

* Corresponding author
E-mail atil.kurt@alanya.edu.tr (A. Kurt)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2025 Growing Science Ltd.
doi: 10.5267/j.ijiec.2024.10.005

International Journal of Industrial Engineering Computations 16 (2025) 147–158

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Integrating sequence-dependent setup times and blocking in hybrid flow shop scheduling to
minimize total tardiness

Atıl Kurta*

aIndustrial Engineering Department, Alanya Alaaddin Keykubat University, 07425, Antalya, Türkiye
C H R O N I C L E A B S T R A C T

Article history:
Received September 2 2024
Received in Revised Format
September 18 2024
Accepted October 14 2024
Available online
October 15 2024

 This study addresses the minimization of total tardiness in a hybrid flow shop scheduling problem
with sequence-dependent setup times and blocking constraints. Each production stage includes
multiple machines, and there are no buffers between the stages. The setup time required to process
a job depends on the previously processed job. Two mixed-integer linear programming models are
developed to formulate the problem. Moreover, an iterative local search algorithm and hybrid
genetic algorithms are proposed to have quality solutions with minimal computational efforts.
Several computational tests are conducted to tune the heuristic parameters for better performance.
Computational experiments are carried out to evaluate the performance of solution methodologies
in terms of quality and time. The results indicate that while mixed-integer programming models
can solve small-size problem instances, they are not capable of solving large-sized instances.
However, the proposed heuristic algorithms find quality solutions for all instances in a very short
time.

© 2025 by the authors; licensee Growing Science, Canada

Keywords:
Hybrid flow shop scheduling
Iterative local search
Hybrid genetic algorithm
Total tardiness
Blocking
Sequence-dependent setup
time

1. Introduction

The classical flow shop scheduling problem (FSSP) is crucial in manufacturing industries such as semiconductors,
automobiles, and textiles. In FSSP, each job must be processed at each stage, with a single machine used at each stage to
achieve performance measures such as minimization of Makespan (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚), total completion time �∑𝐶𝐶𝑗𝑗�, and total tardiness
�∑𝑇𝑇𝑗𝑗�. To improve the production efficiency based on these performance measures, identical parallel machines are introduced
into the classical FSSP. This production pattern is known as hybrid (or flexible) flow shop scheduling (HFSP). This problem
was first introduced by Salvador (1973) in the synthetic fibers industry. In HFSP, more than one machine is available at each
stage, and jobs need to be processed on one of them. The HFSP environment can be observed in several real-world industries,
such as electronics, steel, paper production, textiles, and chemicals.

The HFSP can be categorized as no-wait, limited buffer, infinite buffer, and blocking according to the storage strategy between
the stages (Zheng et al., 2024). The infinite buffer strategy is the most commonly used in the HFSP literature. However, in
many manufacturing industries, storage capacity between the stages is zero, which leads to the consideration of blocking
constraints. Two types of blocking have been studied; “release when starting blocking” and “release when completing
blocking” (Yuan et al., 2009). In the problem environment of this study, a machine is blocked until the processing of the job
on the machine begins at the next stage (release when starting blocking).

mailto:atil.kurt@alanya.edu.tr

148

Some tasks, such as tool replacement and cleaning, must be done between processing two jobs, which leads to the
consideration of setup time. In the literature, two types of setup time were considered: sequence-dependent setup time (SDST)
and sequence-independent setup time (SIST). Dealing with SIST may be trivial, as it can be attributed to the processing time
of jobs. On the other hand, SDST can be a challenging problem because the sequence of tasks affects the required setup time
and, consequently, the performance measure.

Customer satisfaction is a critical consideration in scheduling theory, making the completion of jobs by their given due dates
essential. Moreover, real-life scheduling problems are often related to due dates or deadlines. This study aims to minimize the
total tardiness of jobs to enhance customer satisfaction. Note that tardiness is the amount of time by which a job's completion
time exceeds its given due date.

This study addresses the problem of scheduling jobs to minimize total tardiness in a hybrid flow shop scheduling problem
with blocking and sequence-dependent setup time considerations (HFSP-B-SDST). It is desired to find the optimal allocation
of jobs to machines at each stage and the sequence of jobs on each machine. To our knowledge, this problem has not been
studied in the related literature, making its application to real-life scenarios and the lack of existing research a strong
motivation for this study. The contribution of the study to scheduling literature is threefold. First, it is the first attempt to
minimize total tardiness in HFSP-B-SDST. Second, two mixed-integer linear programming (MILP) models are developed to
solve the problem. Finally, two heuristic algorithms, namely iterative local search (ILS) and hybrid genetic algorithm (HGA),
are proposed to solve large-scale problem instances in reasonable times.

The rest of this paper is organized as follows. Section 2 reviews the related literature relevant to HFSP-B-SDST. The problem
definition and the MILP models are briefly presented in Section 3. The proposed heuristic algorithms, ILS and HGA, are
described in detail in Section 4. Section 5 presents the computational tests used to evaluate the performance of the solution
methodologies, and Section 6 discusses the conclusions and outlines several future directions.

2. Literature Review

The literature review extensively discusses research related to HFSP-B-SDST. The HFSP has been widely studied, and readers
interested in more detail can refer to the literature reviews by Tosun et al. (2020) and Çolak and Keskin (2021). For the
tardiness minimization objective in FSSP, Vallada et al. (2008) provide a review and evaluation of heuristic algorithms. Over
the past two decades, numerous studies have focused on the blocking FSSP problem, and the works by Hall and Sriskandarajah
(1996) and Miyata and Nagano (2019) are recommended for those interested in more detail. Table 1 summarizes the papers
most closely related to HFSP-B-SDST, discussing problem characteristics and constraints, objectives, the presence of MILP
models, and the algorithms used in each study.

Table 1
A summary of studies

Study Characteristics and Constraints Objective MILP odel Algorithm
Ruiz and Maroto (2006) SDST, Eligibility, Rm 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 No GA

Rashidi et al. (2010) Rm, Blocking, SDST 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 No GA

Hakimzadeh Abyaneh and
Zandieh (2012)

SDST, Limited Buffer 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and ∑𝑇𝑇𝑗𝑗 No SPGA II, NSGA II

Elmi and Topaloğlu (2013) Blocking, Qm, Eligibility 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes SA

Tao et al. (2014) STST, Rm Production Period No SA, GA

Ebrahimi et al. (2014) Group Scheduling, SDGS,
Uncertain Due Date

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 and ∑𝑇𝑇𝑗𝑗 No NSGA II, Multi-Objective GA

Li and Pan (2015) Limited Buffer, Rm 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 No Hybrid Artificial Bee Colony

Moccellin et al. (2018) Blocking, SIST, SDST 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 No Heuristic Algorithms Along with
Priority Rules

Pessoa et al. (2021) SDST, Blocking, Rm 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes GRASP
Aqil and Allali (2021) SDST, Blocking, Qm ∑�𝑇𝑇𝑗𝑗 + 𝐸𝐸𝑗𝑗� No Migratory Bird Optimization, Water

Wave Optimization
Qin et al. (2022) Blocking Total Energy

Consumption
Yes IGA

Maciel et al. (2022) SDST, Blocking 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes HGA

Wang et al. (2023-a) Blocking 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes Variant IGA

Wang et al. (2023-b) Blocking, Distributed 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes Advanced IGA
Liu et al. (2024) Blocking, Distributed 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes Tri-individual IGA
Shao et al. (2024) Blocking, Distributed, Assembly,

SDST
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Yes Feedback Learning-Based Selection

Hyper-Heuristic
Zheng et al. (2024) SDST, Limited Buffer, Rm, Re-

entrant
∑𝑤𝑤𝑗𝑗𝐶𝐶𝑗𝑗 Yes Cooperative Adaptive GA

This study SDST, Blocking ∑𝑇𝑇𝑗𝑗 Yes ILS, HGA

A. Kurt / International Journal of Industrial Engineering Computations 16 (2025) 149

SDGS: Sequence-dependent group schedule, GRASP: Greedy randomized adaptive search procedures, SPGA II: Sub-population genetic algorithm II
approach, NSGA II: Non-dominated sort of genetic algorithm.
As shown in Table 1, several problem characteristics have been studied in the context of HFSP, including blocking, distributed
scheduling, group scheduling, and SDST. Additionally, some papers have utilized different parallel machine structures beyond
identical parallel machines, such as unrelated (Rm) and uniform (Qm) parallel machines. Most studies have used makespan
as the primary objective function. However, some studies have considered makespan along with other performance measures
simultaneously (Rashidi et al., 2010; Naderi et al., 2011; Abyaneh & Zandieh, 2012; Ebrahimi et al., 2014). The studies by
Tao et al. (2014) and Qin et al. (2022) used objectives different from those traditionally found in classical scheduling literature.
Furthermore, Table 1 indicates that the Genetic Algorithm (GA) and its variations are the most popular approach among the
algorithms, although other algorithms such as Simulated Annealing (SA), various iterated greedy algorithms (IGA), and swarm
optimization techniques are also used. Preventive maintenance of machines has also been studied in the HFSP literature.
Nederi et al. (2010) examined preventive maintenance within HFSP to minimize makespan and propose GA and artificial
immune systems. Additionally, Khamseh et al. (2015) considered preventive maintenance in the context of group scheduling
and SDGS to minimize makespan, using GA and SA. Feng et al. (2018) investigated the same problem to minimize total cost.
On the other hand, Işık et al. (2023) studied eligibility on unrelated parallel machines in HFSP to minimize makespan and
developed a constraint programming approach to solve the problem.

A closely related study by Maciel et al. (2022) addressed HFSP-B-SDST to minimize makespan. They proposed an HGA that
incorporates Greedy Randomized Adaptive Search Procedures. In contrast, this study focuses on minimizing a different
objective function, specifically total tardiness, and proposes two different heuristic algorithms: ILS and HGA.

3. Problem Definition and Mathematical Models

This section briefly defines the problem under study and its assumptions, followed by its complexity and a numerical example,
and then presents two MILP models. The assumptions and characteristics of the problem are as follows:

• The hybrid flow shop environment includes S stages, each denoted by s.
• The system has J jobs, which are ready for processing at time zero. Each job j (𝑗𝑗 = 1,2, … , 𝐽𝐽) has a due date 𝐷𝐷𝑗𝑗 .
• Each job requires S operations, which must be performed at different stages. The processing time of jobs at each

stage is independent and known in advance, denoted by 𝑃𝑃𝑗𝑗𝑗𝑗.
• There are 𝑀𝑀𝑠𝑠 identical parallel machines in each stage. The number of machines may vary across stages, and all

machines are available at time zero.
• Jobs and machines are independent, with no eligibility restrictions.
• Machines require a setup when switching between jobs. The manufacturing system should consider deterministic

sequence-dependent setup times, denoted by 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗′𝑠𝑠, which are known in advance.
• Each machine can process only one job at a time.
• Preemption of jobs is not allowed.
• Maintenance of machines is not considered, so the machines are continuously available.
• Due to the lack of storage area between stages, blocking constraints are considered. Therefore, a machine that has

processed a job must be blocked until an available machine in the next stage is ready. Consequently, machines cannot
process another job until the current job stays.

• The system includes only one factory (no distributed system), jobs are considered individually (no group scheduling),
and there is no no-wait constraint.

• The problem considered in this study can be described as follows, based on the assumptions given above: There is a
set of sequence-dependent jobs, each requiring multiple operations to be processed sequentially on identical parallel
machines at each stage. It is expected to allocate the jobs to machines and determine their sequence on each machine
to minimize total tardiness.

Proposition 1. The problem under study is NP-complete in the strong sense.

Proof: The Problem can be simplified if SDST is not considered and makespan is used as the objective function instead of
total tardiness. In this case, the problem reduces to an FSHP problem with blocking to minimize the makespan, which is shown
to be strongly NP-complete by Hall and Sriskandarajah (1996). Therefore, our problem is also NP-complete in the strong
sense. ■

An illustrative example is provided to describe the problem. Six jobs need to be processed across two stages, each with two
machines. The corresponding dataset for the problem is presented in Table 2. Note that the diagonal of the setup time matrix
indicates the initial setup time of the jobs at the corresponding stage.

150

Fig. 1 (a) and (b) represent a feasible and optimal solution for the illustrative example, respectively. Blocking of machines
can be observed in both schedules: in Stage 1 after Jobs 5 and 2 in the feasible solution, and in Stage 1 after Job 6 in the
optimal solution. The total tardiness of the feasible schedule is 16 (0+6+0+2+3+5).

Table 2
Sequence-dependent setup times, processing times, and due dates for the illustrative example

Stage 1/Stage 2
Jobs 1 2 3 4 5 6 Processing time Due Date

1 1/3 4/3 3/2 2/4 3/5 2/2 1/3 9
2 5/2 5/1 3/2 3/2 3/5 4/2 2/4 7
3 3/5 5/1 1/3 3/2 1/3 3/1 2/4 8
4 2/3 5/4 4/2 4/4 2/5 4/5 3/1 14
5 1/5 1/3 3/2 3/2 3/4 4/1 2/3 10
6 2/3 1/4 3/5 5/4 4/3 5/3 1/3 12

This feasible solution can be improved through better assignment and sequencing of jobs, which may lead to eliminating
blocking, optimizing sequence dependencies, and achieving a better schedule with reduced total tardiness. By applying one
of the MILP models, the optimal solution for the illustrative example, as shown in Fig. 1 (b), yields a total tardiness of 14
(8+5+0+1+0+0).

(a) (b)

Fig. 1. A feasible (a) and optimum (b) schedule of the illustrative example

Based on the assumptions and considerations outlined above, two mixed-integer linear programming (MILP) models have
been developed to solve the problem optimally. The following subsections discuss these MILP models in detail.

3.1 Mixed Integer Linear Programming Model 1

The first model uses two primary binary decision variables which are the assignment of jobs to machines at each stage and
the order of jobs within the stages. The following decision variables are utilized in MILP model 1.

𝐶𝐶𝑗𝑗𝑗𝑗 Completion time of job j at stage s.
𝐷𝐷𝑗𝑗𝑗𝑗 Departure time of job j at stage s.

𝑇𝑇𝑗𝑗 Tardiness of job j.

𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗 = �1 If job 𝑗𝑗 is assigned to machine 𝑚𝑚 at stage 𝑠𝑠
0 Otherwise

𝑍𝑍𝑗𝑗𝑗𝑗′𝑠𝑠 = �1 If job 𝑗𝑗 processed on the same machine before job 𝑗𝑗′ (𝑗𝑗′ > 𝑗𝑗) at stage 𝑠𝑠.
0 Otherwise

Based on the parameters given in Section 3 and decision variables outlined above, the following MILP model is proposed.

min 𝑧𝑧 = � 𝑇𝑇𝑗𝑗
𝐽𝐽

𝑗𝑗=1

 (1)

subject to

∑ 𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗 𝑀𝑀𝑠𝑠
𝑚𝑚=1 = 1 for 𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆 (2)

A. Kurt / International Journal of Industrial Engineering Computations 16 (2025) 151

𝐶𝐶𝑗𝑗′𝑠𝑠 ≥ 𝐷𝐷𝑗𝑗𝑗𝑗 + 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗′𝑠𝑠 + 𝑃𝑃𝑗𝑗′𝑠𝑠 + 𝐿𝐿𝑠𝑠(𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑌𝑌𝑗𝑗′𝑠𝑠𝑠𝑠 + 𝑍𝑍𝑗𝑗𝑗𝑗′𝑠𝑠 − 3) for 𝑗𝑗, 𝑗𝑗′ = 1,2, … , 𝐽𝐽; 𝑗𝑗 < 𝑗𝑗′; 𝑠𝑠 = 1,2, … , 𝑆𝑆;
𝑚𝑚 = 1,2, … ,𝑀𝑀𝑠𝑠

(3)

𝐶𝐶𝑗𝑗𝑗𝑗 ≥ 𝐷𝐷𝑗𝑗′𝑠𝑠 + 𝑆𝑆𝑆𝑆𝑗𝑗′𝑗𝑗𝑗𝑗 + 𝑃𝑃𝑗𝑗𝑗𝑗 + 𝐿𝐿𝑠𝑠(𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑌𝑌𝑗𝑗′𝑠𝑠𝑠𝑠−𝑍𝑍𝑗𝑗𝑗𝑗′𝑠𝑠 − 2) for 𝑗𝑗, 𝑗𝑗′ = 1,2, … , 𝐽𝐽; 𝑗𝑗 < 𝑗𝑗′; 𝑠𝑠 = 1,2, … , 𝑆𝑆;
𝑚𝑚 = 1,2, … ,𝑀𝑀𝑠𝑠

(4)

𝐶𝐶𝑗𝑗𝑗𝑗 ≥ 𝑃𝑃𝑗𝑗𝑗𝑗 + 𝑆𝑆𝑆𝑆0𝑗𝑗𝑗𝑗 for 𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆)5(

𝐶𝐶𝑗𝑗𝑗𝑗+1 = 𝐷𝐷𝑗𝑗𝑗𝑗 + 𝑃𝑃𝑗𝑗𝑗𝑗+1 for 𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆 − 1)6(

𝐷𝐷𝑗𝑗𝑗𝑗 ≥ 𝐶𝐶𝑗𝑗𝑗𝑗 for 𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆)7(

𝑇𝑇𝑗𝑗 ≥ 𝐷𝐷𝑗𝑗𝑗𝑗 − 𝐷𝐷𝑗𝑗 for 𝑗𝑗 = 1,2, … , 𝐽𝐽)8(

𝑇𝑇𝑗𝑗 ,𝐶𝐶𝑗𝑗𝑗𝑗,𝐷𝐷𝑗𝑗𝑗𝑗 ≥ 0 for 𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆)9(

𝑌𝑌𝑗𝑗𝑗𝑗𝑗𝑗 ,𝑍𝑍𝑗𝑗𝑗𝑗′𝑠𝑠 ∈ {0,1} for 𝑗𝑗, 𝑗𝑗′ = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆;
𝑚𝑚 = 1,2, … ,𝑀𝑀𝑠𝑠

)10(

The total tardiness of jobs is minimized in (1). Jobs at each stage are assigned to one machine in Eq. (2). Eq. (3) and Eq. (4)
are used to calculate the completion time of jobs at each stage while considering processing time, setup time, and departure
times. Eq. (5) ensures that the completion time of a first assigned job is greater than the sum of its processing and initial setup
time. Eq. (6) and Eq. (7) guarantee that the blocking of machines due to jobs is considered. Eq. (8) ensures the tardiness of
the job is greater than the differences between its departure time at the final stage and its due date. Eq. (9) and Eq. (10)
represent the non-negative continuous variables and binary restrictions, respectively.

3.2 Mixed Integer Linear Programming Model 2

The MILP 2 model uses a single type of binary variable which is used to determine the immediate sequence of jobs. The jobs
immediately follow each other starting with a dummy job (Job 0). The defined new decision variable and the formulations are
given below.

𝑋𝑋𝑗𝑗𝑗𝑗′𝑠𝑠 = �1 If job 𝑗𝑗 is processed immediately before job 𝑗𝑗′ at stage 𝑠𝑠
0 Otherwise

min (1)

subject to

Constraint sets (5), (6), (7), (8) and (9)

∑ 𝑋𝑋0𝑗𝑗′𝑠𝑠
𝐽𝐽
𝑗𝑗′=1 ≤ 𝑀𝑀𝑠𝑠 for 𝑠𝑠 = 1,2, … , 𝑆𝑆 (11)

∑ 𝑋𝑋𝑗𝑗𝑗𝑗′𝑠𝑠
𝐽𝐽
𝑗𝑗′=1,𝑗𝑗′≠𝑗𝑗 ≤ 1 for 𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆 (12)

∑ 𝑋𝑋𝑗𝑗′𝑗𝑗𝑗𝑗
𝐽𝐽
𝑗𝑗′=0,𝑗𝑗′≠𝑗𝑗 = 1 for 𝑗𝑗 = 1,2, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … ,𝑆𝑆 (13)

𝐶𝐶𝑗𝑗′𝑠𝑠 ≥ 𝐷𝐷𝑗𝑗𝑗𝑗 + 𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗′𝑠𝑠 + 𝑃𝑃𝑗𝑗′𝑠𝑠 + 𝐿𝐿𝑠𝑠(𝑋𝑋𝑗𝑗′𝑗𝑗𝑗𝑗 − 1) for 𝑗𝑗, 𝑗𝑗′ = 1,2, … , 𝐽𝐽; 𝑗𝑗 ≠ 𝑗𝑗′; 𝑠𝑠 = 1,2, … , 𝑆𝑆 (14)

𝑋𝑋𝑗𝑗′𝑗𝑗𝑗𝑗 ∈ {0,1} for 𝑗𝑗, 𝑗𝑗′ = 0,1, … , 𝐽𝐽; 𝑠𝑠 = 1,2, … , 𝑆𝑆 (15)

The restriction on the number of machines used is satisfied by counting the number of jobs that follow the dummy job 0 in
each stage in Eq. (11). Each job can be followed by at most one job in Eq. (12), while each job must follow one job at each
stage in Eq. (13). Eq. (14) is used to calculate the completion time of a job at a stage by considering the departure time of the
preceding job, as well as the processing and setup times. Eq. (15) is used to define the new binary variable.

The Eq. (16) is used to determine an efficient 𝐿𝐿𝑠𝑠value, which can lead to finding the MILPs solutions in a shorter time while
satisfying the corresponding constraints.

𝐿𝐿𝑠𝑠 = � �𝑃𝑃𝑗𝑗𝑠𝑠′
𝐽𝐽

𝑗𝑗=1

𝑠𝑠

𝑠𝑠′=1

+ 𝐽𝐽 × max
𝑗𝑗,𝑗𝑗′=1,2,…,J

�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗′𝑠𝑠�
for 𝑠𝑠 = 1,2, … , 𝑆𝑆 (16)

152

4. Proposed Heuristic Algorithms
The size of the MILP model increases dramatically with the number of jobs and stages, making it difficult to reach an optimal
within a reasonable timeframe. Furthermore, preliminary experiments reveal that MILP 1 failed to obtain a feasible solution
for some problem instances. Additionally, as discussed in Section 3, there is no polynomial-time algorithm available to solve
the problem. These challenges motivated us to develop heuristic algorithms that can provide promising solutions with small
computational efforts. Two heuristic algorithms have been developed for the solution: an Iterative Local Search (ILS)
algorithm and a hybrid genetic algorithm (HGA). Both heuristic algorithms aim to find the best sequence of jobs to solve the
problem. The sequence of jobs is decoded according to the framework given below.

The framework of decoding
1. for all jobs (according to sequence) do
2. for all stages do
3. Calculate temporary machine load (TML) which is equal to the sum of machine load and setup time.
4. If all TML > 𝐷𝐷[𝑗𝑗],𝑠𝑠−1 Then
5. Choose the machine having the smallest TML.
6. Otherwise
7. Choose the machine among the machines having TML ≤ 𝐷𝐷[𝑗𝑗],𝑠𝑠−1 which has the smallest �𝐷𝐷[𝑗𝑗],𝑠𝑠−1 − 𝑇𝑇𝑇𝑇𝑇𝑇�
8. Assign a job to the machine and calculate the completion time.
9. Update the departure time of the machine on Stage s-1.
10. end for
11. end for

4.1 Iterative Local Search
Many problems in the scheduling literature have been solved using different versions of the ILS algorithm. The ILS algorithm
in this study begins by considering eight different dispatching rules in combination with the well-known NEH algorithm. Each
dispatching rule generates a sequence of jobs, and then the NEH algorithm along with the decoding procedure described above
is applied to find a feasible solution. The total tardiness is calculated for the eight feasible solutions obtained by the dispatching
rules, and the improvement phase of the algorithm starts with the sequence that has the minimum total tardiness among them.
The dispatching rules applied are listed below.

(1) Shortest processing time: Jobs are sequenced according to ascending order based on their total processing time,
which is the sum of processing times at each stage.

(2) Longest processing time: Descending order of total processing times of jobs is used for sequencing.
(3) Earliest due date: Ascending order of due date of jobs are used for sequencing.
(4) Slack time: Jobs are sequenced in ascending order based on the difference between their due date and total processing

time.
(5) Slack time with critical stage. First, the load of each stage is calculated by summing the processing time of the jobs

at that stage. Then, the critical stage having the maximum load is identified. Jobs are sequenced in increasing order
of the difference between their due date and processing time in the critical stage.

(6) Slack with final stage: Jobs are sequenced based on the difference between their due date and processing time on
the final stage.

(7) Slack with the first stage: Ascending order of the difference between the due date and processing time on the first
stage is used for sequencing.

(8) Critical ratio: The jobs are ordered according to the ratio of their due date to total processing time.

The ILS algorithm generally consists of three phases: Initialization, improvement, and perturbation. The initialization phase
has been discussed above. In the Improvement phase, the algorithm uses insertion and pairwise interchange search techniques.
In the insertion search, jobs are sequentially selected and inserted into different positions to create new candidate solutions.
This process is repeated for all jobs and positions to generate a set of candidate solutions. The best candidate solution is then
chosen, and the procedure is repeated if an improvement is observed. In the pairwise interchange search, two jobs are selected,
and their positions are swapped to obtain a new feasible solution. This procedure is similar to the insertion search and is
applied to create improved solutions. However, relying solely on these two search techniques may cause the algorithm to get
stuck in a local optimum. To address this, the perturbation phase is introduced. In this phase, the job with the maximum
lateness (i.e., the difference between its due date and completion time) is selected and moved to the final position if the final
iteration solution differs from the previous one. If not, the sequence of jobs is randomly divided into two parts, and the order
of these parts is interchanged. After the perturbation phase, the algorithm returns to apply the insertion and pairwise
interchange procedures until the pre-determined number of iterations (PNI) is completed.

The total tardiness value obtained by the ILS algorithm improves with a higher PNI value, but it will not be significantly
affected after a certain PNI value. On the other hand, the solution time of the algorithm increases with higher PNI values. To

A. Kurt / International Journal of Industrial Engineering Computations 16 (2025) 153

determine an efficient PNI value, seven different PNI values were tested:10, 20, 30, 50, 70, and 100. Out of the 300 problem
instances described in Section 5, 60 were used for parameter tuning. The average total tardiness (ATT) and the solution time
(ST) for each PNI value are reported and illustrated in Fig. 2. According to Fig. 2, the PNI value 20 was chosen because, at
higher PNI values, the ATT does not reduce significantly, while the ST increases substantially.

Fig. 2. Effect of PNI at ILS algorithm on the ATT and ST values

4.2 Hybrid Genetic Algorithm
The proposed Hybrid Genetic Algorithm (HGA) combines a genetic algorithm with the Iterative Local Search (ILS) algorithm
described earlier. The general procedure of the genetic algorithm is used to enhance the solution. However, whenever a
sequence generated after crossover and mutation operators significantly diverge from the current population, the improvement
and perturbation procedures of the ILS algorithm are applied.

To determine divergence, Kendall’s Tau coefficient, as proposed by Kendall (1938), is used to calculate the correlation
between the new sequence and the population members. First, Kendall’s Tau coefficient is calculated between the new
sequence and all population members. Then, the maximum of these values is compared to a predetermined Kendall’s Tau
value (PKTau). If the obtained maximum value is less than PKTau, the ILS algorithm is applied. Otherwise, the genetic
algorithm procedures are repeated to generate different population members.

In the proposed algorithm, each gene of a chromosome is represented by a unique positive integer, corresponding to a specific
job number. As a result, the chromosome represents a sequence of jobs, with the length of the chromosome equal to the total
number of jobs. After generating a new solution, the decoding procedure described in Section 4 is applied to obtain a feasible
solution for the original problem. The total tardiness score derived from this solution is then used as the fitness value of the
chromosome.

The predetermined number of members is used as the population size (PS) in the GA. Eight members of the population are
generated using the dispatching rules described in Section 4.1 in combination with the NEH algorithm, while the remaining
members are created randomly. After the population is generated or updated, the members are ranked in ascending order based
on their fitness values. The next generations are formed through parent selection, crossover, and mutation procedures. The
Ranking Selection method is employed for parent selection, with linearly assigned selection probabilities (𝑆𝑆𝑆𝑆𝑖𝑖) as given in
Eq. (17).

𝑆𝑆𝑆𝑆𝑖𝑖 =
PS − rank of i +1

PS(PS+1)/2

(17)

In the crossover procedure, four types of crossover methods were analyzed for efficiency during parameter setting, and one
was selected for use in the GA:

(1) Uniform Crossover: A random number between 0 and 1 is generated for each gene. If the number is less than the
predetermined uniform crossover probability (UCP), the gene is taken from the first parent for the first offspring and
from the second parent for the second offspring. Otherwise, the reverse is done. If a gene is duplicated, the original
sequence of the parent is used to replace the duplicate.

(2) Single-Point Crossover: A random integer between 1 and J (the chromosome length) is generated, dividing the
parents into two parts. The first offspring inherits the genes from the first parent up to the crossover point, and the
remaining genes are filled in from the second parent, ensuring no gene is duplicated.

2997

2946
2927 2902

2845
2837

28
56

87
160

237

352

0
50
100
150
200
250
300
350
400

2750

2800

2850

2900

2950

3000

3050

10 20 30 50 70 100
PNI

So
lu

tıi
on

 T
im

e

A
ve

ra
ge

 to
ta

l t
ar

di
ne

ss

Effect of PNI on the algorithm performance

ATT ST

154

(3) Two-Point Crossover: Two random points are generated between 1 and I, splitting the parents into three parts. The
middle segment of the first parent is directly passed to the first offspring, and the remaining genes are filled from the
second parent, starting after the second crossover point, ensuring no gene duplication.

(4) Order Crossover: Similar to the two-point crossover, but the filling of the remaining genes begins with the first part
of the offspring rather than the third, ensuring the integrity of the sequence without duplicates.

The mutation operator is selectively applied to offspring in the genetic algorithm, with a small probability of introducing
variation. A random number between 0 and 1 is generated, and if it is less than the predetermined mutation probability (MP),
the mutation is performed. During mutation, two different jobs are randomly selected, and their positions are swapped in the
offspring's sequence.

When a new member is created, the population is updated to ensure continuous improvement. In this HGA, a full elitism
strategy is applied, meaning only the best chromosomes survive. New members are added to the population if they are better
than at least one existing member. Once a new member joins the population, the correlation between the new and existing
members is calculated using Kendall’s Tau coefficient. If the maximum Kendall’s Tau coefficient is less than the
predetermined threshold (PKTau), the ILS algorithm is executed for a specified number of iterations (PNI_GA). If the new
member is distinct from the existing population after applying ILS, the population is updated.

The proposed HGA is terminated after a pre-determined number of iterations (GPNI). In other words, the HGA algorithm
stops and returns the best solution obtained once the number of iterations reaches GPNI.

To execute the HGA, pre-determined parameters must be selected as they directly affect the solution efficiency obtained by
the HGA. In this HGA, the parameters GPNI, PNI_GA, MP, PS, and PKTau need to be determined. Additionally, one of the
four crossover types should be chosen, and the UCP in the first crossover type should be selected whenever the uniform
crossover type is used. For each parameter, four different levels are tested while keeping the rest of the parameters at fixed
values, similar to Salvietti et al. (2014). While selecting the parameters, the ATT and ST performance measures were used to
evaluate the parameters. The parameters with their levels, the obtained ATT and ST values, and the best, fixed, and selected
levels are given in Table 2. Subsequently, the selected parameters provided in Table 2 are used during the experiments in the
HGA.

Table 3
Parameter tuning results for HGA

Parameter Levels 1 2 3 4 Best Selected Fixed
GPNI Values 200 400 600 800 400 400

ATT 2803 2802 2802 2796 800
ST 118 118 118 118 400

PNI_GA Values 1 2 3 5 2 2
ATT 2803 2802 2723 2728 3
ST 92 118 188 314 1

MP Values 0.01 0.04 0.07 0.1 0.04 0.07
ATT 2798 2740 2802 2785 0.04
ST 110 109 118 127 0.04

PS Values 10 20 30 50 20 20
ATT 2978 2802 2720 2760 30
ST 39 118 167 276 10

PKTau Values 0.3 0.5 0.7 0.9 0.9 0.7
ATT 2884 2851 2802 2700 0.9
ST 60 76 118 137 0.3

Crossover Type Values 1 2 3 4 3 3
ATT 2887 4113 2802 2803 3
ST 119 1 118 139 2

UCP Values 0.3 0.5 0.7 0.9 0.3 0.7
ATT 2835 2856 2887 3596 0.3
ST 117 133 119 17 0.9

5. Computational Experiments

Parameter setting, performance measures, and performance of the two MILP models and two heuristic algorithms are
discussed in this section. In the solution of MILP models, Microsoft Visual C++ implementation of IBM ILOG CPLEX
Optimization Studio V22.1 was used under the time limit of one hour. Moreover, the ILS and HGA algorithms are coded in
Microsoft Visual C++. Servers equipped with a 2.93 GHz CPU and 96 GB of RAM are used for all computations.

A. Kurt / International Journal of Industrial Engineering Computations 16 (2025) 155

5.1 Parameter Setting and Problem Instances Generation
The experiments in this study used the following parameter settings. Most of the parameters are designed according to the
testbed given by Maciel et al. (2022).

(1) Processing time: Generated from discrete uniform distribution DU[1, 125].
(2) Sequence-dependent setup times: Generated by discrete uniform distribution and three types of setup types are used:

Small DU[1, 25], medium DU[26, 75], and large DU[76, 125].
(3) Due date: First, a modified NEH algorithm is utilized with the longest processing time dispatching rule, the decoding

method given above, and the objective of minimizing makespan (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚). Then, the due dates of the jobs are generated
from a discrete uniform distribution [0.1𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚].

(4) Number of jobs, machines, and stages: The numbers of jobs are taken as 5, 10, 25, 50, and 100, whereas the numbers
of stages are taken as 3 and 7. For each stage, 2 and 5 machines (M) are used.

Five problem instances are generated for each combination of the above parameters. Hence, the computational study includes
a total of 300 (5×2×2×3×5) problem instances.

5.2 Performance Measures
This section introduces the performance measures used for the MILP models and the heuristic algorithms. Their performances
are evaluated according to the following five metrics:

(1) NFS: The number of times the MILP models have been able to find a feasible integer solution.
(2) NOS: The number of problem instances for which the optimality is proven by the MILP models.
(3) NBS: The number of problem instances where the solution methodology finds the best solution among all methods.

The best solution is the minimum total tardiness obtained across all solution methodologies.
(4) ATT: Average total tardiness returned by solution methodology.
(5) ST: The amount of time (in seconds) required to obtain a solution from the methodology.

Note that the lower bound returned by the MILP models is zero for some problem instances. Therefore, calculating the percent
deviation from this lower bound may lead to misleading results. Moreover, percent deviations from the best solutions are not
considered a performance measure, as the best solution is close to zero in some problem instances. In these cases, even small
deviations in tardiness from the best solution can appear disproportionately large, which could lead to misleading
interpretations.

5.3 Discussion of the results
The performance of the two MILP models, ILS, and HGA algorithms based on the performance measures given in Section 5.2
is discussed in this section. First, MILP models are compared based on NFS and NOS, as provided in Table 4. The table
presents the results categorized according to a number of jobs, stages, machines, and setup types to observe their effect. The
last column of the table represents the total problem instances that fall into each corresponding measure.

It can be seen from Table 4 that MILP 1 obtained feasible solutions for 258 out of 300 problem instances, whereas MILP 2
found feasible solutions for all problem instances. Additionally, MILP 1 achieved the optimum solution for 63 problem
instances, while MILP 2 achieved this for 92 instances. These results indicate that MILP 2 outperforms MILP 1 based on these
two performance measures. According to the NOS and NFS values, it can be concluded that the performance of the MILP
models deteriorates with the increasing number of jobs due to the direct effect of the number of binary variables. However,
the same conclusion cannot be reached regarding the number of stages and setup types, as the performance measures are
similar across these factors. On the other hand, the performance of the MILP models improves with the number of machines.
This improvement may be attributed to the increased flexibility and the greater number of alternative solutions available with
more machines.

Table 4
Comparison of MILP models based on the number of feasible and optimum solutions obtained

 J S M Setup Type
Sum Level 5 10 25 50 100 3 7 2 5 1 2 3

MILP 1 NFS 60 60 60 45 33 138 120 108 150 85 86 87 258
NOS 60 3 0 0 0 32 31 31 32 22 21 20 63

MILP 2 NFS 60 60 60 60 60 150 150 150 150 100 100 100 300
NOS 60 32 0 0 0 48 44 33 59 32 29 31 92

156

Secondly, the performance measures NBS, ATT, and ST are used to evaluate the performance of the MILP models and heuristic
algorithms. The results are presented in Table 5, which is organized according to the number of jobs, stages, machines, and
setup type. The last row of the table represents the total problem instances. Similar to the previous discussion, the MILP 2
consistently performs better than the MILP 1 based on these performance measures. Note that the infeasible solutions returned
by MILP 1 are not included in the average computations.

Table 5
Comparison of solution methods based on NBS, ATT, and ST.

 J S M Setup Type
Average (Sum) Level 5 10 25 50 100 3 7 2 5 1 2 3

MILP 1
NBS 60 41 0 0 0 52 49 47 54 37 31 33 (101)
ATT 685 1186 5033 32599 218084 24523 47448 11463 52266 22829 30067 52319 35072
ST 70.7 3469.6 3600.0 3600.0 3600.0 2787.4 2707.2 2633.5 2834.1 2704.8 2735.7 2808.6 2749.7

MILP 2
NBS 60 42 0 0 0 56 49 47 54 37 31 33 (101)
ATT 685 1227 7133 25822 98379 23468 29831 36819 16479 20961 25217 33770 26649
ST 0.4 1786.0 3600.0 3600.0 3600.0 2472.7 2566.2 2825.0 2213.8 2469.4 2569.1 2519.8 2519.4

ILS
NBS 52 32 14 9 6 57 56 46 67 34 34 45 (113)
ATT 687 1191 2729 4424 7250 1677 4835 3693 2819 3022 2894 3854 3256
ST 0.03 0.09 1.9 24.0 259.5 34.9 79.3 33.6 80.6 59.5 57.3 54.5 57.1

HGS
NBS 52 32 46 51 54 118 117 116 119 76 82 77 (235)
ATT 686 1192 2650 4073 6265 1433 4514 3299 2647 2785 2619 3515 2973
ST 0.05 0.14 3.2 41.0 584.1 81.9 169.5 87.7 163.8 130.5 122.6 124.1 125.7

When comparing the heuristic algorithms with the MILP models based on these three measures, the heuristic algorithms
outperform the MILP models. The ILS algorithm found the best solution for 113 problem instances with an average solution
time of 51.1 seconds. In contrast, the HGA algorithm achieved the best solution for 235 problem instances with an average
solution time of 125.7 seconds. The average ATT values values for the ILS and HGA algorithms are 3256 and 2973,
respectively. These results indicate that the HGA algorithm exhibits the best performance among the solution methodologies.
On average, the ILS algorithm produces results that are 9.5% worse than those of the HGA algorithm. Additionally, the MILP
1 and MILP 2 models yield average total tardiness values that are more than eleven and eight times higher than those obtained
by the HGA, respectively. Therefore, it is recommended for decision-makers to use the HGA algorithm to achieve efficient
solutions.

The increase in the number of jobs results in higher ATT values and longer solution times for all solution approaches. However,
the increase in solution time for heuristic algorithms is slower compared to the MILP models. This suggests that heuristic
algorithms will remain efficient as problem sizes grow larger. Conversely, the performance measures from the solution
methodologies are not significantly affected by the number of stages, machines, or setup types.

6. Conclusion and Future Research Directions

This paper considers a total tardiness minimization problem of scheduling within an HFSP problem with sequence-dependent
setup times and blocking constraints. Two MILP models are proposed to tackle this problem. Due to the complexity of the
problem and inefficiencies of the MILP models, two heuristic algorithms are developed.

MILP models are practical for finding optimal solutions for small-sized problem instances, with MILP 2 being preferred over
MILP 1 due to its superior performance. However, as the problem size increases, MILP models become inefficient due to their
deteriorating performance. In contrast, heuristic algorithms provide effective solutions in a shorter time for both small and
large-sized problem instances. Among the proposed methodologies, the Hybrid Genetic Algorithm (HGA) is recommended
for its strong performance in terms of solution quality and computational efficiency.

The MILP models and heuristic algorithms proposed in this study can be readily adapted to solve other types of scheduling
problems, such as job shop scheduling or mixed problem environments. Additionally, these methodologies can be extended
to accommodate other considerations commonly addressed in scheduling literature, including group scheduling, distributed
systems, and maintenance. Moreover, the integration of Iterative Local Search (ILS) and Genetic Algorithm (GA) in the
proposed Hybrid Genetic Algorithm (HGA) through Kendall’s Tau coefficient can also be applied to incorporate other
metaheuristics, such as Tabu Search, Simulated Annealing, or GAs.

The current study operates under certain limiting assumptions, such as using identical parallel machines and focusing solely
on total tardiness. These assumptions may restrict the applicability of the model. For instance, using unrelated parallel
machines or accounting for deteriorating jobs and learning effects are potential extensions. Moreover, optimizing only total
tardiness may lead to increased makespan, which might be less effective for decision-makers. Thus, considering both total
tardiness and makespan could be more realistic and beneficial.

A. Kurt / International Journal of Industrial Engineering Computations 16 (2025) 157

Future research could explore relaxing these limiting assumptions and investigating various extensions. This might include
studying additional objective functions such as the minimization of maximum lateness, number of tardy jobs, or total weighted
tardiness, either individually or simultaneously. Incorporating constraints like eligibility, limited buffer capacities, and tool
changes into the model could also be valuable for further research.

References

Aqil, S., & Allali, K. (2021). Two efficient nature inspired meta-heuristics solving blocking hybrid flow shop manufacturing

problem. Engineering Applications of Artificial Intelligence, 100, 104196.
Ebrahimi, M., Ghomi, S. F., & Karimi, B. (2014). Hybrid flow shop scheduling with sequence dependent family setup time

and uncertain due dates. Applied mathematical modelling, 38(9-10), 2490-2504.
Elmi, A., & Topaloglu, S. (2013). A scheduling problem in blocking hybrid flow shop robotic cells with multiple

robots. Computers & operations research, 40(10), 2543-2555.
Hakimzadeh Abyaneh, S., & Zandieh, M. (2012). Bi-objective hybrid flow shop scheduling with sequence-dependent setup

times and limited buffers. The International Journal of Advanced Manufacturing Technology, 58, 309-325.
Hall, N. G., & Sriskandarajah, C. (1996). A survey of machine scheduling problems with blocking and no-wait in

process. Operations research, 44(3), 510-525.
Işık, E. E., Topaloglu Yildiz, S., & Şatır Akpunar, Ö. (2023). Constraint programming models for the hybrid flow shop

scheduling problem and its extensions. Soft Computing, 27(24), 18623-18650.
Kendall, M. (1938). A new measure of rank correlation, Biometrika, 30, (1–2), 81–89. https://doi.org/10.1093/biomet/30.1-

2.81.
Khamseh, A., Jolai, F., & Babaei, M. (2015). Integrating sequence-dependent group scheduling problem and preventive

maintenance in flexible flow shops. The International Journal of Advanced Manufacturing Technology, 77, 173-185.
Li, J. Q., & Pan, Q. K. (2015). Solving the large-scale hybrid flow shop scheduling problem with limited buffers by a hybrid

artificial bee colony algorithm. Information Sciences, 316, 487-502.
Liu, F., Li, G., Lu, C., Yin, L., & Zhou, J. (2024). A tri-individual iterated greedy algorithm for the distributed hybrid flow

shop with blocking. Expert Systems with Applications, 237, 121667.
Maciel, I., Prata, B., Nagano, M., & Abreu, L. (2022). A hybrid genetic algorithm for the hybrid flow shop scheduling problem

with machine blocking and sequence-dependent setup times. Journal of Project Management, 7(4), 201-216.
Miyata, H. H., & Nagano, M. S. (2019). The blocking flow shop scheduling problem: A comprehensive and conceptual

review. Expert Systems with Applications, 137, 130-156.
Moccellin, J. V., Nagano, M. S., Pitombeira Neto, A. R., & de Athayde Prata, B. (2018). Heuristic algorithms for scheduling

hybrid flow shops with machine blocking and setup times. Journal of the Brazilian Society of Mechanical Sciences and
Engineering, 40, 1-11.

Naderi, B., Zandieh, M., & Aminnayeri, M. (2011). Incorporating periodic preventive maintenance into flexible flowshop
scheduling problems. Applied Soft Computing, 11(2), 2094-2101.

Pessoa, R., Maciel, I., Moccellin, J., Pitombeira-Neto, A., & Prata, B. (2021). Hybrid flow shop scheduling problem with
machine blocking, setup times and unrelated parallel machines per stage. Investigacion Operacional.

Qin, H. X., Han, Y. Y., Zhang, B., Meng, L. L., Liu, Y. P., Pan, Q. K., & Gong, D. W. (2022). An improved iterated greedy
algorithm for the energy-efficient blocking hybrid flow shop scheduling problem. Swarm and Evolutionary
Computation, 69, 100992.

Rashidi, E., Jahandar, M., & Zandieh, M. (2010). An improved hybrid multi-objective parallel genetic algorithm for hybrid
flow shop scheduling with unrelated parallel machines. The International Journal of Advanced Manufacturing
Technology, 49, 1129-1139.

Ruiz, R., & Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine
eligibility. European journal of operational research, 169(3), 781-800.

Salvador, M. S. (1973, January). A solution to a special case of flow shop scheduling problems. In Symposium on the theory
of scheduling and its applications (pp. 83-91). Berlin: Springer.

Salvietti, L., Smith, N R. and Cárdenas-Barrón, L.E. (2014). A stochastic profit maximising economic lot scheduling problem
with price optimisation. European Journal of Industrial Engineering, 8 (2), 193–221.

Shao, Z., Shao, W., Chen, J., & Pi, D. (2024). A feedback learning-based selection hyper-heuristic for distributed
heterogeneous hybrid blocking flow-shop scheduling problem with flexible assembly and setup time. Engineering
Applications of Artificial Intelligence, 131, 107818.

Tao, Z., Liu, X., & Zeng, P. (2014). Study on hybrid flow shop scheduling problem with blocking based on GASA. The Open
Automation and Control Systems Journal, 6(1).

Tosun, Ö., Marichelvam, M. K., & Tosun, N. (2020). A literature review on hybrid flow shop scheduling. International
Journal of Advanced Operations Management, 12(2), 156-194.

Vallada, E., Ruiz, R., & Minella, G. (2008). Minimising total tardiness in the m-machine flowshop problem: A review and
evaluation of heuristics and metaheuristics. Computers & Operations Research, 35(4), 1350-1373.

Wang, Y., Wang, Y., & Han, Y. (2023). A variant iterated greedy algorithm integrating multiple decoding rules for hybrid
blocking flow shop scheduling problem. Mathematics, 11(11), 2453.

https://en.wikipedia.org/wiki/Biometrika
https://doi.org/10.1093%2Fbiomet%2F30.1-2.81
https://doi.org/10.1093%2Fbiomet%2F30.1-2.81

158

Yuan, K., Sauer, N., & Sauvey, C. (2009, September). Application of EM algorithm to hybrid flow shop scheduling problems
with a special blocking. In 2009 IEEE Conference on Emerging Technologies & Factory Automation (pp. 1-7). IEEE.

Zheng, Q., Zhang, Y., Tian, H., & He, L. (2024). A cooperative adaptive genetic algorithm for reentrant hybrid flow shop
scheduling with sequence-dependent setup time and limited buffers. Complex & Intelligent Systems, 10(1), 781-809.

© 2025 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

	2. Literature Review
	3. Problem Definition and Mathematical Models
	3.1 Mixed Integer Linear Programming Model 1
	3.2 Mixed Integer Linear Programming Model 2
	4. Proposed Heuristic Algorithms
	4.1 Iterative Local Search
	4.2 Hybrid Genetic Algorithm
	5. Computational Experiments
	5.1 Parameter Setting and Problem Instances Generation
	5.2 Performance Measures
	5.3 Discussion of the results
	6. Conclusion and Future Research Directions

