This paper offers a novel multiobjective approach – Multiobjective Ions Motion Optimization (MOIMO) algorithm stimulated by the movements of ions in nature. The main inspiration behind this approach is the force of attraction and repulsion between anions and cations. A storage and leader selection strategy is combined with the single objective Ions Motion Optimization (IMO) approach to estimate the Pareto optimum front for multiobjective optimization. The proposed method is applied to 18 different benchmark test functions to confirm its efficiency in finding optimal solutions. The outcomes are compared with three novel and well-accepted techniques in the literature using five performance parameters quantitatively and obtained Pareto fronts qualitatively. The comparison proves that MOIMO can approximate Pareto optimal solutions with good convergence and coverage with minimum computational time.