Pergamon: Oxford., 5, 669-732.
21. Wu Y. M., Deng J., Fang X., and Chen Q. Y. (2004) Regioselective synthesis of fluoroalkylated [1,2,3]-triazoles by Huisgen cycloaddition. J. Fluor. Chem., 125 (10) 1415-1423.
22. (a) Whiting M., Muldoon J., Lin Y. C., Silverman S. M, Lindstrom W., Olson A. J., Kolb H. C., Finn M. G., Sharpless K. B., Elder J. H., and Fokin V. V. (2006) Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed., 45 (9) 1435-1439. (b) Lva J. S., Peng X. M., Kishore B., and Zhou C. H. (2014) 1,2,3-Triazole-derived naphthalimides as a novel type of potential antimicrobial agents: synthesis, antimicrobial activity, interaction with calf thymus DNA and human serum albumin. Bioorg. Med. Chem. Lett., 24 (1) 308-313.
23. Chandrika P. M., Yakaiah T., Gayatri G., Kumar K. P., Narsaiah B., Murthy U. S. N., and Rao A. R. R. (2010) Click chemistry: studies on the synthesis of novel fluorous tagged triazol-4-yl substituted quinazoline derivatives and their biological evaluation-theoretical and experimental validation. Eur. J. Med. Chem., 45 (1) 78-84.
24. Wang X., Wan K., and Zhou C. (2010) Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 45 4631-4639.
25. Puig-Basagoiti F, Qing M, Dong H., Zhang B, Zou G, Yuan Z, and Shi P. Y. (2009) Identification and characterization of inhibitors of west nile virus. Antiviral Res., 83 (1) 71-79.
26. Guantai E. M., Ncokazi K., Egan T. J., Gut J., Rosenthal P. J., Smith P. J., and Chibale K. (2010) Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem., 18 (23) 8243-8256.
27. Gangu K. K., Maddila S., Maddila S. N., and Jonnalagadda S. B. (2016) Nanostructured samarium doped fluorapatites and their catalytic activity towards synthesis of 1,2,4-triazoles. Molecules, 21 (10) 1281.
28. Patil J. D., and Pore D. M. (2014) [C16MPy]AlCl3Br: An efficient novel ionic liquid for synthesis of novel 1,2,4-triazolidine-3-thiones in water, RSC Adv., 4 (28) 14314–14319.
29. Koparır M., Çetin A., and Cansiz A. (2005) 5-Furan-2yl[1,3,4]oxadiazole-2-thiol, 5-furan-2yl-4H [1,2,4] triazole-3-thiol and their thiol-thione tautomerism. Molecules, 10 (2) 475-480.
30. Jasiński R., and Dresler E., (2020) Review on the question of zwitterionic intermediates in the[3+2] cycloaddition reactions: a critical review. Organics, 1 (1) 49-69.
31. Jahanshahi P., and Mamaghani M. (2019) Chemodivergent, multicomponent-tandem facile synthesis of novel 1H-pyrazolo[1,2-b]phthalazine-5,10-dione using acetic acid functionalized imidazolium salt {[cmdmim]I} as a recyclable catalyst. New J. Chem., 43 (21) 8266-8278.
32. Jahanshahi P., Mamaghani M., Haghbin F., Hossein Nia R., and Rassa M. (2017) One-pot chemoselective synthesis of novel pyrrole-substituted pyrido[2,3-d]pyrimidines using [γ-Fe2O3@ HAp-SO3H] as an efficient nanocatalyst. J. Mol. Struct., 1155 520-529.
33. Ahmadiazar M., and Mamaghani M. (2014) Synthesis of (2-iminomethyl)pyridine moiety supported on hydroxyapatite-encapsulated-γ-Fe2O3 as an inorganic-organic hybrid magnetic nanocatalyst for the synthesis of thiazole derivatives under ultrasonic irradiation. Curr. Org. Chem., 22 (13) 1326-1334.
34. Tavakoli F., Mamaghani M., Sheykhan M., Mohammadipour N., and Rassa M. (2018) Ultrasonic activated, highly efficient and regioselective synthesis of a novel pyrrole-linked benzo[f]chromene scaffold in a green media. Curr. Org. Synth., 15 (6) 872-880.
35. Tavakoli F., Mamaghani M., and Sheykhan M. (2019) Introduction of Ag/CuO/MCM-48 as an efficient catalyst for the one-pot synthesis of novel pyran-pyrrole hybrids. Appl. Organomet. Chem., 33 (9) e5083.
36. Saberikhah E., Mamaghani M., Mahmoodi N. O., and Fallah Shojaei A. (2020) Magnetic Fe3O4@TiO2@NH2@PMo12O40 nanoparticles: a recyclable and efficient catalyst for convergent one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives. Polycyclic Aromat. Compd., 40 (1) 1-19.
37. Mamaghani M., and Hossein Nia R. (2021) A review on the recent multicomponent synthesis of pyranopyrazoles. Polycyclic Aromat. Compd., 41 (2) 223-291.
38. Mirfarjood S. A., Mamahgani, M., and Sheykhan, M. (2017) Copper-exchanged magnetic-FAp: surface catalysis in decarboxylative coupling of a-oxocarboxylic acids with formamides. ChemistrySelect., 2 (27) 8650-8657.
39. Mirfarjood S. A., Mamaghani M., and Sheykhan M. (2017) Copper-incorporated fluorapatite encapsulated iron oxide nanocatalyst for synthesis of benzimidazoles. J. Nanostruct. Chem., 7 (4) 359-366.
40. Pourkarim Z., and Nikpassand M. (2020) Synthesis, characterization and application of Fe3O4@SiO2@Tannic acid nanoparticles: A novel and magnetically recyclable catalyst for one-pot sy nthesis of novel 5-pyrazolin-1,2,4-triazolidine-3-ones (thiones). J. Mol. Struct., 1217 128433.
41. Nikpassand M., and Farshami M. J. (2020) One-pot synthesis of novel 3-pyrazolyl-4H-1,2,4-triazoles using amino glucose-functionalized silica-coated NiFe2O4 nanoparticles as a magnetically separable catalyst. J. Clust. Sci., 1-8. https://doi.org/10.1007/s10876-020-01855-y