How to cite this paper
Hadidi, S., Shiri, F & Norouzibazaz, M. (2019). A theoretical survey of the ability of nanocarbon layers to deliver anti-cancer drug temozolomide to the target cancer cells.Current Chemistry Letters, 8(1), 53-62.
Refrences
1 Joseph J. S., Lam V., and Patel M. I. (2018) Preventing osteoporosis in men taking androgen deprivation therapy for prostate cancer: A systematic review and meta-analysis. European Urology Oncology.
2 Erdoğar N., and Bilensoy E. (2018) Cyclodextrin-based nanosystems in targeted cancer therapyCyclodextrin applications in medicine, food, environment and liquid crystals. Springer, 59-80.
3 Correa D., Root J., Kryza-Lacombe M., Mehta M., Karimi S., Hensley M., and Relkin N. (2017) Brain structure and function in patients with ovarian cancer treated with first-line chemotherapy: A pilot study. Brain imaging and behavior, 11 (6) 1652-1663.
4 Minko T. (2004) Drug targeting to the colon with lectins and neoglycoconjugates. Advanced drug delivery reviews, 56 (4) 491-509.
5 Minko T., Dharap S., Pakunlu R., and Wang Y. (2004) Molecular targeting of drug delivery systems to cancer. Current Drug Targets, 5 (4) 389-406.
6 Dhar S., Gu F. X., Langer R., Farokhzad O. C., and Lippard S. J. (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized pt (iv) prodrug-plga–peg nanoparticles. Proceedings of the National Academy of Sciences, 105 (45) 17356-17361.
7 Dhar S., Liu Z., Thomale J., Dai H., and Lippard S. J. (2008) Targeted single-wall carbon nanotube-mediated pt (iv) prodrug delivery using folate as a homing device. Journal of the American Chemical Society, 130 (34) 11467-11476.
8 Liu Z., Chen K., Davis C., Sherlock S., Cao Q., Chen X., and Dai H. (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer research, 68 (16) 6652-6660.
9 Hughes G. A. (2017) Nanostructure-mediated drug deliveryNanomedicine in cancer. Pan Stanford, 47-72.
10 Wong C. R., Bawendi M. G., Fukumura D., and Jain R. K. (2018) Multistage nanoparticle drug delivery system for the treatment of solid tumors. Google Patents.
11 Maeda H. (2001) The enhanced permeability and retention (epr) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Advances in enzyme regulation, 41 (1) 189-207.
12 Allen T. M. (2002) Ligand-targeted therapeutics in anticancer therapy. Nature Reviews Cancer, 2 (10) 750.
13 Bianco A., Kostarelos K., Partidos C. D., and Prato M. (2005) Biomedical applications of functionalised carbon nanotubes. Chemical Communications, (5) 571-577.
14 Sahoo N. G., Bao H., Pan Y., Pal M., Kakran M., Cheng H. K. F., Li L., and Tan L. P. (2011) Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: A comparative study. Chemical communications, 47 (18) 5235-5237.
15 Karki N., Tiwari H., Pal M., Chaurasia A., Bal R., Joshi P., and Sahoo N. G. (2018) Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: A comparative study. Colloids and Surfaces B: Biointerfaces, 169 265-272.
16 Pham-Huy C., Dramou P., Pham-Huy L. A., Xiao D., and He H. (2017) Carbon nanotubes used as nanocarriers in drug and biomolecule deliveryDrug delivery approaches and nanosystems, volume 1. Apple Academic Press, 163-212.
17 Beg S., Rizwan M., Sheikh A. M., Hasnain M. S., Anwer K., and Kohli K. (2011) Advancement in carbon nanotubes: Basics, biomedical applications and toxicity. Journal of pharmacy and pharmacology, 63 (2) 141-163.
18 Jin H., Heller D. A., and Strano M. S. (2008) Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in nih-3t3 cells. Nano letters, 8 (6) 1577-1585.
19 Beg S., Rahman M., Jain A., Saini S., Hasnain M., Swain S., Imam S., Kazmi I., and Akhter S. (2018) Emergence in the functionalized carbon nanotubes as smart nanocarriers for drug delivery applicationsFullerens, graphenes and nanotubes. Elsevier, 105-133.
20 Berhanu D., Dybowska A., Misra S. K., Stanley C. J., Ruenraroengsak P., Boccaccini A. R., Tetley T. D., Luoma S. N., Plant J. A., and Valsami-Jones E. (2009) Characterisation of carbon nanotubes in the context of toxicity studies. Environmental Health, 8 (1) S3.
21 Bishop L., Cena L., Orandle M., Yanamala N., Dahm M. M., Birch M. E., Evans D. E., Kodali V. K., Eye T., and Battelli L. (2017) In vivo toxicity assessment of occupational components of the carbon nanotube life cycle to provide context to potential health effects. ACS nano, 11 (9) 8849-8863.
22 Fei B., Lu H., Hu Z., and Xin J. H. (2006) Solubilization, purification and functionalization of carbon nanotubes using polyoxometalate. Nanotechnology, 17 (6) 1589.
23 Coccini T., Roda E., Sarigiannis D., Mustarelli P., Quartarone E., Profumo A., and Manzo L. (2010) Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte d384 and lung a549 cells. Toxicology, 269 (1) 41-53.
24 Bianco A., Kostarelos K., and Prato M. (2005) Applications of carbon nanotubes in drug delivery. Current opinion in chemical biology, 9 (6) 674-679.
25 Kostarelos K., Lacerda L., Partidos C., Prato M., and Bianco A. (2005) Carbon nanotube-mediated delivery of peptides and genes to cells: Translating nanobiotechnology to therapeutics. Journal of Drug Delivery Science and Technology, 15 (1) 41-47.
26 Bianco A. (2004) Carbon nanotubes for the delivery of therapeutic molecules. Expert opinion on drug delivery, 1 (1) 57-65.
27 Schipper M. L., Nakayama-Ratchford N., Davis C. R., Kam N. W. S., Chu P., Liu Z., Sun X., Dai H., and Gambhir S. S. (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nature nanotechnology, 3 (4) 216.
28 Singh R., Pantarotto D., Lacerda L., Pastorin G., Klumpp C., Prato M., Bianco A., and Kostarelos K. (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America, 103 (9) 3357-3362.
29 Ajima K., Yudasaka M., Murakami T., Maigné A., Shiba K., and Iijima S. (2005) Carbon nanohorns as anticancer drug carriers. Molecular pharmaceutics, 2 (6) 475-480.
30 Wu W., Wieckowski S., Pastorin G., Benincasa M., Klumpp C., Briand J. P., Gennaro R., Prato M., and Bianco A. (2005) Targeted delivery of amphotericin b to cells by using functionalized carbon nanotubes. Angewandte Chemie International Edition, 44 (39) 6358-6362.
31 Lucío M. I., Opri R., Pinto M., Scarsi A., Fierro J. L., Meneghetti M., Fracasso G., Prato M., Vázquez E., and Herrero M. A. (2017) Targeted killing of prostate cancer cells using antibody–drug conjugated carbon nanohorns. Journal of Materials Chemistry B, 5 (44) 8821-8832.
32 Chandrasekhar P. (2018) Cnt applications in drug and biomolecule deliveryConducting polymers, fundamentals and applications. Springer, 61-64.
33 Ali-Boucetta H., Al-Jamal K. T., Mccarthy D., Prato M., Bianco A., and Kostarelos K. (2008) Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chemical Communications, (4) 459-461.
34 Zhang L., Xia J., Zhao Q., Liu L., and Zhang Z. (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 6 (4) 537-544.
35 Quirbt I., Verma S., Petrella T., Bak K., Charette M., and Care M. O. T. M. D. S. G. O. C. C. O. S. P. I. E.-B. (2007) Temozolomide for the treatment of metastatic melanoma. Current Oncology, 14 (1) 27.
36 Van Den Bent M., Taphoorn M., Brandes A. A., Menten J., Stupp R., Frenay M., Chinot O., Kros J., Van Der Rijt C., and Vecht C. J. (2003) Phase ii study of first-line chemotherapy with temozolomide in recurrent oligodendroglial tumors: The european organization for research and treatment of cancer brain tumor group study 26971. Journal of clinical oncology, 21 (13) 2525-2528.
37 Friedman H. S., Kerby T., and Calvert H. (2000) Temozolomide and treatment of malignant glioma. Clinical cancer research, 6 (7) 2585-2597.
38 Kaur S., Ramdzan Z. M., Guiot M.-C., Li L., Leduy L., Ramotar D., Sabri S., Abdulkarim B., and Nepveu A. (2017) Cux1 stimulates ape1 enzymatic activity and increases the resistance of glioblastoma cells to the mono-alkylating agent temozolomide. Neuro-oncology, 20 (4) 484-493.
39 Tateishi K., Higuchi F., Miller J., Koerner M. V., Lelic N., Shankar G. M., Tanaka S., Fisher D. E., Batchelor T., and Iafrate A. J. (2017) The alkylating chemotherapeutic temozolomide induces metabolic stress in idh1-mutant cancers and potentiates nad+ depletion-mediated cytotoxicity. Cancer research, canres. 2263.2016.
40 Treggiari E., Elliott J., Baines S., and Blackwood L. (2018) Temozolomide alone or in combination with doxorubicin as a rescue agent in 37 cases of canine multicentric lymphoma. Veterinary and comparative oncology, 16 (2) 194-201.
41 Denny B. J., Wheelhouse R. T., Stevens M. F., Tsang L. L., and Slack J. A. (1994) Nmr and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry, 33 (31) 9045-9051.
42 Mirzaei S., Taherpour A. A., and Khalilian H. (2018) Importance of azo‐hydrazo tautomerization in the oxidative degradation of procarbazine by cytochrome p450: Computational insights. ChemistrySelect, 3 (22) 6042-6049.
43 Mirzaei S., Khalilian M., and Taherpour A. A. (2015) Mechanistic study of the hydrolytic degradation and protonation of temozolomide. RSC Advances, 5 (51) 41112-41119.
44 Becke A. D. (1993) Density‐functional thermochemistry. Iii. The role of exact exchange. The Journal of chemical physics, 98 (7) 5648-5652.
45 Medvedev M. G., Bushmarinov I. S., Sun J., Perdew J. P., and Lyssenko K. A. (2017) Density functional theory is straying from the path toward the exact functional. Science, 355 (6320) 49-52.
46 Lee C. (1993) Yang, w and parr rg 1988 phys. Rev. B37 785;(b) becke ad. J. Chem. Phys., 1993, 98.
47 Hratchian H. P., and Schlegel H. B. (2005) Finding minima, transition states, and following reaction pathways on ab initio potential energy surfacesTheory and applications of computational chemistry. Elsevier, 195-249.
48 Miertuš S., Scrocco E., and Tomasi J. (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55 (1) 117-129.
49 Klamt A., Mennucci B., Tomasi J., Barone V., Curutchet C., Orozco M., and Luque F. J. (2009) On the performance of continuum solvation methods. A comment on “universal approaches to solvation modeling”. Accounts of chemical research, 42 (4) 489-492.
50 Lu T., and Chen F. (2012) Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 33 (5) 580-592.
51 Neese F., and Wennmohs F. (2013) Orca (3.0. 2)-an ab initio. DFT and semiempirical SCF-MO package,(Max-Planck-Institute for Chemical Energy Conversion Stiftstr. 34-36, 45470 Mulheim ad Ruhr, Germany).
52 Gunasekaran S., Balaji R. A., Kumeresan S., Anand G., and Srinivasan S. (2008) Experimental and theoretical investigations of spectroscopic properties of n-acetyl-5-methoxytryptamine. Can. J. Anal. Sci. Spectrosc, 53 149-160.
53 Morrison R., and Boyd R. (1992) Functional derivatives of carboxylicacids. Organic Chemistry, 821, 845.
54 Warburg O. (1956) On the origin of cancer cells. Science, 123 (3191) 309-314.
55 Griffiths J. (1991) Are cancer cells acidic? British journal of cancer, 64 (3) 425.
56 Burgi H., Dunitz J., and Shefter E. (1973) Geometrical reaction coordinates. Ii. Nucleophilic addition to a carbonyl group. Journal of the American Chemical Society, 95 (15) 5065-5067.