This research aims to show how decision sciences can make a significant contribution on handling the supply chain problem during Covid-19 Pandemic. The paper discusses how robust optimization handles uncertain demand in agricultural processed products supply chain problems within two scenarios during the pandemic situation, i.e., the large-scale social distancing and partial social distancing. The study assumes that demand and production capacity are uncertain during a pandemic situation. Robust counterpart methodology is employed to obtain the robust optimal solution. To this end, the uncertain data is assumed to lie within a polyhedral uncertainty set. The result shows that the robust counterpart model is a computationally tractable through linear programming problem. Numerical experiment is presented for the Bandung area with a case on sugar and cooking oil that is the most influential agricultural processed products besides the main staple food of the Indonesian people, rice.