In hierarchical production planning system, Aggregate Production Planning (APP) falls between the broad decisions of long-range planning and the highly specific and detailed short-range planning decisions. This study develops an interactive Multi-Objective Genetic Algorithm (MOGA) approach for solving the multi-product, multi-period aggregate production planning (APP) with forecasted demand, related operating costs, and capacity. The proposed approach attempts to minimize total costs with reference to inventory levels, labor levels, overtime, subcontracting and backordering levels, and labor, machine and warehouse capacity. Here several genetic algorithm parameters are considered for solving NP-hard problem (APP problem) and their relative comparisons are focused to choose the most auspicious combination for solving multiple objective problems. An industrial case demonstrates the feasibility of applying the proposed approach to real APP decision problems. Consequently, the proposed MOGA approach yields an efficient APP compromise solution for large-scale problems.