How to cite this paper
Kobzar, O., Ocheretniuk, A., Buldenko, V., Babiy, L., Kozachenko, Ð., Brovarets, V & Vovk, A. (2020). O-Substituted N(3)-benzyl analogs of vitamin B1 as inhibitors of acetylcholinesterase or butyrylcholinesterase.Current Chemistry Letters, 9(1), 51-62.
Refrences
1. Manzetti S., Zhang J., and van der Spoel D. (2014) Thiamin function, metabolism, uptake, and transport. Biochemistry, 53 (5) 821–835.
2. Bettendorff L. (2013) Thiamine, in: Zempleni J., Suttie J., Gregory J.F. 3rd, and Stover P. (Eds.) Handb. Vitam., fifth ed., CRC Press, Boca Raton, 268–323.
3. Bunik V. I. (2014) Benefits of thiamin (vitamin B1) administration in neurodegenerative diseases may be due to both the coenzyme and non-coenzyme roles of thiamin. J. Alzheimer’s Dis. Parkinson., 4 (6) 173–177.
4. Butterworth R. F. (2003) Thiamin deficiency and brain disorders. Nut Res Rev., 16, 277–284.
5. Liu D., Ke Z., and Luo J. (2017). Thiamine deficiency and neurodegeneration: the interplay among oxidative stress, endoplasmic reticulum stress, and autophagy. Molecular neurobiology, 54 (7) 5440-5448.
6. Mkrtchyan G., Aleshin V., Parkhomenko Y., Kaehne T., Di Salvo M. L., Parroni A., Contestabile R., Vovk A., Bettendorff L., and Bunik V. (2015) Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis. Sci Rep., 5 12583.
7. Ozdemir Z. O., Senturk M., and Ekinci D. (2013) Inhibition of mammalian carbonic anhydrase isoforms I, II and VI with thiamine and thiamine-like molecules. J. Enzyme Inhib. Med. Chem., 28 (2) 316–319.
8. Vasan S., Zhang X., Zhang X., Kapurniotu A., Bernhagen J., Teichberg S., Basgen J., Wagle D., Shih D., Terlecky I., Bucala R., Cerami A., Egan J., and Urlich P. (1996) An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature, 382 (6588) 275–278.
9. Hamze A., Rubi E., Arnal P., Boisbrun M., Carcel C., Salom-Roig X., Maynadier M., Wein S., Vial H., and Calas M. (2005) Mono-and bis-thiazolium salts have potent antimalarial activity. J. Med. Chem., 48 (10) 3639–3643.
10. Caldarelli S. A., Fangour S. E., Wein S., van Ba C. T., Perigaud C., Pellet A., Vial H. J., and Peyrottes S. (2013) New bis-thiazolium analogues as potential antimalarial agents: design, synthesis, and biological evaluation. J. Med. Chem., 56 (2) 496–509.
11. Soreq H., Seidman S. (2001) Acetylcholinesterase – new roles for an old actor. Nat Rev Neurosci., 2 (4) 294–302.
12. Mesulam M.-M., Guillozet A., Shaw P., Levey A., Duysen E.G., and Lockridge O. (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience, 110 (4) 627–639.
13. Darvesh S., Cash M., Reid G. A., Martin E., Mitnitski A., and Geula C. (2012) Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J. Neuropathol. Exp. Neurol., 71 (1) 2–14.
14. Singh M., Kaur M., Kukreja H., Chugh R., Silakari O., and Singh D. (2013) Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur. J. Med. Chem., 70 165–188.
15. Maggi L., Mantegazza R. (2011) Treatment of myasthenia gravis: focus on pyridostigmine. Clin. Drug Invest., 31 691–701.
16. Alward W.L. (1998) Medical management of glaucoma. N. Engl. J. Med. 339 (18) 1298–1307.
17. Simard M., van Reekum R. (2004) The acetylcholinesterase inhibitors for treatment of cognitive and behavioral symptoms in dementia with Lewy bodies. J. Neuropsychiatry Clin. Neurosci., 16 (4) 409–425.
18. Pagano G., Rengo G., Pasqualetti G., Femminella G. D., Monzani F., Ferrara N., and Tagliati M. (2015) Cholinesterase inhibitors for Parkinson's disease: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry, 86, 767–773.
19. Ribeiz S. R., Bassitt D. P., Arrais J. A., Avila R., Steffens D. C., and Bottino C. M. (2010) Cholinesterase inhibitors as adjunctive therapy in patients with schizophrenia and schizoaffective disorder. CNS Drugs, 24 (4) 303–317.
20. Matsunaga Y., Tanaka T., Yoshinaga K., Ueki S., Hori Y., Eta R, Kawabata Y., Yoshii K., Yoshida K., Matsumura T., Furuta S., Takei M., Tack J., and Itoh Z. (2011) Acotiamide hydrochloride (Z-338), a new selective acetylcholinesterase inhibitor, enhances gastric motility without prolonging QT interval in dogs: comparison with cisapride, itopride, and mosapride. J. Pharmacol. Exp. Ther., 336 (3) 791–800.
21. Sun Z.-Q., Tu L.-X., Zhuo F.-J., and Liu S.-X. (2016) Design and discovery of novel thiazoleacetamide derivatives as anticholinesterase agent for possible role in the management of Alzheimer’s. Bioorg. Med. Chem. Lett., 26 (3) 747–750.
22. Rahim F., Javed M. T., Ullah H., Wadood A., Taha M., Ashraf M., Qurat-ul-Ain, Khan M. A., Khan F., Mirza S., and Khan K. M. (2015) Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorg. Chem., 62 106–116.
23. Liu S., Shang R., Shi L., Wan D. C. C., and Lin H. (2014) Synthesis and biological evaluation of 7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives as dual binding site acetylcholinesterase inhibitors. Eur. J. Med. Chem., 81 237–244.
24. Mohsen U. A., Kaplancikli Z. A., Ozkay Y., and Yurttaş L. (2015) Synthesis and evaluation of anti-acetylcholinesterase activity of some benzothiazole based new piperazine-dithiocarbamate derivatives. Drug Res. (Stuttg), 65 (4) 176–183.
25. Alspach J. D., Ingraham L. L. (1977) Inhibition of acetylcholinesterase by thiamine. A structure-function study. J. Med. Chem. 20 (1) 161–164.
26. Inoue K., Itokawa Y. (1973). Metabolism of O-benzoylthiamine in animal body. Biochem. Med., 8 (3) 450-463.
27. Hurt J. K., Coleman J. L., Fitzpatrick B. J., Taylor-Blake B., Bridges A. S., Vihko P., and Zylka, M. J. (2012). Prostatic acid phosphatase is required for the antinociceptive effects of thiamine and benfotiamine. PloS one, 7(10), e48562.
28. Sano T. (1944) Vergleich der wirksamkeit der verschiedenen aneurinester von organischen sauren. Bull. Chem. Soc. Jpn., 19 (11)185–205.
29. Ellman G. L., Courtney K. D., Andres V. jr., and Featherstone R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol., 7 (2) 88–95.
30. Ocheretniuk A., Kobzar O., Mischenko I., and Vovk A. (2017) N-Phenacylthiazolium salts as inhibitors of cholinesterases. French-Ukrainian J. Chem., 5 (2) 1–14.
31. Ocheretniuk A. D., Kobzar O. L., Kozachenko O. P., Brovarets V. S., and Vovk A. I. (2017) Synthesis and the activity assessment of adamantyl-containing thiazolium inhibitors of butyrylcholinesterase. Ž org farm hìm., 15 (4) 48–55.
32. Krupka R. M., Laidler K. J. (1961) Molecular mechanisms for hydrolytic enzyme action. I. Apparent non-competitive inhibition, with special reference to acetylcholinesterase. J. Am. Chem. Soc., 83 (6) 1445–1447.
33. Cheung J., Rudolph M. J., Burshteyn F., Cassidy M. S., Gary E. N., Love J., Franklin M. C., and Height J. J. (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem., 55 (22) 10282–10286.
34. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., and Silman I. (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science, 253 (5022) 872–879.
35. Zhan C.-G., Zheng F., and Landry D. W. (2003) Fundamental reaction mechanism for cocaine hydrolysis in human butyrylcholinesterase. J. Am. Chem. Soc., 125 (9) 2462–2474.
36. Nachon F., Carletti E., Ronco C., Trovaslet M., Nicolet Y., Jean L., and Renard P.-Y. (2013) Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl-and butyryl-cholinesterase. Biochem. J., 453 (3) 393–399.
37. Eyer P., Worek F., Kiderlen D., Sinko G., Stuglin A., Simeon-Rudolf V., and Reiner E. (2003) Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal. Biochem., 312 (2) 224-227.
38. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., and Bourne P. E. (2000) The Protein Data Bank. Nucleic Acids Res., 28 (1) 235–242.
39. Stewart J. J. P. MOPAC2016. Stewart Computational Chemistry, Colorado Springs, CO, USA. http://OpenMOPAC.net.
40. Morris G. M., Goodsell D. S., Halliday R. S., Huey R., Hart W. E., Belew R. K., and Olson A. J. (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 19 (14) 1639-1662.