How to cite this paper
Zonouz, A., Eskandari, I & Notash, B. (2015). An efficient and green procedure for the synthesis of highly substituted polyhydronaphthalene derivatives via a one-pot, multi-component reaction in aqueous media.Current Chemistry Letters, 4(3), 85-92.
Refrences
1. (a) Ameta S. C., Ameta R. (2013) Green Chemistry: Fundamentals and Applications. CRC press; (b) Li C-J., Chan T-H. (2007) Comprehensive Organic Reactions in Aqueous Media. Eds. John Wiley & Sons.
2. Chanda A., Fokin V. V. (2009) Organic synthesis “on water”. Chem. Rev. 109, 725-748.
3. World Commission on the Environment and Development (WCED), Our Common Future Oxford, Oxford University Press, 1987, p. 43.
4. Zhu J., Bienaymé H. (2005) Multicomponent Reactions, Wiley-VCH, Weinheim.
5. Ruijter E., Scheffelaar R., Orru R. V. A. (2011) Multicomponent Reaction Design in the quest for molecular complexity and diversity. Angew. Chem., Int. Ed. 50, 6234-6246.
6. Bannwarth W., Felder E. (2000) Combinatorial Chemistry. Wiley-VCH, Weinheim.
7. Moshtaghi Z. A., Eskandari I., Khavasi H. R. (2012) A Green and convenient approach for the synthesis of methyl 6-amino-5-cyano-4-aryl-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates via a one-pot, multi-component reaction in water. Tetrahedron Lett. 53, 5519-5522.
8. Balwant S. J., Keshwal S., Rajguru D., and Bhagwat V. W. (2012) A simple and clean synthesis of polysubstituted 2,6-dicyanoanilines catalyzed by KF/alumina. J. Korean Chem. Soc. 56, 712-715.
9. (a) Sepiol J., Milart P. (1985) Elimination of the nitrile group from o-aminonitriles—IV: A new and efficient synthesis of 3,5-diarylaminobenzenes from arylidenemalonodinitriles and 1-arylethylidenemalonodinitriles. Tetrahedron 41, 5261–5265; (b) Griffiths J., Lockwood M., Roozpeikar B. (1977) Orientation effects in the benzene chromophore bearing one donor and two acceptor groups. Electronic absorption spectra of the dicyanoanilines. J. Chem. Soc., Perkin Trans. 2, 1608-1609.
10. (a) Kurreck H., Huber M. (1995) Model reactions for photosynthesis—photoinduced charge and energy transfer between covalently linked porphyrin and quinone units. Angew. Chem., Int. Ed. 34, 849-866. (b)
Long N. J. (1995) Organometallic compounds for nonlinear optics—the search for enlightenment. Angew. Chem., Int. Ed. 34, 21-38.
11. (a) Nalwa H. S. (1993) Organic materials for third-order nonlinear optics. Adv. Mater. 5, 341-358. (b) Wong M. S., Bosshard C., Pan F., Gunter P. (1996) Non-classical donor–acceptor chromophores for second order nonlinear optics. Adv. Mater. 8, 677-680.
12. Metzger R. M., Panetta C. (1991) The quest for unimolecular rectifiers. New. J. Chem. 15, 209-221.
13. Das P., Butcher R. J., Mukhopadhyay C. (2012) Zinc titanate nanopowder: an advanced nanotechnology based recyclable heterogeneous catalyst for the one-pot selective synthesis of self-aggregated low-molecular mass acceptor–donor–acceptor–acceptor systems and acceptor–donor–acceptor triads. Green Chem. 14, 1376-1387.
14. Milart, P.; Wilamowski, J.; Sepiol, J. J. (1998) Synthesis of di- and triamino-1,1 & apos; :3", 1"-terphenyls from arylethylidene and arylidenemalonodinitriles. Tetrahedron 54, 15643-15656.
15. Wang J., Li Q., Qi C., Liu Y., Ge Z., Li R. (2010) Primary 1,2-diamine catalysis III: an unexpected domino reaction for the synthesis of multisubstituted cyclohexa-1,3-dienamines. Org. Biomol. Chem. 8, 4240-4242.
16. El-Sakka I. A., El-Kousy S. M., Kandil Z. E. (1991) Nitriles in organic synthesis: The reaction of cinnamonitriles with cyclohexanone and acetylacetone. J. Prakt. Chem. 333, 345-350.
17. Rong L., Han H., Jiang H., Tu S. (2007) Efficient one-pot synthesis of 2-amino-4,6- diarylbenzene-1,3-dicarbonitrile under solvent-free conditions. Synth. Commun. 37, 3767-3772.
18. Cui S. L., Lin X. F., Wang Y. G. (2005) Parallel synthesis of strongly fluorescent polysubstituted 2,6-dicyanoanilines via microwave-promoted multicomponent reaction. J. Org. Chem. 70, 2866-2869.
19. (a) Victory P. J., Borrell J. I., Vidal-Ferran A. (1993) A Simple synthesis of 2-methoxypyridine-3-carbonitriles. Heterocycles 36, 769-776; (b) Victory P., Borrel J. I., Vidal-Ferran A., Seoane C., Soto J. L. (1991) The reaction of malononitrile with chalcone: a controversial chemical process. Tetrahedron Lett. 32, 5375-5378; (c) Victory P. J., Borrell J. I., Vidal-Ferran A., Montenegro E., Jimeno M. L. (1993) Synthesis of 4-amino-8-cyanoquinazolines from enones and enals. Heterocycles 36, 2273-2280.
20. Wang X. S., Zhang M. M., Jiang H., Tu S. J. (2007) An improved and clean procedure for the synthesis of one-donor poly-acceptors systems containing 2,6-dicyanoamine moiety in aqueous media catalyzed by TEBAC in the presence and absence of K2CO3 Tetrahedron 63, 5265-5273.
21. Al-Matar H. M., Khalil K. D., Meier H., Kolshorn H., Elnagdi M. H. (2008) Chitosan as heterogeneous catalyst in Michael additions: The reaction of cinnamonitriles with active methyls, active methylenes and phenols. Arkivoc xvi, 288-301.
22. Wang X. S., Wu J. R., Zhou J., Tu S. J. (2009) Green method for the synyhesis of highly substituted cyclohexa-1,3-diene, polyhydroindene, polyhydronaphthalene, isochromene, isothiochromene, and isoquinoline derivatives in ionic liquids. J. Comb. Chem. 11, 1011-1022.
23. Moshtaghi Z. A., Baradaran H. S. (2008) Montmorillonite K10 Clay: An efficient catalyst for Hantzsch synthesis of 1,4-dihydropyridine derivatives. Synth. Commun. 38, 290-296.
24. Moshtaghi Z. A., Sahranavard, N. (2010) Synthesis of 1,4-dihydropyridine derivatives under aqueous media. EJOC 7(S1), S372-S376.
25. Moshtaghi Z. A., Eskandari I., Moghani D. (2012) Acceleration of multicomponent reactions in aqueous medium: multicomponent synthesis of a 4H-pyran library. Chem. Sci. Trans. 1, 91-102.
26. Elgemeie G. E. H., Regaila H. A., Shehata N. (1990) Unexpected products of the reaction of cycloalkylidene(cyano)thioacetamides with arylmethylenemalononitriles: a different novel synthetic route to condensed pyridine-2(1H)-thiones and condensed carbocyclic nitriles. J. Chem. Soc., Perkin Trans. 1, 1, 1267-1270.
27. X-Ray data for 2g: C19H15ClN4, M = 334.80, monoclinic system, space group P21/c, a = 13.056(3), b = 9.1340(18), c = 13.997(3) ?, B = 90.11(3)?; V = 1669.2(6) ?3, Z = 4, Dcalcd = 1.332 g cm-3, ?(Mo-K?) = 0.236 mm-1, crystal dimension of 0.5×0.25×0.15 mm. The X-ray diffraction measurement was made on a STOE IPDS-II diffractometer with graphite monochromated Mo-K? radiation. The structure was solved by using SHELXS. The Data reduction and structure refinement was carried out with SHELXL using the X-STEP32 crystallographic software package. The non-hydrogen atoms were refined anisotropically by full matrix least-squares on F2 values to final R1 = 0.0495, wR2 = 0.1048 and S = 0.886 with 225 parameters using 4481 independent reflection (? range = 2.66-29.17?). Hydrogen atoms attached to nitrogen were found in a difference Fourier map and refined isotropically. All other hydrogen atoms were added in idealized positions. The crystallographic information file has been deposited with the Cambridge Crystallographic Data Centre, CCDC 909290.
28. X-STEP32 Version 1.07b, Crystallographic Package; Stoe & Cie GmbH: Darmstadt, Germany, 2000.
2. Chanda A., Fokin V. V. (2009) Organic synthesis “on water”. Chem. Rev. 109, 725-748.
3. World Commission on the Environment and Development (WCED), Our Common Future Oxford, Oxford University Press, 1987, p. 43.
4. Zhu J., Bienaymé H. (2005) Multicomponent Reactions, Wiley-VCH, Weinheim.
5. Ruijter E., Scheffelaar R., Orru R. V. A. (2011) Multicomponent Reaction Design in the quest for molecular complexity and diversity. Angew. Chem., Int. Ed. 50, 6234-6246.
6. Bannwarth W., Felder E. (2000) Combinatorial Chemistry. Wiley-VCH, Weinheim.
7. Moshtaghi Z. A., Eskandari I., Khavasi H. R. (2012) A Green and convenient approach for the synthesis of methyl 6-amino-5-cyano-4-aryl-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates via a one-pot, multi-component reaction in water. Tetrahedron Lett. 53, 5519-5522.
8. Balwant S. J., Keshwal S., Rajguru D., and Bhagwat V. W. (2012) A simple and clean synthesis of polysubstituted 2,6-dicyanoanilines catalyzed by KF/alumina. J. Korean Chem. Soc. 56, 712-715.
9. (a) Sepiol J., Milart P. (1985) Elimination of the nitrile group from o-aminonitriles—IV: A new and efficient synthesis of 3,5-diarylaminobenzenes from arylidenemalonodinitriles and 1-arylethylidenemalonodinitriles. Tetrahedron 41, 5261–5265; (b) Griffiths J., Lockwood M., Roozpeikar B. (1977) Orientation effects in the benzene chromophore bearing one donor and two acceptor groups. Electronic absorption spectra of the dicyanoanilines. J. Chem. Soc., Perkin Trans. 2, 1608-1609.
10. (a) Kurreck H., Huber M. (1995) Model reactions for photosynthesis—photoinduced charge and energy transfer between covalently linked porphyrin and quinone units. Angew. Chem., Int. Ed. 34, 849-866. (b)
Long N. J. (1995) Organometallic compounds for nonlinear optics—the search for enlightenment. Angew. Chem., Int. Ed. 34, 21-38.
11. (a) Nalwa H. S. (1993) Organic materials for third-order nonlinear optics. Adv. Mater. 5, 341-358. (b) Wong M. S., Bosshard C., Pan F., Gunter P. (1996) Non-classical donor–acceptor chromophores for second order nonlinear optics. Adv. Mater. 8, 677-680.
12. Metzger R. M., Panetta C. (1991) The quest for unimolecular rectifiers. New. J. Chem. 15, 209-221.
13. Das P., Butcher R. J., Mukhopadhyay C. (2012) Zinc titanate nanopowder: an advanced nanotechnology based recyclable heterogeneous catalyst for the one-pot selective synthesis of self-aggregated low-molecular mass acceptor–donor–acceptor–acceptor systems and acceptor–donor–acceptor triads. Green Chem. 14, 1376-1387.
14. Milart, P.; Wilamowski, J.; Sepiol, J. J. (1998) Synthesis of di- and triamino-1,1 & apos; :3", 1"-terphenyls from arylethylidene and arylidenemalonodinitriles. Tetrahedron 54, 15643-15656.
15. Wang J., Li Q., Qi C., Liu Y., Ge Z., Li R. (2010) Primary 1,2-diamine catalysis III: an unexpected domino reaction for the synthesis of multisubstituted cyclohexa-1,3-dienamines. Org. Biomol. Chem. 8, 4240-4242.
16. El-Sakka I. A., El-Kousy S. M., Kandil Z. E. (1991) Nitriles in organic synthesis: The reaction of cinnamonitriles with cyclohexanone and acetylacetone. J. Prakt. Chem. 333, 345-350.
17. Rong L., Han H., Jiang H., Tu S. (2007) Efficient one-pot synthesis of 2-amino-4,6- diarylbenzene-1,3-dicarbonitrile under solvent-free conditions. Synth. Commun. 37, 3767-3772.
18. Cui S. L., Lin X. F., Wang Y. G. (2005) Parallel synthesis of strongly fluorescent polysubstituted 2,6-dicyanoanilines via microwave-promoted multicomponent reaction. J. Org. Chem. 70, 2866-2869.
19. (a) Victory P. J., Borrell J. I., Vidal-Ferran A. (1993) A Simple synthesis of 2-methoxypyridine-3-carbonitriles. Heterocycles 36, 769-776; (b) Victory P., Borrel J. I., Vidal-Ferran A., Seoane C., Soto J. L. (1991) The reaction of malononitrile with chalcone: a controversial chemical process. Tetrahedron Lett. 32, 5375-5378; (c) Victory P. J., Borrell J. I., Vidal-Ferran A., Montenegro E., Jimeno M. L. (1993) Synthesis of 4-amino-8-cyanoquinazolines from enones and enals. Heterocycles 36, 2273-2280.
20. Wang X. S., Zhang M. M., Jiang H., Tu S. J. (2007) An improved and clean procedure for the synthesis of one-donor poly-acceptors systems containing 2,6-dicyanoamine moiety in aqueous media catalyzed by TEBAC in the presence and absence of K2CO3 Tetrahedron 63, 5265-5273.
21. Al-Matar H. M., Khalil K. D., Meier H., Kolshorn H., Elnagdi M. H. (2008) Chitosan as heterogeneous catalyst in Michael additions: The reaction of cinnamonitriles with active methyls, active methylenes and phenols. Arkivoc xvi, 288-301.
22. Wang X. S., Wu J. R., Zhou J., Tu S. J. (2009) Green method for the synyhesis of highly substituted cyclohexa-1,3-diene, polyhydroindene, polyhydronaphthalene, isochromene, isothiochromene, and isoquinoline derivatives in ionic liquids. J. Comb. Chem. 11, 1011-1022.
23. Moshtaghi Z. A., Baradaran H. S. (2008) Montmorillonite K10 Clay: An efficient catalyst for Hantzsch synthesis of 1,4-dihydropyridine derivatives. Synth. Commun. 38, 290-296.
24. Moshtaghi Z. A., Sahranavard, N. (2010) Synthesis of 1,4-dihydropyridine derivatives under aqueous media. EJOC 7(S1), S372-S376.
25. Moshtaghi Z. A., Eskandari I., Moghani D. (2012) Acceleration of multicomponent reactions in aqueous medium: multicomponent synthesis of a 4H-pyran library. Chem. Sci. Trans. 1, 91-102.
26. Elgemeie G. E. H., Regaila H. A., Shehata N. (1990) Unexpected products of the reaction of cycloalkylidene(cyano)thioacetamides with arylmethylenemalononitriles: a different novel synthetic route to condensed pyridine-2(1H)-thiones and condensed carbocyclic nitriles. J. Chem. Soc., Perkin Trans. 1, 1, 1267-1270.
27. X-Ray data for 2g: C19H15ClN4, M = 334.80, monoclinic system, space group P21/c, a = 13.056(3), b = 9.1340(18), c = 13.997(3) ?, B = 90.11(3)?; V = 1669.2(6) ?3, Z = 4, Dcalcd = 1.332 g cm-3, ?(Mo-K?) = 0.236 mm-1, crystal dimension of 0.5×0.25×0.15 mm. The X-ray diffraction measurement was made on a STOE IPDS-II diffractometer with graphite monochromated Mo-K? radiation. The structure was solved by using SHELXS. The Data reduction and structure refinement was carried out with SHELXL using the X-STEP32 crystallographic software package. The non-hydrogen atoms were refined anisotropically by full matrix least-squares on F2 values to final R1 = 0.0495, wR2 = 0.1048 and S = 0.886 with 225 parameters using 4481 independent reflection (? range = 2.66-29.17?). Hydrogen atoms attached to nitrogen were found in a difference Fourier map and refined isotropically. All other hydrogen atoms were added in idealized positions. The crystallographic information file has been deposited with the Cambridge Crystallographic Data Centre, CCDC 909290.
28. X-STEP32 Version 1.07b, Crystallographic Package; Stoe & Cie GmbH: Darmstadt, Germany, 2000.