How to cite this paper
Gol, R & Barot, V. (2018). Facile multi-components one-pot synthesis of dipyrazolo[1,5-a:3',4'-d]pyrimidine as potent bioactive scaffolds.Current Chemistry Letters, 7(4), 111-120.
Refrences
1. Shekarrao K., Kaishap P. P., Saddanapu V., Addlagatta A., Gogoia S., and Boruah R.C. (2014) Microwave-assisted palladium mediated efficient synthesis of pyrazolo[3,4-b]pyridines pyrazolo- [3,4-b]quinolines pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]quinazolines. RSC Adv., 4 (46) 24001–24006.
2. Cherukupalli S., Hampannavar G. A., Chinnam S., Chandrasekaran B., Sayyad N., Kayamba F., Aleti R. R., and Karpoormath R. (2018) An appraisal on synthetic and pharmaceutical perspectives of pyrazolo[4,3-d]pyrimidine scaffold. Bioorganic Med. Chem., 26 (2) 309-339.
3. Ismail N. S., Ali E. M., Ibrahim D. A., Serya R. A., Abou D. A., and Ella E. (2016) Pyrazolo[3, 4 d] pyrimidine based scaffold derivatives targeting kinases as anticancer agents. Futur. J. Pharm. Sci., 2 (1) 20-30.
4. Rahmati A., and Khalesi Z. (2012) Catalyst free synthesis of fused pyrido[2,3-d]pyrimidines and pyrazolo[34-b]pyridines in water. Chinese Chem. Lett., 23 (10)1149-1152.
5. Abdel-latif E., Abdel-fattah S., Gaffer H. E., and Etman H. A. (2016) Synthesis and antitumor activity of some new pyrazolo[3,4-d]pyrimidine and pyrazolo[3, 4-b]pyridine derivatives. Egypt. J. Basic Appl. Sci., 3 (1) 118-124.
6. Zhao M., Ren H., Chang J., Zhang D., Yang Y., He Y., and Qi C. H. Zhang. (2016) Design and synthesis of novel pyrazolo[15-a]pyrimidine derivatives bearing nitrogen mustard moiety and evaluation of their antitumor activity in vitro and in vivo Eur. J. Med. Chem., 119 () 183-196.
7. Ismail N. S. M., Ali G. M. E., Ibrahim D. A., and Elmetwali A. M. (2016) Medicinal attributes of pyrazolo[1, 5-a]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. Futur. J. Pharm. Sci., 2 (2) 60-70.
8. Kumar N. R., Poornachandra Y., Swaroop D. K., Dev G. J., Kumar C. G., and Narsaiah B. (2016) Synthesis of novel ethyl 24-disubstituted 8-(trifluoromethyl) pyrido[2′3′:34]pyrazolo[1,5-a]pyrimidine-9-carboxylate derivatives as promising anticancer agents. Bioorganic Med. Chem. Lett., 26 (21) 5203-5206.
9. Deng X., Shen J., Zhu H., Xiao J., Sun R., Xie F., Lam C., Wang J., Qiao Y., Tavallaie M.S., Hu Y., Du Y., Li J., Fu L., and Jiang F. (2018) Surrogating and redirection of pyrazolo[15-a]pyrimidin-7(4H)-one core a novel class of potent and selective DPP-4 inhibitors. Bioorganic Med. Chem., 26 (4) 903-912.
10. Roux J. L., Leriche C., Chamiot-Clerc P., Feutrill J., Halley F., Papin D., Derimay N., Mugler C., Grépin C., and Schio L. (2016) Preparation and optimization of pyrazolo[1,5-a]pyrimidines as new potent PDE4 inhibitors. Bioorganic Med. Chem. Lett., 26 (2) 454-459.
11. Kim I., Song J. H., Park C. M., Jeong J. W., Kim H. R., Ha J. R., No Z., Hyun Y. L., Cho Y. S., Sook Kang N., and Jeon D. J. (2010) Design, synthesis, and evaluation of 2-aryl-7-(3′,4′-dialkoxyphenyl)-pyrazolo[1,5-a]pyrimidines as novel PDE-4 inhibitors. Bioorganic Med. Chem. Lett., 20 (3) 922–926.
12. Abdou N. S., Serya R. A. T., Esmat A., Tolba M. F., Ismail N. S. M., and Abouzid K. A. M. (2015) Synthesis and in vitro antiproliferative activity of novel pyrazolo[34-d]pyrimidine derivatives. Med. Chem. Commun., 6 (8) 1518-1534.
13. Almansa C., de Arriba A. F., Fernando L., Cavalcanti, Gomez L. A., Miralles A., Merlos M., Garcıa-Rafanell J., and Forn J. (2001) Synthesis and SAR of a New Series of COX-2-Selective Inhibitors: Pyrazolo[15-a]pyrimidines. J. Med. Chem., 44 (3) 350-361.
14. Robb G. R., Boyd S., Davies C. D., Dossetter A. G., Goldberg F. W., Kemmitt P. D., Scott J. S., and Swales J. G. (2015) Design of pyrazolo-pyrimidines as 11β-HSD1 inhibitors through optimisation of molecular electrostatic potential. Med. Chem. Commun., 6 (5) 926-934.
15. Bakavoli M., Bagherzadeh G., Vaseghifar M., Shiri A., Pordel M., Mashreghi M., Pordeli P., and Araghi M. (2010) Molecular iodine promoted synthesis of new pyrazolo[3,4-d]pyrimidine derivatives as potential antibacterial agents. Eur. J. Med. Chem., 45 (2) 647-650.
16. Aggarwal R., Sumran G., Garg N., and Aggarwal A. A. (2011) Regioselective synthesis of some new pyrazol-1′-ylpyrazolo[1,5-a]pyrimidines in aqueous medium and their evaluation as antimicrobial agents. Eur. J. Med. Chem., 46 (7) 3038-3046.
17. Cherukupalli S., Karpoormath R., Chandrasekaran B., Hampannavar G. A., Thapliyal N., and Palakollu V. N. (2017) An insight on synthetic and medicinal aspects of pyrazolo[1,5-a] pyrimidine scaffold. Eur. J. Med. Chem., 126, 298-352.
18. Hassan A. S., Mady M. F., Awad H. M., and Hafez T. S. (2017) Synthesis and antitumor activity of some new pyrazolo[1,5-a]pyrimidines. Chinese Chem. Lett., 28 (2) 388-393.
19. Saikia P., Gogoi S., and Chandra Boruah R. (2015) Carbon-Carbon Bond Cleavage Reaction: Synthesis of Multi-Substituted Pyrazolo[15-a]pyrimidines. J. Org. Chem., 80 (13) 6885–6889.
20. Zhang J., Peng J., Wang T., Wang P., and Zhang Z. (2016) Synthesis crystal structure characterization and antifungal activity of pyrazolo[15-a]pyrimidines derivatives. J. Mol. Struct., 1120 228-233.
21. M Mojtahedi, M. M., Jalali, M. R., Saeed Abaee, M., and Bolourtchian, M. (2006) Microwave-assisted synthesis of substituted pyrazolones under solvent-free conditions. Hetero. Comm., 12 (3-4), 225-228.
22. Khidre R. E., and Abdelwahab B. F. (2013) Synthesis of 5-membered heterocycles using benzoylacetonitriles as synthon. Turkish J. Chem., 37 (5) 685–711.
23. Kappe C. O. (1997) A Reexamination of the Mechanism of the BiginelliDihydropyrimidine Synthesis. Support for an N-Acyliminium Ion Intermediate. J. Org. Chem., 62 (21) 7201-7204.
24. Chebanov V. A., Saraev V. E., Desenko S. M., Chernenko V. N., Knyazeva I. V., Groth U., Glasnov T. N., and Kappe C. O. (2008) Tuning of Chemo and Regioselectivities in Multicomponent Condensations of 5-Aminopyrazoles Dimedone and Aldehydes. J. Org. Chem. 73 (13) 5110–5118.
25. Lipinski C. A., Lombardo F., Dominy B. W., and Feeney P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 46 (1-3) 3-26.
26. Gol R. M., Khokhani K. M., Khatri T. T., and Bhatt J. J. (2014) Synthesis of Novel Pyrazolines of Medicinal Interest. J. Korean Chem. Soc., 58 (1) 49-56.
27. Clinical and Laboratory Standards Institute Performance Standards for AntimicrobialDisk Susceptibility Test Approved Standard (2006) ninth ed. CLSI Wayne PA USA.
28. National Committee for Clinical Laboratory Standards Methods for DilutionAntimicrobial Susceptibility Tests for Bacteria That Grow Aerobically.Approved Standard M7-A4 (2000) fourth ed. NCCLS Wayne PA USA.
29. Magaldi S., Mata-Essayag C., de Capriles H., Perez C. M. T. and Collela C. Olaizola. (2004) Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 8 (1) 39-45.
30. Perez C., Pauli M., and Bazerque P., (1990) an antibiotic assay by the agar well diffusion method. Acta Biol. Med. Ex., 15, 113–115.