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 This study addresses the minimization of total tardiness in a hybrid flow shop scheduling problem 
with sequence-dependent setup times and blocking constraints. Each production stage includes 
multiple machines, and there are no buffers between the stages. The setup time required to process 
a job depends on the previously processed job. Two mixed-integer linear programming models are 
developed to formulate the problem. Moreover, an iterative local search algorithm and hybrid 
genetic algorithms are proposed to have quality solutions with minimal computational efforts. 
Several computational tests are conducted to tune the heuristic parameters for better performance. 
Computational experiments are carried out to evaluate the performance of solution methodologies 
in terms of quality and time. The results indicate that while mixed-integer programming models 
can solve small-size problem instances, they are not capable of solving large-sized instances. 
However, the proposed heuristic algorithms find quality solutions for all instances in a very short 
time.  
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1. Introduction 

 
The classical flow shop scheduling problem (FSSP) is crucial in manufacturing industries such as semiconductors, 
automobiles, and textiles. In FSSP, each job must be processed at each stage, with a single machine used at each stage to 
achieve performance measures such as minimization of Makespan (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚),  total completion time �∑𝐶𝐶𝑗𝑗�, and total tardiness 
�∑𝑇𝑇𝑗𝑗�. To improve the production efficiency based on these performance measures, identical parallel machines are introduced 
into the classical FSSP. This production pattern is known as hybrid (or flexible) flow shop scheduling (HFSP). This problem 
was first introduced by Salvador (1973) in the synthetic fibers industry. In HFSP, more than one machine is available at each 
stage, and jobs need to be processed on one of them. The HFSP environment can be observed in several real-world industries, 
such as electronics, steel, paper production, textiles, and chemicals.  

The HFSP can be categorized as no-wait, limited buffer, infinite buffer, and blocking according to the storage strategy between 
the stages (Zheng et al., 2024). The infinite buffer strategy is the most commonly used in the HFSP literature. However, in 
many manufacturing industries, storage capacity between the stages is zero, which leads to the consideration of blocking 
constraints. Two types of blocking have been studied; “release when starting blocking” and “release when completing 
blocking” (Yuan et al., 2009). In the problem environment of this study, a machine is blocked until the processing of the job 
on the machine begins at the next stage (release when starting blocking).    
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Some tasks, such as tool replacement and cleaning, must be done between processing two jobs, which leads to the 
consideration of setup time. In the literature, two types of setup time were considered: sequence-dependent setup time (SDST) 
and sequence-independent setup time (SIST). Dealing with SIST may be trivial, as it can be attributed to the processing time 
of jobs. On the other hand, SDST can be a challenging problem because the sequence of tasks affects the required setup time 
and, consequently, the performance measure.   

Customer satisfaction is a critical consideration in scheduling theory, making the completion of jobs by their given due dates 
essential. Moreover, real-life scheduling problems are often related to due dates or deadlines. This study aims to minimize the 
total tardiness of jobs to enhance customer satisfaction. Note that tardiness is the amount of time by which a job's completion 
time exceeds its given due date. 

This study addresses the problem of scheduling jobs to minimize total tardiness in a hybrid flow shop scheduling problem 
with blocking and sequence-dependent setup time considerations (HFSP-B-SDST). It is desired to find the optimal allocation 
of jobs to machines at each stage and the sequence of jobs on each machine. To our knowledge, this problem has not been 
studied in the related literature, making its application to real-life scenarios and the lack of existing research a strong 
motivation for this study. The contribution of the study to scheduling literature is threefold. First, it is the first attempt to 
minimize total tardiness in HFSP-B-SDST. Second, two mixed-integer linear programming (MILP) models are developed to 
solve the problem. Finally, two heuristic algorithms, namely iterative local search (ILS) and hybrid genetic algorithm (HGA), 
are proposed to solve large-scale problem instances in reasonable times.      

The rest of this paper is organized as follows. Section 2 reviews the related literature relevant to HFSP-B-SDST. The problem 
definition and the MILP models are briefly presented in Section 3. The proposed heuristic algorithms, ILS and HGA, are 
described in detail in Section 4. Section 5 presents the computational tests used to evaluate the performance of the solution 
methodologies, and Section 6 discusses the conclusions and outlines several future directions. 

2. Literature Review 
 
The literature review extensively discusses research related to HFSP-B-SDST. The HFSP has been widely studied, and readers 
interested in more detail can refer to the literature reviews by Tosun et al. (2020) and Çolak and Keskin (2021). For the 
tardiness minimization objective in FSSP, Vallada et al. (2008) provide a review and evaluation of heuristic algorithms. Over 
the past two decades, numerous studies have focused on the blocking FSSP problem, and the works by Hall and Sriskandarajah 
(1996) and Miyata and Nagano (2019) are recommended for those interested in more detail. Table 1 summarizes the papers 
most closely related to HFSP-B-SDST, discussing problem characteristics and constraints, objectives, the presence of MILP 
models, and the algorithms used in each study. 

Table 1  
A summary of studies 

Study Characteristics and Constraints Objective MILP odel Algorithm 
Ruiz and Maroto (2006) SDST, Eligibility, Rm 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 No GA 

Rashidi et al. (2010) Rm, Blocking, SDST 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 No GA 

Hakimzadeh Abyaneh and 
Zandieh (2012) 

SDST, Limited Buffer 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and ∑𝑇𝑇𝑗𝑗 No SPGA II, NSGA II  

Elmi and Topaloğlu (2013) Blocking, Qm, Eligibility 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes SA 

Tao et al. (2014) STST, Rm Production Period No SA, GA 

Ebrahimi et al. (2014) Group Scheduling, SDGS, 
Uncertain Due Date 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and ∑𝑇𝑇𝑗𝑗 No NSGA II, Multi-Objective GA 

Li and Pan (2015) Limited Buffer, Rm 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 No Hybrid Artificial Bee Colony  

Moccellin et al. (2018) Blocking, SIST, SDST 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 No Heuristic Algorithms Along with 
Priority Rules 

Pessoa et al. (2021) SDST, Blocking, Rm 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes GRASP 
Aqil and Allali (2021) SDST, Blocking, Qm ∑�𝑇𝑇𝑗𝑗 + 𝐸𝐸𝑗𝑗�  No Migratory Bird Optimization, Water 

Wave Optimization 
Qin et al. (2022) Blocking Total Energy 

Consumption 
Yes IGA  

Maciel et al. (2022) SDST, Blocking 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes HGA 

Wang et al. (2023-a) Blocking 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes Variant IGA 

Wang et al. (2023-b) Blocking, Distributed 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes Advanced IGA 
Liu et al. (2024) Blocking, Distributed 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes Tri-individual IGA 
Shao et al. (2024) Blocking, Distributed, Assembly, 

SDST 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes Feedback Learning-Based Selection 

Hyper-Heuristic 
Zheng et al. (2024) SDST, Limited Buffer, Rm, Re-

entrant 
∑𝑤𝑤𝑗𝑗𝐶𝐶𝑗𝑗  Yes Cooperative Adaptive GA 

This study SDST, Blocking ∑𝑇𝑇𝑗𝑗  Yes ILS, HGA 
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SDGS: Sequence-dependent group schedule, GRASP: Greedy randomized adaptive search procedures, SPGA II: Sub-population genetic algorithm II 
approach, NSGA II: Non-dominated sort of genetic algorithm. 
As shown in Table 1, several problem characteristics have been studied in the context of HFSP, including blocking, distributed 
scheduling, group scheduling, and SDST. Additionally, some papers have utilized different parallel machine structures beyond 
identical parallel machines, such as unrelated (Rm) and uniform (Qm) parallel machines. Most studies have used makespan 
as the primary objective function. However, some studies have considered makespan along with other performance measures 
simultaneously (Rashidi et al., 2010; Naderi et al., 2011; Abyaneh & Zandieh, 2012; Ebrahimi et al., 2014). The studies by 
Tao et al. (2014) and Qin et al. (2022) used objectives different from those traditionally found in classical scheduling literature. 
Furthermore, Table 1 indicates that the Genetic Algorithm (GA) and its variations are the most popular approach among the 
algorithms, although other algorithms such as Simulated Annealing (SA), various iterated greedy algorithms (IGA), and swarm 
optimization techniques are also used. Preventive maintenance of machines has also been studied in the HFSP literature. 
Nederi et al. (2010) examined preventive maintenance within HFSP to minimize makespan and propose GA and artificial 
immune systems. Additionally, Khamseh et al. (2015) considered preventive maintenance in the context of group scheduling 
and SDGS to minimize makespan, using GA and SA. Feng et al. (2018) investigated the same problem to minimize total cost. 
On the other hand, Işık et al. (2023) studied eligibility on unrelated parallel machines in HFSP to minimize makespan and 
developed a constraint programming approach to solve the problem. 

A closely related study by Maciel et al. (2022) addressed HFSP-B-SDST to minimize makespan. They proposed an HGA that 
incorporates Greedy Randomized Adaptive Search Procedures. In contrast, this study focuses on minimizing a different 
objective function, specifically total tardiness, and proposes two different heuristic algorithms: ILS and HGA. 

3. Problem Definition and Mathematical Models 
 

This section briefly defines the problem under study and its assumptions, followed by its complexity and a numerical example, 
and then presents two MILP models. The assumptions and characteristics of the problem are as follows:  

• The hybrid flow shop environment includes S stages, each denoted by s. 
• The system has J jobs, which are ready for processing at time zero. Each job j (𝑗𝑗 = 1,2, … , 𝐽𝐽)  has a due date 𝐷𝐷𝑗𝑗 .  
• Each job requires S operations, which must be performed at different stages. The processing time of jobs at each 

stage is independent and known in advance, denoted by 𝑃𝑃𝑗𝑗𝑗𝑗. 
• There are 𝑀𝑀𝑠𝑠 identical parallel machines in each stage. The number of machines may vary across stages, and all 

machines are available at time zero. 
• Jobs and machines are independent, with no eligibility restrictions.  
• Machines require a setup when switching between jobs. The manufacturing system should consider deterministic 

sequence-dependent setup times, denoted by 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗′𝑠𝑠, which are known in advance. 
• Each machine can process only one job at a time.  
• Preemption of jobs is not allowed. 
• Maintenance of machines is not considered, so the machines are continuously available. 
• Due to the lack of storage area between stages, blocking constraints are considered. Therefore, a machine that has 

processed a job must be blocked until an available machine in the next stage is ready. Consequently, machines cannot 
process another job until the current job stays. 

• The system includes only one factory (no distributed system), jobs are considered individually (no group scheduling), 
and there is no no-wait constraint.  

• The problem considered in this study can be described as follows, based on the assumptions given above: There is a 
set of sequence-dependent jobs, each requiring multiple operations to be processed sequentially on identical parallel 
machines at each stage. It is expected to allocate the jobs to machines and determine their sequence on each machine 
to minimize total tardiness.  

Proposition 1. The problem under study is NP-complete in the strong sense. 
 

Proof: The Problem can be simplified if SDST is not considered and makespan is used as the objective function instead of 
total tardiness. In this case, the problem reduces to an FSHP problem with blocking to minimize the makespan, which is shown 
to be strongly NP-complete by Hall and Sriskandarajah (1996). Therefore, our problem is also NP-complete in the strong 
sense. ■ 

An illustrative example is provided to describe the problem. Six jobs need to be processed across two stages, each with two 
machines. The corresponding dataset for the problem is presented in Table 2. Note that the diagonal of the setup time matrix 
indicates the initial setup time of the jobs at the corresponding stage. 



 

 

150 

Fig. 1 (a) and (b) represent a feasible and optimal solution for the illustrative example, respectively. Blocking of machines 
can be observed in both schedules: in Stage 1 after Jobs 5 and 2 in the feasible solution, and in Stage 1 after Job 6 in the 
optimal solution. The total tardiness of the feasible schedule is 16 (0+6+0+2+3+5). 

Table 2 
Sequence-dependent setup times, processing times, and due dates for the illustrative example 

Stage 1/Stage 2  
Jobs  1 2 3 4 5 6 Processing time Due Date 

1 1/3 4/3 3/2 2/4 3/5 2/2 1/3 9 
2 5/2 5/1 3/2 3/2 3/5 4/2 2/4 7 
3 3/5 5/1 1/3 3/2 1/3 3/1 2/4 8 
4 2/3 5/4 4/2 4/4 2/5 4/5 3/1 14 
5 1/5 1/3 3/2 3/2 3/4 4/1 2/3 10 
6 2/3 1/4 3/5 5/4 4/3 5/3 1/3 12 

 

This feasible solution can be improved through better assignment and sequencing of jobs, which may lead to eliminating 
blocking, optimizing sequence dependencies, and achieving a better schedule with reduced total tardiness. By applying one 
of the MILP models, the optimal solution for the illustrative example, as shown in Fig. 1 (b), yields a total tardiness of 14 
(8+5+0+1+0+0). 

 
(a)          (b) 

Fig. 1. A feasible (a) and optimum (b) schedule of the illustrative example 
 

Based on the assumptions and considerations outlined above, two mixed-integer linear programming (MILP) models have 
been developed to solve the problem optimally. The following subsections discuss these MILP models in detail. 

3.1 Mixed Integer Linear Programming Model 1 
 

The first model uses two primary binary decision variables which are the assignment of jobs to machines at each stage and 
the order of jobs within the stages. The following decision variables are utilized in MILP model 1.  

𝐶𝐶𝑗𝑗𝑗𝑗  Completion time of job j at stage s.  
𝐷𝐷𝑗𝑗𝑗𝑗   Departure time of job j at stage s. 

𝑇𝑇𝑗𝑗   Tardiness of job j.  

𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗 = �1 If job 𝑗𝑗 is assigned to machine 𝑚𝑚 at stage 𝑠𝑠
0 Otherwise                                                             

 

𝑍𝑍𝑗𝑗𝑗𝑗′𝑠𝑠  = �1 If job 𝑗𝑗 processed on the same machine before job 𝑗𝑗′ (𝑗𝑗′ > 𝑗𝑗) at stage 𝑠𝑠.
0 Otherwise                                                                                                                    

 

Based on the parameters given in Section 3 and decision variables outlined above, the following MILP model is proposed.  

min 𝑧𝑧 =  � 𝑇𝑇𝑗𝑗
𝐽𝐽

𝑗𝑗=1
 

 (1) 

subject to    

∑ 𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗  𝑀𝑀𝑠𝑠
𝑚𝑚=1 = 1 for  𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆  (2) 
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𝐶𝐶𝑗𝑗′𝑠𝑠 ≥ 𝐷𝐷𝑗𝑗𝑗𝑗 + 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗′𝑠𝑠 + 𝑃𝑃𝑗𝑗′𝑠𝑠 + 𝐿𝐿𝑠𝑠(𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑌𝑌𝑗𝑗′𝑠𝑠𝑠𝑠 + 𝑍𝑍𝑗𝑗𝑗𝑗′𝑠𝑠 − 3)  for  𝑗𝑗, 𝑗𝑗′ = 1,2, … , 𝐽𝐽; 𝑗𝑗 < 𝑗𝑗′; 𝑠𝑠 = 1,2, … , 𝑆𝑆; 
𝑚𝑚 = 1,2, … ,𝑀𝑀𝑠𝑠 

(3) 

𝐶𝐶𝑗𝑗𝑗𝑗 ≥ 𝐷𝐷𝑗𝑗′𝑠𝑠 + 𝑆𝑆𝑆𝑆𝑗𝑗′𝑗𝑗𝑗𝑗 + 𝑃𝑃𝑗𝑗𝑗𝑗 + 𝐿𝐿𝑠𝑠(𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑌𝑌𝑗𝑗′𝑠𝑠𝑠𝑠−𝑍𝑍𝑗𝑗𝑗𝑗′𝑠𝑠 − 2) for  𝑗𝑗, 𝑗𝑗′ = 1,2, … , 𝐽𝐽; 𝑗𝑗 < 𝑗𝑗′; 𝑠𝑠 = 1,2, … , 𝑆𝑆; 
𝑚𝑚 = 1,2, … ,𝑀𝑀𝑠𝑠 

(4) 

𝐶𝐶𝑗𝑗𝑗𝑗 ≥ 𝑃𝑃𝑗𝑗𝑗𝑗 + 𝑆𝑆𝑆𝑆0𝑗𝑗𝑗𝑗 for  𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆 )5( 

𝐶𝐶𝑗𝑗𝑗𝑗+1 = 𝐷𝐷𝑗𝑗𝑗𝑗 + 𝑃𝑃𝑗𝑗𝑗𝑗+1 for  𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆 − 1 )6( 

𝐷𝐷𝑗𝑗𝑗𝑗 ≥ 𝐶𝐶𝑗𝑗𝑗𝑗 for  𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆 )7( 

𝑇𝑇𝑗𝑗 ≥ 𝐷𝐷𝑗𝑗𝑗𝑗 − 𝐷𝐷𝑗𝑗  for  𝑗𝑗 = 1,2, … , 𝐽𝐽 )8( 

𝑇𝑇𝑗𝑗 ,𝐶𝐶𝑗𝑗𝑗𝑗,𝐷𝐷𝑗𝑗𝑗𝑗  ≥ 0 for  𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆 )9( 

𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗 ,𝑍𝑍𝑗𝑗𝑗𝑗′𝑠𝑠 ∈ {0,1}       for  𝑗𝑗, 𝑗𝑗′ = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆; 
𝑚𝑚 = 1,2, … ,𝑀𝑀𝑠𝑠 

)10( 

The total tardiness of jobs is minimized in (1). Jobs at each stage are assigned to one machine in Eq. (2). Eq. (3) and Eq. (4) 
are used to calculate the completion time of jobs at each stage while considering processing time, setup time, and departure 
times. Eq. (5) ensures that the completion time of a first assigned job is greater than the sum of its processing and initial setup 
time. Eq. (6) and Eq. (7) guarantee that the blocking of machines due to jobs is considered. Eq. (8) ensures the tardiness of 
the job is greater than the differences between its departure time at the final stage and its due date. Eq. (9) and Eq. (10) 
represent the non-negative continuous variables and binary restrictions, respectively.  

3.2 Mixed Integer Linear Programming Model 2 
 

The MILP 2 model uses a single type of binary variable which is used to determine the immediate sequence of jobs. The jobs 
immediately follow each other starting with a dummy job (Job 0). The defined new decision variable and the formulations are 
given below.  

𝑋𝑋𝑗𝑗𝑗𝑗′𝑠𝑠  = �1 If job 𝑗𝑗 is processed immediately before job 𝑗𝑗′ at stage 𝑠𝑠
0 Otherwise                                                                                       

  

min (1)  

subject to  

Constraint sets (5), (6), (7), (8) and (9)  

∑ 𝑋𝑋0𝑗𝑗′𝑠𝑠
𝐽𝐽
𝑗𝑗′=1 ≤ 𝑀𝑀𝑠𝑠                                           for  𝑠𝑠 = 1,2, … , 𝑆𝑆 (11) 

∑ 𝑋𝑋𝑗𝑗𝑗𝑗′𝑠𝑠
𝐽𝐽
𝑗𝑗′=1,𝑗𝑗′≠𝑗𝑗 ≤ 1                             for   𝑗𝑗 = 1,2, … , 𝐽𝐽;  𝑠𝑠 = 1,2, … , 𝑆𝑆 (12) 

∑ 𝑋𝑋𝑗𝑗′𝑗𝑗𝑗𝑗
𝐽𝐽
𝑗𝑗′=0,𝑗𝑗′≠𝑗𝑗 = 1                           for   𝑗𝑗 = 1,2, … , 𝐽𝐽;  𝑠𝑠 = 1,2, … ,𝑆𝑆 (13) 

𝐶𝐶𝑗𝑗′𝑠𝑠 ≥ 𝐷𝐷𝑗𝑗𝑗𝑗 + 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗′𝑠𝑠 + 𝑃𝑃𝑗𝑗′𝑠𝑠 + 𝐿𝐿𝑠𝑠(𝑋𝑋𝑗𝑗′𝑗𝑗𝑗𝑗 − 1)   for  𝑗𝑗, 𝑗𝑗′ = 1,2, … , 𝐽𝐽; 𝑗𝑗 ≠ 𝑗𝑗′; 𝑠𝑠 = 1,2, … , 𝑆𝑆 (14) 

𝑋𝑋𝑗𝑗′𝑗𝑗𝑗𝑗 ∈ {0,1}                                             for  𝑗𝑗, 𝑗𝑗′ = 0,1, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆 (15) 

The restriction on the number of machines used is satisfied by counting the number of jobs that follow the dummy job 0 in 
each stage in Eq. (11). Each job can be followed by at most one job in Eq. (12), while each job must follow one job at each 
stage in Eq. (13). Eq. (14) is used to calculate the completion time of a job at a stage by considering the departure time of the 
preceding job, as well as the processing and setup times. Eq. (15) is used to define the new binary variable. 

The Eq. (16) is used to determine an efficient 𝐿𝐿𝑠𝑠value, which can lead to finding the MILPs solutions in a shorter time while 
satisfying the corresponding constraints.  

𝐿𝐿𝑠𝑠 = � �𝑃𝑃𝑗𝑗𝑠𝑠′
𝐽𝐽

𝑗𝑗=1

𝑠𝑠

𝑠𝑠′=1 

+ 𝐽𝐽 × max
𝑗𝑗,𝑗𝑗′=1,2,…,J 

�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗′𝑠𝑠� 
for  𝑠𝑠 = 1,2, … , 𝑆𝑆 (16) 
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4. Proposed Heuristic Algorithms 
The size of the MILP model increases dramatically with the number of jobs and stages, making it difficult to reach an optimal 
within a reasonable timeframe. Furthermore, preliminary experiments reveal that MILP 1 failed to obtain a feasible solution 
for some problem instances. Additionally, as discussed in Section 3, there is no polynomial-time algorithm available to solve 
the problem. These challenges motivated us to develop heuristic algorithms that can provide promising solutions with small 
computational efforts. Two heuristic algorithms have been developed for the solution: an Iterative Local Search (ILS) 
algorithm and a hybrid genetic algorithm (HGA). Both heuristic algorithms aim to find the best sequence of jobs to solve the 
problem. The sequence of jobs is decoded according to the framework given below. 

The framework of decoding 
1. for all jobs (according to sequence) do 
2. for all stages do 
3. Calculate temporary machine load (TML) which is equal to the sum of machine load and setup time. 
4. If all TML > 𝐷𝐷[𝑗𝑗],𝑠𝑠−1 Then 
5. Choose the machine having the smallest TML. 
6. Otherwise 
7. Choose the machine among the machines having TML ≤ 𝐷𝐷[𝑗𝑗],𝑠𝑠−1 which has the smallest �𝐷𝐷[𝑗𝑗],𝑠𝑠−1 − 𝑇𝑇𝑇𝑇𝑇𝑇� 
8. Assign a job to the machine and calculate the completion time. 
9. Update the departure time of the machine on Stage s-1. 
10. end for 
11. end for 

4.1 Iterative Local Search 
Many problems in the scheduling literature have been solved using different versions of the ILS algorithm. The ILS algorithm 
in this study begins by considering eight different dispatching rules in combination with the well-known NEH algorithm. Each 
dispatching rule generates a sequence of jobs, and then the NEH algorithm along with the decoding procedure described above 
is applied to find a feasible solution. The total tardiness is calculated for the eight feasible solutions obtained by the dispatching 
rules, and the improvement phase of the algorithm starts with the sequence that has the minimum total tardiness among them. 
The dispatching rules applied are listed below. 

(1) Shortest processing time: Jobs are sequenced according to ascending order based on their total processing time, 
which is the sum of processing times at each stage.  

(2) Longest processing time: Descending order of total processing times of jobs is used for sequencing.  
(3) Earliest due date: Ascending order of due date of jobs are used for sequencing. 
(4) Slack time: Jobs are sequenced in ascending order based on the difference between their due date and total processing 

time. 
(5) Slack time with critical stage. First, the load of each stage is calculated by summing the processing time of the jobs 

at that stage. Then, the critical stage having the maximum load is identified. Jobs are sequenced in increasing order 
of the difference between their due date and processing time in the critical stage. 

(6) Slack with final stage: Jobs are sequenced based on the difference between their due date and processing time on 
the final stage.  

(7) Slack with the first stage: Ascending order of the difference between the due date and processing time on the first 
stage is used for sequencing. 

(8) Critical ratio: The jobs are ordered according to the ratio of their due date to total processing time.  
 

The ILS algorithm generally consists of three phases: Initialization, improvement, and perturbation. The initialization phase 
has been discussed above. In the Improvement phase, the algorithm uses insertion and pairwise interchange search techniques. 
In the insertion search, jobs are sequentially selected and inserted into different positions to create new candidate solutions. 
This process is repeated for all jobs and positions to generate a set of candidate solutions. The best candidate solution is then 
chosen, and the procedure is repeated if an improvement is observed. In the pairwise interchange search, two jobs are selected, 
and their positions are swapped to obtain a new feasible solution. This procedure is similar to the insertion search and is 
applied to create improved solutions. However, relying solely on these two search techniques may cause the algorithm to get 
stuck in a local optimum. To address this, the perturbation phase is introduced. In this phase, the job with the maximum 
lateness (i.e., the difference between its due date and completion time) is selected and moved to the final position if the final 
iteration solution differs from the previous one. If not, the sequence of jobs is randomly divided into two parts, and the order 
of these parts is interchanged. After the perturbation phase, the algorithm returns to apply the insertion and pairwise 
interchange procedures until the pre-determined number of iterations (PNI) is completed. 

The total tardiness value obtained by the ILS algorithm improves with a higher PNI value, but it will not be significantly 
affected after a certain PNI value. On the other hand, the solution time of the algorithm increases with higher PNI values. To 
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determine an efficient PNI value, seven different PNI values were tested:10, 20, 30, 50, 70, and 100. Out of the 300 problem 
instances described in Section 5, 60 were used for parameter tuning. The average total tardiness (ATT) and the solution time 
(ST) for each PNI value are reported and illustrated in Fig. 2. According to Fig. 2, the PNI value 20 was chosen because, at 
higher PNI values, the ATT does not reduce significantly, while the ST increases substantially. 

 

Fig. 2. Effect of PNI at ILS algorithm on the ATT and ST values 

4.2 Hybrid Genetic Algorithm 
The proposed Hybrid Genetic Algorithm (HGA) combines a genetic algorithm with the Iterative Local Search (ILS) algorithm 
described earlier. The general procedure of the genetic algorithm is used to enhance the solution. However, whenever a 
sequence generated after crossover and mutation operators significantly diverge from the current population, the improvement 
and perturbation procedures of the ILS algorithm are applied. 

To determine divergence, Kendall’s Tau coefficient, as proposed by Kendall (1938), is used to calculate the correlation 
between the new sequence and the population members. First, Kendall’s Tau coefficient is calculated between the new 
sequence and all population members. Then, the maximum of these values is compared to a predetermined Kendall’s Tau 
value (PKTau). If the obtained maximum value is less than PKTau, the ILS algorithm is applied. Otherwise, the genetic 
algorithm procedures are repeated to generate different population members. 

In the proposed algorithm, each gene of a chromosome is represented by a unique positive integer, corresponding to a specific 
job number. As a result, the chromosome represents a sequence of jobs, with the length of the chromosome equal to the total 
number of jobs. After generating a new solution, the decoding procedure described in Section 4 is applied to obtain a feasible 
solution for the original problem. The total tardiness score derived from this solution is then used as the fitness value of the 
chromosome. 

The predetermined number of members is used as the population size (PS) in the GA. Eight members of the population are 
generated using the dispatching rules described in Section 4.1 in combination with the NEH algorithm, while the remaining 
members are created randomly. After the population is generated or updated, the members are ranked in ascending order based 
on their fitness values. The next generations are formed through parent selection, crossover, and mutation procedures. The 
Ranking Selection method is employed for parent selection, with linearly assigned selection probabilities (𝑆𝑆𝑆𝑆𝑖𝑖) as given in 
Eq. (17). 

𝑆𝑆𝑆𝑆𝑖𝑖  =
PS − rank of i +1

PS(PS+1)/2
 

(17) 

In the crossover procedure, four types of crossover methods were analyzed for efficiency during parameter setting, and one 
was selected for use in the GA: 

(1) Uniform Crossover: A random number between 0 and 1 is generated for each gene. If the number is less than the 
predetermined uniform crossover probability (UCP), the gene is taken from the first parent for the first offspring and 
from the second parent for the second offspring. Otherwise, the reverse is done. If a gene is duplicated, the original 
sequence of the parent is used to replace the duplicate. 

(2) Single-Point Crossover: A random integer between 1 and J (the chromosome length) is generated, dividing the 
parents into two parts. The first offspring inherits the genes from the first parent up to the crossover point, and the 
remaining genes are filled in from the second parent, ensuring no gene is duplicated. 
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(3) Two-Point Crossover: Two random points are generated between 1 and I, splitting the parents into three parts. The 
middle segment of the first parent is directly passed to the first offspring, and the remaining genes are filled from the 
second parent, starting after the second crossover point, ensuring no gene duplication. 

(4) Order Crossover: Similar to the two-point crossover, but the filling of the remaining genes begins with the first part 
of the offspring rather than the third, ensuring the integrity of the sequence without duplicates. 

The mutation operator is selectively applied to offspring in the genetic algorithm, with a small probability of introducing 
variation. A random number between 0 and 1 is generated, and if it is less than the predetermined mutation probability (MP), 
the mutation is performed. During mutation, two different jobs are randomly selected, and their positions are swapped in the 
offspring's sequence. 

When a new member is created, the population is updated to ensure continuous improvement. In this HGA, a full elitism 
strategy is applied, meaning only the best chromosomes survive. New members are added to the population if they are better 
than at least one existing member. Once a new member joins the population, the correlation between the new and existing 
members is calculated using Kendall’s Tau coefficient. If the maximum Kendall’s Tau coefficient is less than the 
predetermined threshold (PKTau), the ILS algorithm is executed for a specified number of iterations (PNI_GA). If the new 
member is distinct from the existing population after applying ILS, the population is updated. 

The proposed HGA is terminated after a pre-determined number of iterations (GPNI). In other words, the HGA algorithm 
stops and returns the best solution obtained once the number of iterations reaches GPNI. 

To execute the HGA, pre-determined parameters must be selected as they directly affect the solution efficiency obtained by 
the HGA. In this HGA, the parameters GPNI, PNI_GA, MP, PS, and PKTau need to be determined. Additionally, one of the 
four crossover types should be chosen, and the UCP in the first crossover type should be selected whenever the uniform 
crossover type is used. For each parameter, four different levels are tested while keeping the rest of the parameters at fixed 
values, similar to Salvietti et al. (2014). While selecting the parameters, the ATT and ST performance measures were used to 
evaluate the parameters. The parameters with their levels, the obtained ATT and ST values, and the best, fixed, and selected 
levels are given in Table 2. Subsequently, the selected parameters provided in Table 2 are used during the experiments in the 
HGA. 

Table 3  
Parameter tuning results for HGA 

Parameter Levels 1 2 3 4 Best Selected Fixed 
GPNI Values 200 400 600 800  400 400 

ATT 2803 2802 2802 2796 800   
ST 118 118 118 118 400   

PNI_GA Values 1 2 3 5  2 2 
ATT 2803 2802 2723 2728 3   
ST 92 118 188 314 1   

MP Values 0.01 0.04 0.07 0.1  0.04 0.07 
ATT 2798 2740 2802 2785 0.04   
ST 110 109 118 127 0.04   

PS Values 10 20 30 50  20 20 
ATT 2978 2802 2720 2760 30   
ST 39 118 167 276 10   

PKTau Values 0.3 0.5 0.7 0.9  0.9 0.7 
ATT 2884 2851 2802 2700 0.9   
ST 60 76 118 137 0.3   

Crossover Type Values 1 2 3 4  3 3 
ATT 2887 4113 2802 2803 3   
ST 119 1 118 139 2   

UCP Values 0.3 0.5 0.7 0.9  0.3 0.7 
ATT 2835 2856 2887 3596 0.3   
ST 117 133 119 17 0.9   

5. Computational Experiments 
 

Parameter setting, performance measures, and performance of the two MILP models and two heuristic algorithms are 
discussed in this section. In the solution of MILP models, Microsoft Visual C++ implementation of IBM ILOG CPLEX 
Optimization Studio V22.1 was used under the time limit of one hour. Moreover, the ILS and HGA algorithms are coded in 
Microsoft Visual C++.  Servers equipped with a 2.93 GHz CPU and 96 GB of RAM are used for all computations. 
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5.1 Parameter Setting and Problem Instances Generation 
The experiments in this study used the following parameter settings. Most of the parameters are designed according to the 
testbed given by Maciel et al. (2022).  

(1) Processing time: Generated from discrete uniform distribution DU[1, 125]. 
(2) Sequence-dependent setup times: Generated by discrete uniform distribution and three types of setup types are used: 

Small DU[1, 25], medium DU[26, 75], and large DU[76, 125]. 
(3) Due date: First, a modified NEH algorithm is utilized with the longest processing time dispatching rule, the decoding 

method given above, and the objective of minimizing makespan (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚). Then, the due dates of the jobs are generated 
from a discrete uniform distribution [0.1𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚]. 

(4) Number of jobs, machines, and stages: The numbers of jobs are taken as 5, 10, 25, 50, and 100, whereas the numbers 
of stages are taken as 3 and 7. For each stage, 2 and 5 machines (M) are used.  

 

Five problem instances are generated for each combination of the above parameters. Hence, the computational study includes 
a total of 300 (5×2×2×3×5) problem instances. 

5.2 Performance Measures 
This section introduces the performance measures used for the MILP models and the heuristic algorithms. Their performances 
are evaluated according to the following five metrics: 

(1) NFS: The number of times the MILP models have been able to find a feasible integer solution. 
(2) NOS: The number of problem instances for which the optimality is proven by the MILP models.     
(3) NBS: The number of problem instances where the solution methodology finds the best solution among all methods. 

The best solution is the minimum total tardiness obtained across all solution methodologies. 
(4) ATT: Average total tardiness returned by solution methodology. 
(5) ST: The amount of time (in seconds) required to obtain a solution from the methodology.  

 

Note that the lower bound returned by the MILP models is zero for some problem instances. Therefore, calculating the percent 
deviation from this lower bound may lead to misleading results. Moreover, percent deviations from the best solutions are not 
considered a performance measure, as the best solution is close to zero in some problem instances. In these cases, even small 
deviations in tardiness from the best solution can appear disproportionately large, which could lead to misleading 
interpretations. 

5.3 Discussion of the results 
The performance of the two MILP models, ILS, and HGA algorithms based on the performance measures given in Section 5.2 
is discussed in this section. First, MILP models are compared based on NFS and NOS, as provided in Table 4. The table 
presents the results categorized according to a number of jobs, stages, machines, and setup types to observe their effect. The 
last column of the table represents the total problem instances that fall into each corresponding measure.  

It can be seen from Table 4 that MILP 1 obtained feasible solutions for 258 out of 300 problem instances, whereas MILP 2 
found feasible solutions for all problem instances. Additionally, MILP 1 achieved the optimum solution for 63 problem 
instances, while MILP 2 achieved this for 92 instances. These results indicate that MILP 2 outperforms MILP 1 based on these 
two performance measures. According to the NOS and NFS values, it can be concluded that the performance of the MILP 
models deteriorates with the increasing number of jobs due to the direct effect of the number of binary variables. However, 
the same conclusion cannot be reached regarding the number of stages and setup types, as the performance measures are 
similar across these factors. On the other hand, the performance of the MILP models improves with the number of machines. 
This improvement may be attributed to the increased flexibility and the greater number of alternative solutions available with 
more machines. 

Table 4  
Comparison of MILP models based on the number of feasible and optimum solutions obtained 

  J S M Setup Type 
Sum  Level 5 10 25 50 100 3 7 2 5 1 2 3 

MILP 1 NFS 60 60 60 45 33 138 120 108 150 85 86 87 258 
NOS 60 3 0 0 0 32 31 31 32 22 21 20 63 

MILP 2 NFS 60 60 60 60 60 150 150 150 150 100 100 100 300 
NOS 60 32 0 0 0 48 44 33 59 32 29 31 92 
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Secondly, the performance measures NBS, ATT, and ST are used to evaluate the performance of the MILP models and heuristic 
algorithms. The results are presented in Table 5, which is organized according to the number of jobs, stages, machines, and 
setup type. The last row of the table represents the total problem instances. Similar to the previous discussion, the MILP 2 
consistently performs better than the MILP 1 based on these performance measures. Note that the infeasible solutions returned 
by MILP 1 are not included in the average computations.  

Table 5  
Comparison of solution methods based on NBS, ATT, and ST. 

  J S M Setup Type 
Average (Sum)  Level 5 10 25 50 100 3 7 2 5 1 2 3 

MILP 1 
NBS 60 41 0 0 0 52 49 47 54 37 31 33 (101) 
ATT 685 1186 5033 32599 218084 24523 47448 11463 52266 22829 30067 52319 35072 
ST  70.7 3469.6 3600.0 3600.0 3600.0 2787.4 2707.2 2633.5 2834.1 2704.8 2735.7 2808.6 2749.7 

MILP 2 
NBS 60 42 0 0 0 56 49 47 54 37 31 33 (101) 
ATT 685 1227 7133 25822 98379 23468 29831 36819 16479 20961 25217 33770 26649 
ST 0.4 1786.0 3600.0 3600.0 3600.0 2472.7 2566.2 2825.0 2213.8 2469.4 2569.1 2519.8 2519.4 

ILS 
NBS 52 32 14 9 6 57 56 46 67 34 34 45 (113) 
ATT 687 1191 2729 4424 7250 1677 4835 3693 2819 3022 2894 3854 3256 
ST 0.03 0.09 1.9 24.0 259.5 34.9 79.3 33.6 80.6 59.5 57.3 54.5 57.1 

HGS 
NBS 52 32 46 51 54 118 117 116 119 76 82 77 (235) 
ATT 686 1192 2650 4073 6265 1433 4514 3299 2647 2785 2619 3515 2973 
ST 0.05 0.14 3.2 41.0 584.1 81.9 169.5 87.7 163.8 130.5 122.6 124.1 125.7 

 

When comparing the heuristic algorithms with the MILP models based on these three measures, the heuristic algorithms 
outperform the MILP models. The ILS algorithm found the best solution for 113 problem instances with an average solution 
time of 51.1 seconds. In contrast, the HGA algorithm achieved the best solution for 235 problem instances with an average 
solution time of 125.7 seconds. The average ATT values values for the ILS and HGA algorithms are 3256 and 2973, 
respectively. These results indicate that the HGA algorithm exhibits the best performance among the solution methodologies. 
On average, the ILS algorithm produces results that are 9.5% worse than those of the HGA algorithm. Additionally, the MILP 
1 and MILP 2 models yield average total tardiness values that are more than eleven and eight times higher than those obtained 
by the HGA, respectively. Therefore, it is recommended for decision-makers to use the HGA algorithm to achieve efficient 
solutions. 

The increase in the number of jobs results in higher ATT values and longer solution times for all solution approaches. However, 
the increase in solution time for heuristic algorithms is slower compared to the MILP models. This suggests that heuristic 
algorithms will remain efficient as problem sizes grow larger. Conversely, the performance measures from the solution 
methodologies are not significantly affected by the number of stages, machines, or setup types. 

6. Conclusion and Future Research Directions 
 

This paper considers a total tardiness minimization problem of scheduling within an HFSP problem with sequence-dependent 
setup times and blocking constraints. Two MILP models are proposed to tackle this problem. Due to the complexity of the 
problem and inefficiencies of the MILP models, two heuristic algorithms are developed.  

MILP models are practical for finding optimal solutions for small-sized problem instances, with MILP 2 being preferred over 
MILP 1 due to its superior performance. However, as the problem size increases, MILP models become inefficient due to their 
deteriorating performance. In contrast, heuristic algorithms provide effective solutions in a shorter time for both small and 
large-sized problem instances. Among the proposed methodologies, the Hybrid Genetic Algorithm (HGA) is recommended 
for its strong performance in terms of solution quality and computational efficiency. 

The MILP models and heuristic algorithms proposed in this study can be readily adapted to solve other types of scheduling 
problems, such as job shop scheduling or mixed problem environments. Additionally, these methodologies can be extended 
to accommodate other considerations commonly addressed in scheduling literature, including group scheduling, distributed 
systems, and maintenance. Moreover, the integration of Iterative Local Search (ILS) and Genetic Algorithm (GA) in the 
proposed Hybrid Genetic Algorithm (HGA) through Kendall’s Tau coefficient can also be applied to incorporate other 
metaheuristics, such as Tabu Search, Simulated Annealing, or GAs. 

The current study operates under certain limiting assumptions, such as using identical parallel machines and focusing solely 
on total tardiness. These assumptions may restrict the applicability of the model. For instance, using unrelated parallel 
machines or accounting for deteriorating jobs and learning effects are potential extensions. Moreover, optimizing only total 
tardiness may lead to increased makespan, which might be less effective for decision-makers. Thus, considering both total 
tardiness and makespan could be more realistic and beneficial. 
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Future research could explore relaxing these limiting assumptions and investigating various extensions. This might include 
studying additional objective functions such as the minimization of maximum lateness, number of tardy jobs, or total weighted 
tardiness, either individually or simultaneously. Incorporating constraints like eligibility, limited buffer capacities, and tool 
changes into the model could also be valuable for further research. 
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