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 Here, we consider the generalized travelling salesman problem (GTSP), which is a generalization 
of the travelling salesman problem (TSP). This problem has several real-life applications. Since the 
problem is complex and NP-hard, solving this problem by exact methods is very difficult. 
Therefore, researchers have applied several heuristic algorithms to solve this problem. We propose 
the application of genetic algorithms (GAs) to obtain a solution. In the GA, three operators—
selection, crossover, and mutation—are successively applied to a group of chromosomes to obtain 
a solution to an optimization problem. The crossover operator is applied to create better offspring 
and thus to converge the population, and the mutation operator is applied to explore the areas that 
cannot be explored by the crossover operator and thus to diversify the search space. All the 
crossover and mutation operators developed for the TSP can be used for the GTSP with some 
modifications. A better combination of these two operators can create a very good GA to obtain 
optimal solutions to the GTSP instances. Therefore, four crossover and three mutation operators 
are used here to develop GAs for solving the GTSP. Then, GAs is compared on several benchmark 
GTSPLIB instances. Our experiment shows the effectiveness of the sequential constructive 
crossover operator combined with the insertion mutation operator for this problem. 
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1. Introduction 

The travelling salesman problem (TSP) is defined as a network of n cities (or nodes) with a distance matrix denoted by D=[dij]. 
The problem is to find a minimum distance tour for the salesman who visits every city only once. It is among the most 
researched combinatorial optimization problems (COPs). It has several applications in logistics, planning, clustering of data 
arrays, manufacturing of microchips, DNA sequencing, machine scheduling problems, and crystallographic X-rays (Hu & 
Raidl, 2008). In the literature, numerous exact and heuristic procedures are available for obtaining solutions to this problem. 
However, there are conditions in real-life problems for which additional constraints must be imposed on the basic TSP. This 
leads to variations in the TSP, for example, TSP with time windows, TSP with backhauls, multiple TSP, and generalized TSP, 
etc. We propose to study the generalized TSP (GTSP), which was first introduced by Henry-Labordere (1969). The GTSP is 
an extension of the traditional TSP. In the GTSP, cities are partitioned into m clusters, represented by C1, C2, …, Cm. The aim 
and objective of the problem is to find a minimum distance tour (Hamiltonian cycle) for the salesman who visits exactly one 
city in each cluster. The GTSP becomes the traditional TSP when the number of clusters is the same as the number of cities 
and when each cluster contains exactly one city. If the distance matrix D is asymmetric, then the GTSP is an asymmetric 
GTSP; otherwise, it is a symmetric GTSP. The clustered TSP (CTSP) is a variation of the GTSP that finds a minimum distance 
tour by visiting all cities, with the restriction that all cities in a cluster must be visited consecutively before leaving the cluster 
(Ahmed, 2013a). The GTSP is known to be an NtP-hard problem (Henry-Labordere, 1969). It has many interesting real-life 
applications. For example, if a salesman wants to distribute his product among all his dealers in  the country, he could visit all 
the local dealers in only one out of many possible cities in each state, so he can minimize the costs of his trip (Noon and Bean, 
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1993). Furthermore, the GTSP has applications in mail  delivery (Laporte et al., 1996), airplane routing (Grefenstette, 1987), 
etc. To solve the TSP and its variations, several procedures have been suggested in the literature: one exact procedure and 
another heuristic/metaheuristic procedure. Dynamic programming (Henry-Labordere, 1969), branch and bound (Dimitrijevic 
et al., 1996), branch and cut (Fischetti, 1997), and lexisearch algorithm (Ahmed, 2011) are exact methods that provide exact 
solutions. However, as the problem size increases, finding exact solutions using these methods becomes very difficult. There 
is no good exact algorithm for solving this problem exactly in polynomial time,  and for small-sized problem instances, very 
long computation times are needed. Thus, one must apply heuristic algorithms to solve the problem. However, heuristic 
methods do not ensure exact solutions but rather give near exact solutions rapidly. The most recent methods for solving several 
COPs are called metaheuristics. Several metaheuristics have been suggested for solving the usual TSP and its variations 
because of the difficulty of solving these problems. Some of these algorithms include ant colony optimization (Yang et al., 
2008), genetic algorithms (Huang et al., 2005), particle swarm optimization (Tasgetiren et al., 2007), and variable 
neighborhood method (Hu & Raidl, 2008). However, the genetic algorithm (GA) is recognized as one of the leading heuristic 
procedures for solving such problems. 

John Holland proposed GAs, which correspond to the survival-of-the-fittest principle among variant communities created 
using random differences in the chromosome configuration in the biological sciences. They are recognized as effective 
because of their easy, flexible, and simple ability to code solutions as chromosomes. In GAs, several chromosomes, together 
called the initial population, are passed through three main processes (operators), namely, selection, crossover, and mutation, 
to obtain an appropriate solution to a given problem. In the selection process, better chromosomes are selected 
probabilistically. In the crossover process, two-parent chromosomes mate to create better offspring chromosome(s), whereas 
the mutation process randomly alters some of the genetic material in the chromosomes. The crossover process is highly 
important among these processes for designing and implementing GAs (Goldberg, 1989). One very positive thing is that any 
crossover technique constructed for the TSP can be used for the GTSP with some modifications. Therefore, we applied four 
crossover and three mutation operators to develop GAs and studied their effectiveness on GTSPLIB problem instances 
(Fischetti et al., 1997) of different sizes. The computational experiment proves the success of the sequential constructive 
crossover operator combined with the insertion mutation operator. Furthermore, we aim to establish a relative rank of these 
four crossover techniques for the GTSP. 

This manuscript is arranged as follows: Section 2 briefly reviews the current literature on the problem. Section 3 develops 
different GAs to solve the GTSP. Computational results for several GAs using different crossover and mutation procedures 
on asymmetric GTSPLIB instances are reported in Section 4. Finally, Section 5 presents future work and concluding remarks. 

2. Literature review 

The GTSP was first introduced by Henry-Labordere (1969) for real-life applications involving routing clients through welfare 
agencies and recording balancing problems encountered in computer design. To solve the GTSP, the author developed a 
dynamic programming (DP) method, which is obtained from DP approaches for the usual TSP, in which a state is defined by 
the clusters that were already visited. However, in this method, as the number of clusters increases, the number of states 
increases exponentially. Based on integer linear programming, a method was proposed by Laporte & Norbert (1983) for 
solving the problem and applied to both Euclidean and non-Euclidean instances provided that the distance matrix is symmetric. 
The proposed method could solve the largest instance of size 50 cities with 10 clusters. Based on the minimal rooted tree as a 
relaxation, a branch-and-bound algorithm was proposed by Dimitrijevic et al. (1996) for solving the problem. The proposed 
method could solve the largest instance of size 52 cities with 13 clusters. A branch-and-cut method was suggested by Fischetti 
et al. (1997) for finding the solution to the problem that involves a combination of branch-and-bound and cutting plane 
methods. The method could solve the largest instance of size 442 cities with 89 clusters. 

A composite heuristic of generalized initialization, insertion, and improvement was proposed by Renaud et al. (1996) for 
solving the TSP, which was modified by Renaud & Boctor (1998) to solve the GTSP. The algorithm has three steps: 
initialization, insertion, and improvement. In the initialization step, a partial tour is created, whereas in the insertion step, the 
tour is completed by adding the cities with the shortest distances from clusters that are not included. In the improvement step, 
the tour is improved using 2-opt, 3-opt, and 4-opt heuristics. A random-key GA was proposed by Snyder & Daskin (2006) for 
solving the GTSP. Furthermore, two local search methods, the swap method and the 2-opt method, were combined to develop 
a memetic algorithm. Different GAs were developed by Silberholz & Golden (2007) using different genetic operators to solve 
the GTSP. Furthermore, two local improvement methods, the 2-opt heuristic and swap methods, were used to enhance the 
performance of the GAs. A memetic algorithm was developed by Bontoux et al. (2010) for the GTSP by combining a GA 
with local search methods. Helsgaun (2015) developed a heuristic algorithm by combining a transformation of the GTSP into 
the usual TSP proposed by Noon & Bean (1993) with the Lin-Kernighan-Helsgaun TSP solver to solve the GTSP instances. 
As reported, the algorithm could improve the solution quality for the GTSPLIB instances over the formerly best available 
algorithms. A heuristic approach was suggested by Smith & Imeson (2007) for solving the GTSP using an adaptive large 
neighborhood search. The algorithm eliminates and includes cities over and over into the created tour. Furthermore, nearest, 
farthest, and random insertion methods are used to improve the tour. Three GTSP neighborhoods were described and 
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incorporated into an efficient iterated local search method by Schmidt & Irnich (2022). Additionally, cluster optimization was 
used. 

3. Our Genetic Algorithms 

We aim to demonstrate the performances of different crossover operators combined with mutation operators to solve the 
GTSP. Briefly, in GAs, different genetic operators have different impacts on the solutions to an optimization problem; 
following initial population generation, selection operators, crossover operators, and mutation operators are considered for 
designing various GAs for the GTSP. 

3.1 Initial Population 

To solve any optimization problem using a GA, initially, a representation of a solution should be defined as a chromosome. 
The simplest way to represent the solution path is through the cities listed in order. Here, the local-global method proposed 
by Potvin (1996) is used for the GTSP that distinguishes between local connections (connections among cities from different 
clusters) and global connections (connections among clusters). An individual is represented as a list of clusters (C1, C2, ..., 
Cm) that represents the global tour (Hamiltonian cycle) {C1−C2−...−Cm}. Given a global tour (C1, C2, ..., Cm), one of the tours 
can be found as {v1, v2..., vm) with the property that city vi ∈ Ci for all i ∈{1, 2..., m}, which is a local Hamiltonian cycle (tour). 
For example, the individual (1, 5, 3, 7, 4, 2, 6) represents the global tour that passes the clusters in the order C1−C5−C3− 
C7−C4−C2−C6−C1. 

Suppose that n = 12 and m = 6, and the clusters are as follows: C1 = {1, 2}, C2 = {3, 4}, C3 = {5, 6}, C4 = {7, 8}, C5 = {9, 10} 
and C6 = {11, 12}. If the global path is (1, 2, 3, 4, 5, 6), then one of the local paths may be (1, 3, 5, 7, 9, 12), which can be 
shown together as in Fig. 1 and Fig. 2. In Fig. 1, the first row includes integers from 1 to 6, which shows the chain of clusters 
that were visited by the salesperson, and the second row includes the cities selected from the corresponding clusters that were 
visited by the salesperson in the chain. 

 

 

Clusters 1 2 3 4 5 6 

Cities 1 3 5 7 9 12 
 

 

Fig. 1. A chromosome representation Fig. 2. A tour is represented as a chromosome 

This local path is an example of a chromosome whose objective function value is the total distance of the cities in the path. 
Since our problem is a minimization problem, the fitness function is the inverted objective function. Therefore, a group of 
chromosomes called an initial population of size Ps is generated arbitrarily. 

3.2 Selection Operator 

In this selection operator, several stronger chromosomes are selected, and weaker chromosomes are discarded from the current 
population to construct the next generation population. The selection operator improves the performance of GAs, excluding 
the GA, which can produce variant results throughout generations, similar to what random sampling can produce. The 
algorithm maintains stability between the exploitation and exploration of the GA search space. There are numerous selection 
methods available in literature. The roulette wheel selection (RWS) (Goldberg, 1989) method using the fitness proportional 
rule is applied for our GAs.  

3.3 Crossover Operators 

In GAs, crossover is a very important operation that is executed on two chromosomes to reproduce offspring chromosome(s). 
The selection operator and the crossover operator can accelerate the convergence of solutions. The usual crossover operators 
may not be able to reproduce legal offspring(s) for the GTSP. However, the TSP-based crossover operators can be modified 
to implement the GTSP. 
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3.3.1 Partially Mapped Crossover Operator 

The partially mapped crossover (PMX) method was developed by Goldberg and Lingle (1985) and defines an exchange 
mapping in subchromosomes between two arbitrary points in a pair of chromosomes. This crossover was designed for the 
usual TSP. We modify this crossover operator and then apply it to the GTSP as follows. Let P1 and P2 be two parent 
chromosomes with distances of 128 and 163, respectively, concerning the distances given in Table 1 and the same clusters (n 
= 12 and m = 6) as mentioned in Section 3.1. We use these same parent chromosomes to illustrate all crossover operators 
here. 

P1 
1 3 5 4 6 2 

P2 
2 4 5 6 3 1 

1 6 10 7 12 4 4 7 9 11 5 1 

Table 1  
Distance Matrix 

 Cluster 1 2 3 4 5 6 
Cluster Node 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 999 3 5 48 48 8 8 5 5 3 3 0 
2 3 999 3 48 48 8 8 5 5 0 0 5 

2 3 5 3 999 72 72 48 48 24 24 3 3 5 
4 48 48 74 999 0 6 6 12 12 48 48 48 

3 5 48 48 74 0 999 6 6 12 12 48 48 48 
6 8 8 50 6 6 999 0 8 8 8 8 8 

4 7 8 8 50 6 6 0 999 8 8 8 8 8 
8 5 5 26 12 12 8 8 999 0 5 5 5 

5 9 5 5 26 12 12 8 8 0 999 5 5 5 
10 3 0 3 48 48 8 8 5 5 999 0 3 

6 11 3 0 3 48 48 8 8 5 5 0 999 3 
12 0 3 5 48 48 8 8 5 5 3 3 999 

 

The arbitrarily chosen cutoff points were assumed to be between the 3rd and 4th genes and between the 5th and 6th genes, and 
the area between them is shown by shading. 

P1 
1 3 5 4 6 2 

P2 
2 4 5 6 3 1 

1 6 10 7 12 4 4 7 9 11 5 1 

The mapping segments of the clusters between these points are 4↔6 and 6↔3. These segments are reproduced in offspring 
as follows: 

O1 
* * * 4 6 * 

O2 
* * * 6 3 * 

   7 12     11 5  

We now add other clusters along with the cities from the alternative parent chromosome that do not result in an infeasible 
offspring chromosome: 

O1 
2 * 5 4 6 1 

O2 
1 * 5 6 3 2 

4  9 7 12 1 1  10 11 5 4 

The * in O1 would be cluster 4, which is from P2 but is present in O1; thus, we added cluster 3 along with city 5 by using the 
cluster map 4↔6 and 6↔3. Therefore, complete O1 offspring is produced at a distance of 76. Similarly, the * in O2 is cluster 
3, which is from P1 but is present in O2; thus, we added cluster 4 along city 7 by using the cluster map 4↔6 and 6↔3. 
Therefore, complete O2 offspring is produced at a distance of 112. 

O1 
2 3 5 4 6 1 

O2 
1 4 5 6 3 2 

4 5 9 7 12 1 1 7 10 11 5 4 

3.3.2. Ordered Crossover Operator 

The ordered crossover (OX) method was developed by Davis (19985) to construct offspring by selecting a section of a 
chromosome from one parent chromosome and preserving the relative chain of clusters along with the cities from another 
chromosome. This operator was designed for the usual TSP. We modify this operator and then apply it to the GTSP as follows.  
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Suppose the randomly chosen cutoff points are between the 3rd and 4th genes and between the 5th and 6th genes, and the area 
between them is shown by shading. 

P1 
1 3 5 4 6 2 

P2 
2 4 5 6 3 1 

1 6 10 7 12 4 4 7 9 11 5 1 
 

First, the sub-chromosomes between the cutoff points are replicated in the offspring chromosomes as follows: 

O1 
* * * 4 6 * 

O2 
* * * 6 3 * 

   7 12     11 5  

Next, beginning from the 2nd cutoff point of one parent chromosome, clusters along with the corresponding cities from the 
other parent, excluding present clusters in the offspring, are replicated by maintaining the order. The order of the clusters in 
P2 from the 2nd cutoff point is {1, 2, 4, 5, 6, 3}. After eliminating the present clusters {4, 6}, the order becomes {1, 2, 5, 3}; 
that is, these clusters are placed along with the corresponding cities in O1 beginning from the 2nd cutoff point. Next, wrap 
around the starting of the offspring chromosome when it goes to the end to build a complete offspring chromosome. Similarly, 
the second offspring chromosome is also created. Therefore, complete O1 and O2 offspring are produced at distances of 86 
and 115, respectively. 

O1 
2 5 3 4 6 1 

O2 
1 5 4 6 3 2 

4 9 5 7 12 1 1 10 7 11 5 4 

3.3.3. Cycle Crossover Operator 

Cycle crossover (CX) was developed by Oliver et al. (1987), where offspring chromosomes are created such that each cluster 
(and its place) and the corresponding city originate from one of the parent chromosomes. It was designed for the usual TSP. 
We modify this term and apply it to the GTSP as follows. 

The O1 and O2 offspring chromosomes are generated by considering the 1st clusters and their corresponding cities from P1 
and P2, respectively. 

O1 
1 * * * * * 

O2 
2 * * * * * 

1      4      

Since every cluster in the offspring chromosome must be included from one of its parent chromosomes (from the same 
place), in O1, the next cluster must be cluster 2, as this cluster is from P2, which is in the same place as the present cluster 1. 
In P1, this cluster is at place ‘6’. Thus, cluster 2, along with city 4, is copied in 6th place in O1. Similarly, in O2, the next 
cluster must be cluster 1, as this cluster is from P1, which is in the same place as the present cluster 2. In P2, this cluster is at 
place ‘6’. Thus, cluster 1, along with city 1, is copied in 6th place in O2. 

O1 
1 * * * * 2 

O2 
2 * * * * 1 

1     4 4     1 

Next, in O1, we must select cluster 1, as this cluster is from P2, which is in the same place as the present cluster 2, but cluster 
1 is already present in O1. Thus, a cycle is completed. Similarly, in O2, we must select cluster 2, as this cluster is from P1, 
which is in the same place as the present cluster 1, but cluster 2 is already present in O2. Thus, a cycle is completed. Therefore, 
in both O1 and O2, the remaining clusters along with their corresponding cities are chosen and filled from the other parent 
chromosomes. Therefore, complete O1 and O2 offspring are produced at distances of 117 and 78, respectively. 

O1 
1 4 5 6 3 2 

O2 
2 3 5 4 6 1 

1 7 9 11 5 4 4 6 10 7 12 1 
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3.3.4. Sequential constructive crossover operator 

Sequential constructive crossover (SCX) was suggested by Ahmed (2010) for the usual TSP method, which generates only 
one offspring chromosome. The tool sequentially examines parent chromosomes and selects the 1st legitimate (untouched) 
gene that is discovered after the present gene on both parent chromosomes. In a parent chromosome, if no legitimate gene is 
found, it sequentially examines from the beginning of that parent chromosome and selects the legitimate gene. After that, the 
distance of each gene from the gene of interest was calculated, and the better gene was added to the offspring chromosome. 
The SCX algorithm was successfully applied to the TSP with variations (Ahmed, 2013b, 2013c, 2014, 2020). We modified 
this expression and then applied it to the GTSP as in Algorithm 1. 

Algorithm 1: Sequential constructive crossover algorithm 

 Input: Distance matrix D, Crossover probability Pc, Pair of parent chromosomes. 
Output: Offspring chromosome. 

 Generate random number r ∈ [0,1]. 
 if (r ≤ Pc) then do 

  
Set t = 1st cluster and p = 1st city from 1st parent chromosome. 
The offspring chromosome contains ‘cluster t’ along with ‘city p’. 
for i = 2 to m do 

   In each chromosome consider the first ‘legitimate cluster' that appeared after 'cluster t’. 
if a 'legitimate cluster' is not available in a chromosome, then  

    Search from the starting of the chromosome (wrap around) and consider the first ‘legitimate 
cluster' that appeared after 'cluster t’. 

   
end if 
Suppose ‘cluster x’ along with 'city α' and ‘cluster y’ along with 'city β' are found in 1st and 2nd parent 
chromosomes, respectively. 
if (dpα < dpβ) then do 

    Add ‘cluster x’ along with 'city α' to the offspring chromosome. 
   Else 
    Add ‘cluster y’ along with 'city β' to the offspring chromosome. 

   end if 
Rename the present cluster as 'cluster t' and the present city as ‘city p’ and continue. 

  end for 
 end if 

Return the offspring chromosome 

To illustrate the operation of the SCX, we consider the same parent chromosomes. The offspring chromosome O is generated 
by considering the 1st cluster 1 and its corresponding city 1 from P1. 

O 
1 * * * * * 

1      

The legitimate clusters after cluster 1 in P1 and P2 are cluster 3 with city 6 and cluster 2 (after wrapped around) with city 4, 
respectively. The distances from city 1 to city 3 and from city 1 to city 2 are 8 and 48, respectively. Since cluster 3 with city 
6, is cheaper, we added this information to the offspring chromosome. 

O 
1 3 * * * * 

1 6     

The legitimate clusters after cluster 3 in P1 and P2 are cluster 5 with city 10 and cluster 2 (after wrapped around) with city 4, 
respectively. The distances from city 6 to city 10 and from city 6 to city 4 are 8 and 6, respectively. Since cluster 2 with city 
4 is cheaper, we added this information to the offspring chromosome. 

O 
1 3 2 * * * 

1 6 4    
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The legitimate clusters after cluster 2 in P1 and P2 are cluster 5 (after wrapped around) with city 10 and cluster 4 with city 7, 
respectively. Now, the distances from city 4 to city 10 and from city 4 to city 7 are 48 and 6, respectively. Since cluster 4 with 
city 7, is cheaper, we added this information to the offspring chromosome. 

O 
1 3 2 4 * * 

1 6 4 7   

The legitimate clusters after cluster 4 in P1 and P2 are cluster 6 with city 12 and cluster 5 with city 9, respectively. The 
distances from city 7 to city 12 and from city 7 to city 9 are both 8. So, the first cluster, i.e., cluster 6 with city 12, is cheaper, 
we added this information to the offspring chromosome. 

O 
1 3 2 4 6 * 

1 6 4 7 12  

The legitimate clusters after cluster 6 in P1 and P2 are cluster 5 (after wrapped around) with city 10 and cluster 5 with city 9, 
respectively. Now, the distances from city 12 to city 10 and from city 12 to city 9 are 3 and 5, respectively. Since cluster 5 
with city 10, is cheaper, we added this information to the offspring chromosome. Therefore, complete offspring O is produced 
at a distance of 34. 

O 
1 3 2 4 6 5 

1 6 4 7 12 10 

3.4. Mutation Operators 

By introducing arbitrary changes in the GA population, the variety in the population can be increased through the use of a 
mutation operator. In this operator, some gene(s) in a chromosome are randomly chosen and then changed; thus, the 
information is changed. We use the following three mutation operators with mutation probability, Pmt, and then compare them. 
All the mutation operators are illustrated through the following chromosome P. 

P 
1 3 2 4 6 5 

1 6 4 7 12 10 

3.4.1. Swap Mutation 

The swap mutation (SWPM) operator arbitrarily chooses two places in a chromosome and then swaps the genes in these 
places (Banzhaf, 1990). For example, if 2nd and 4th places are arbitrarily chosen and cluster 3 with city 6 and cluster 4 with 
city 7 are swapped in their places, then the mutated chromosome P will be as follows. 

Muted P 
1 4 2 3 6 5 

1 7 4 6 12 10 

3.4.2. Insertion Mutation 

The insertion mutation (INSM) operator arbitrarily chooses one place in a chromosome, takes the corresponding gene, and 
then inserts it at any random place (Fogel, 1988). For example, if 3rd place is arbitrarily chosen and cluster 2 with city 4 is 
inserted between 5th and 6th places, then the mutated chromosome P will be as follows. 

Muted P 
1 3 4 6 2 5 

1 6 7 12 4 10 

3.4.3. Inversion Mutation 

The inversion mutation (INVM) operator arbitrarily chooses two places in a chromosome and then inverts the subchromosome 
between these places (Fogel, 1990). For example, if the 3rd and 5th places are arbitrarily chosen and the subchromosome 
between them is inverted, then the mutated chromosome P will be as follows. 
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Muted P 
1 3 6 4 2 5 

1 6 12 7 4 10 

Our simple GAs are nonhybrid and simply apply the usual GA modules and GA processes. Our GAs initialize an arbitrary 
population, choose fitter chromosomes using the roulette wheel selection procedure, and apply a chosen crossover procedure 
and a mutation procedure. One of the simple GAs is described in Algorithm 2. 

Algorithm 2: Simple genetic algorithm 

 

Input: n, m, D, Ps, Pc, Pmt. 
Output: Best chromosome with its value. 
Initialize a random population of size Ps. 

Evaluate the population. 

Generation = 0. 

 While the stopping condition is not satisfied. 

  

Generation = Generation + 1. 

Select fitter chromosomes by a selection operator. 

Perform a crossover operator with crossover probability Pc. 

Perform a mutation operator with mutation probability Pmt. 

Evaluate the population. 

 end while 
 Return the best chromosome with its value. 

4. Computational Experiments 

Several simple GAs with four crossover operators-PMX, OX, CX, and SCX-and three mutation-SWPM, INSM, and INVM-
were coded in Visual C++ and run on asymmetric GTSPLIB instances (Fischetti et al., 1997) on a laptop with an Intel(R) 
Core(TM) i7-1065G7 CPU@1.30 GHz and 8.00GB RAM under MS Windows 11. Each GA was run 20 times for each 
problem instance. There are 88 symmetric and asymmetric instances with up to 1084 cities, and 217 clusters are present in 
the GTSPLIB. These instances are obtained from the benchmark TSPLIB (Reinelt, 1991). It is found that asymmetric instances 
are relatively harder than symmetric instances are; therefore, we considered only 19 asymmetric instances. We used a random 
population for running all algorithms to avoid biases in a particular algorithm. The best solution (BS), average solution (AS), 
and percentage of the excess of average solution (AE(%)) over the best-known solution (BKS) (Ben-Arieh et al., 2003), 
standard deviation (SD) of the solutions, and average time (AT) (in seconds) to discover the best solution for the first time 
among the 20 executions were reported for every instance by all the algorithms. The AE (%) of the average solution was 
calculated by the formula: AE (%) = 100×(AS/BKS - 1). 

The GAs are verified to be dominated by the size of the population (Ps), probability of crossover (Pc), probability of mutation 
(Pmt), and stopping condition. We set Ps = 200 and Pc = 1.0 to check the absolute functioning of the crossover methods and 
almost equal computing time as a stopping condition. First, we look at the functioning of the crossover methods on these 
asymmetric instances. A comparative investigation among four GAs using four distinct crossover operators with no mutation 
method is shown in Table 2. In this table, the instance name and its BKS inside the brackets are reported in the first column, 
the data names are reported in the second column, and the results obtained by distinct crossovers are reported in the next four 
columns. Additionally, the best results are indicated by the boldface symbols. 

In Table 2, investigating the boldfaces, the GA using SCX with no mutation is revealed to be the best among all the other 
GAs using other crossovers. Looking at the best solution, the GA using PMX could hit (at least once in 20 runs) the BKS for 
four instances-4br17, 7ftv33, 9p43 and 9ftv44; the GA using OX could hit the BKS for seven instances-4br17, 7ftv33, 8ftv35, 
8ftv38, 9p43, 9ftv44 and 12ftv55; the GA using CX could hit the BKS for two instances-only 4br17 and 7ftv33; and the GA 
using SCX could hit the BKS for eight instances-4br17, 7ftv33, 8ftv35, 8ftv38, 9p43, 9ftv44, 10ftv47, and 12ftv55. From this 
observation, it can be claimed that the GA using SCX is the leading GA, the GA using OX is the next best, the GA using 
PMX is the third most common, and the GA using CX is the least common. 
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Table 2  
Comparison of GAs using four crossovers with no mutation for antisymmetric GTSPLIB instances 
Instance Results PMX OX CX SCX  Instance Results PMX OX CX SCX 
4br17 BS 31 31 31 31  13ftv64 BS 793 763 896 735 
(31) AS 31.00 31.00 31.00 31.00  (708) AS 867.05 821.75 1132.20 777.05 
 AE(%) 0.00 0.00 0.00 0.00   AE(%) 22.46 16.07 59.92 9.75 
 SD 0.00 0.00 0.00 0.00   SD 81.41 35.66 99.86 26.14 
 AT 0.00 0.00 0.00 0.00   AT 0.00 0.00 0.00 0.00 
7ftv33 BS 476 476 476 476  14ft70 BS 8202 7978 8819 8074 
(476) AS 534.30 501.00 543.75 480.85  (7707) AS 8721.15 8260.50 9508.30 8271.10 
 AE(%) 12.25 5.25 14.23 1.02   AE(%) 13.16 7.18 23.37 7.32 
 SD 48.86 25.11 40.43 14.59   SD 128.96 145.76 301.81 130.56 
 AT 0.00 0.00 0.00 0.00   AT 0.02 0.01 0.00 0.00 
8ftv35 BS 545 525 579 525  15ftv70 BS 687 625 947 613 
(525) AS 582.25 561.25 645.25 556.55  (594) AS 759.85 726.05 1157.05 652.10 
 AE(%) 10.90 6.90 22.90 6.01   AE(%) 27.92 22.23 94.79 9.78 
 SD 37.97 27.11 40.01 25.88   SD 97.67 50.49 116.54 24.44 
 AT 0.00 0.00 0.00 0.00   AT 0.00 0.00 0.00 0.00 
8ftv38 BS 554 511 569 511  20kro124p BS 13808 13549 21667 11999 
(511) AS 599.10 535.75 628.30 516.55  (11203) AS 15975.80 14963.10 23278.80 12753.25 
 AE(%) 17.24 4.84 22.95 1.09   AE(%) 42.60 33.56 107.79 13.84 
 SD 25.88 22.79 28.36 6.10   SD 1109.32 876.64 1391.15 380.09 
 AT 0.00 0.00 0.00 0.00   AT 0.01 0.01 0.00 0.00 
9p43 BS 5563 5563 5564 5563  35ftv170 BS 1515 1532 3377 1359 
(5563) AS 5570.65 5564.60 5572.30 5565.65  (1205) AS 1773.75 1743.30 2772.60 1463.35 
 AE(%) 0.14 0.03 0.17 0.05   AE(%) 47.20 44.67 130.09 21.44 
 SD 3.56 1.39 7.92 3.13   SD 262.69 130.62 219.11 52.15 
 AT 0.00 0.01 0.00 0.00   AT 0.03 0.06 0.01 0.01 
9ftv44 BS 510 510 567 510  65rbg323 BS 673 637 950 548 
(510) AS 562.40 552.45 678.10 522.80  (471) AS 765.25 702.55 1014.80 578.65 
 AE(%) 10.27 8.32 32.96 2.51   AE(%) 62.47 49.16 115.46 22.86 
 SD 40.05 17.09 54.14 15.71   SD 34.00 28.90 39.38 16.27 
 AT 0.00 0.00 0.00 0.00   AT 0.13 1.05 0.02 0.07 
10ftv47 BS 594 589 697 569  72rbg358 BS 1033 860 1105 803 
(569) AS 672.75 607.90 783.05 606.90  (693) AS 1090.90 935.20 1215.85 849.55 
 AE(%) 18.23 6.84 37.62 6.66   AE(%) 57.42 34.95 75.45 22.59 
 SD 32.14 20.63 40.13 17.15   SD 35.56 27.79 38.26 21.46 
 AT 0.00 0.00 0.00 0.00   AT 0.10 1.79 0.02 0.09 
10ry48p BS 6547 6339 6987 6320  81rbg403 BS 1235 1244 1491 1290 
(6284) AS 6905.90 6583.05 7468.35 6481.95  (1170) AS 1567.25 1302.40 1531.90 1319.10 
 AE(%) 9.90 4.76 18.85 3.15   AE(%) 33.95 11.32 30.93 12.74 
 SD 405.97 117.51 285.53 132.88   SD 79.30 36.03 23.00 17.78 
 AT 0.00 0.00 0.00 0.00   AT 0.14 3.04 0.05 0.12 
11ft53 BS 2711 2654 2850 2656  89rbg443 BS 920 976 1356 748 
(2648) AS 2914.75 2886.50 3318.90 2712.80  (632) AS 1187.35 1038.75 1443.6 799.7 
 AE(%) 10.07 9.01 25.34 2.45   AE(%) 87.87 64.36 128.42 26.53 
 SD 121.16 107.31 172.68 54.68   SD 35.89 25.97 49.20 27.14 
 AT 0.00 0.00 0.00 0.00   AT 0.34 3.80 0.05 0.20 
12ftv55 BS 751 689 817 689        
(689) AS 784.80 714.75 953.55 690.20        
 AE(%) 13.90 3.74 38.40 0.17        
 SD 76.78 33.53 73.26 3.82        
 AT 0.00 0.00 0.00 0.00        

 

Considering the average solution in Table 2, the same conclusion can be drawn. That is, the GA using the SCX operator 
without the mutation operator is found to be best, the GA using the OX operator without the mutation operator is found to be 
the second best, and the GA using the CX operator without the mutation operator is found to be the worst. Fig. 3 shows the 
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results that confirm the usefulness of GA using SCX. We now execute different GAs using four crossovers and three mutations 
using the same mutation probability. Certainly, fixing the same probability of mutation for all mutations for every instance is 
not an easy task. After executing several mutation probabilities, we fix Pmt = 0.20 and a maximum of 10n generations as the 
stopping condition. A comparative investigation among the four GAs using four different crossovers with the SWPM is shown 
in Table 3. 

Table 3 
Comparison of GAs using four crossovers with SWPM for antisymmetric GTSPLIB instances. 
Instance Results PMX OX CX SCX  Instance Results PMX OX CX SCX 
4br17 BS 31 31 31 31  13ftv64 BS 736 726 746 708 
(31) AS 31.00 31.00 31.00 31.00  (708) AS 817.95 801.95 839.15 737.95 
 AE(%) 0.00 0.00 0.00 0.00   AE(%) 15.53 13.27 18.52 4.23 
 SD 0.00 0.00 0.00 0.00   SD 33.45 29.53 69.93 21.79 
 AT 0.00 0.00 0.00 0.00   AT 0.01 0.01 0.01 0.00 
7ftv33 BS 476 476 476 476  14ft70 BS 8060 7930 8200 7830 
(476) AS 489.02 487.95 500.50 476.00  (7707) AS 8345.50 8296.05 8362.95 8050.90 
 AE(%) 2.74 2.51 5.15 0.00   AE(%) 8.28 7.64 8.51 4.46 
 SD 25.32 24.66 30.10 0.00   SD 157.08 142.32 163.13 128.01 
 AT 0.00 0.00 0.00 0.00   AT 0.01 0.01 0.01 0.01 
8ftv35 BS 525 525 525 525  15ftv70 BS 635 625 706 596 
(525) AS 565.25 549.20 590.95 533.30  (594) AS 711.50 661.50 749.55 610.00 
 AE(%) 7.67 4.61 12.56 1.58   AE(%) 19.78 11.36 26.19 2.69 
 SD 32.42 25.23 30.52 24.54   SD 61.33 57.32 70.12 18.56 
 AT 0.00 0.00 0.00 0.00   AT 0.02 0.02 0.01 0.00 
8ftv38 BS 513 511 516 511  20kro124p BS 13611 13211 13442 11817 
(511) AS 531.55 526.80 548.55 512.45  (11203) AS 15921.20 14721.20 13382.80 12732.75 
 AE(%) 4.02 3.09 7.35 0.28   AE(%) 42.12 31.40 19.46 13.65 
 SD 20.75 24.82 22.75 11.09   SD 578.52 578.52 713.73 376.50 
 AT 0.00 0.00 0.00 0.00   AT 0.05 0.05 0.06 0.01 
9p43 BS 5563 5563 5563 5563  35ftv170 BS 1515 1522 1424 1271 
(5563) AS 5564.05 5563.90 5564.05 5563.00  (1205) AS 1601.25 1501.25 1686.65 1378.75 
 AE(%) 0.02 0.02 0.02 0.00   AE(%) 32.88 24.59 39.97 14.42 
 SD 1.90 2.77 1.80 0.00   SD 103.99 95.36 200.56 63.45 
 AT 0.00 0.00 0.00 0.00   AT 0.27 0.27 0.44 0.26 
9ftv44 BS 510 510 543 510  65rbg323 BS 673 625 659 517 
(510) AS 547.65 542.65 581.50 515.60  (471) AS 762.95 675.32 681.50 543.45 
 AE(%) 7.38 6.40 14.02 1.10   AE(%) 61.99 43.38 44.69 15.38 
 SD 15.16 14.56 40.18 20.91   SD 16.38 15.46 13.90 16.18 
 AT 0.00 0.00 0.00 0.00   AT 1.14 1.14 1.86 3.62 
10ftv47 BS 583 580 593 569  72rbg358 BS 1033 860 859 732 
(569) AS 589.75 584.75 614.70 580.10  (693) AS 1049.25 918.25 882.40 774.40 
 AE(%) 3.65 2.77 8.03 1.95   AE(%) 51.41 32.50 27.33 11.75 
 SD 10.66 9.23 37.83 9.22   SD 11.25 10.23 17.89 22.69 
 AT 0.00 0.00 0.00 0.00   AT 2.00 2.01 3.10 5.94 
10ry48p BS 6369 6349 6284 6284  81rbg403 BS 1220 1225 1303 1272 
(6284) AS 6518.60 6479.65 6464.95 6351.65  (1170) AS 1450.10 1290.10 1335.15 1311.85 
 AE(%) 3.73 3.11 2.88 1.08   AE(%) 23.94 10.26 14.12 12.12 
 SD 125.08 115.03 175.10 87.89   SD 16.85 15.78 17.75 19.78 
 AT 0.00 0.00 0.00 0.00   AT 1.75 1.73 3.01 9.83 
11ft53 BS 2702 2662 2672 2648  89rbg443 BS 920 921 873 656 
(2648) AS 2805.25 2756.53 2791.50 2659.20  (632) AS 1157.95 1009.45 960.60 727.00 
 AE(%) 5.94 4.10 5.42 0.42   AE(%) 83.22 59.72 51.99 15.03 
 SD 67.18 59.12 116.70 26.97   SD 17.47 17.47 15.61 29.34 
 AT 0.00 0.00 0.00 0.00   AT 2.82 2.82 3.44 8.49 
12ftv55 BS 689 689 689 689        
(689) AS 696.00 694.00 703.60 689.00        
 AE(%) 1.02 0.73 2.12 0.00        
 SD 12.68 13.02 27.64 0.00        
 AT 0.01 0.01 0.01 0.00        

In Table 3, investigating the boldfaces, the GA using SCX with SWPM is found to be the best among all the other GAs using 
other crossovers. Looking at the best solution, the GA using PMX with SWPM could hit (at least once in 20 runs) the BKS 
for six instances-4br17, 7ftv33, 8ftv35, 9p43, 9ftv44 and 12ftv55; the GA using OX with SWPM could hit the BKS for seven 
instances-4br17, 7ftv33, 8ftv35, 8ftv38, 9p43, 9ftv44 and 12ftv55; the GA using CX with SWPM could hit the BKS for six 
instances-4br17, 7ftv33, 8ftv35, 9p43, 10ry48p and 12ftv55; and the GA using SCX with SWPM could hit the BKS for eleven 
instances-4br17, 7ftv33, 8ftv35, 8ftv38, 9p43, 9ftv44, 10ftv47, 10ry48p, 11ft53, 12ftv55 and 13ftv64. From this observation, 
one can say that the GA using SCX with SWPM is in the top position, the GA using OX with SWPM is in the next position, 
the GA using PMX with SWPM and the GA using CX with SWPM are competing for the third position. 

Considering the average solution in Table 3, one can reach a clearer conclusion. The GA using SCX with SWPM was the 
best, the GA using OX with SWPM was the second best, the GA using CX with SWPM was the third best, and the GA using 
PMX with SWPM was the worst. Fig. 4 shows the results that confirm the usefulness of GA using SCX with SWPM. 
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Table 4  
Comparison of GAs using four crossovers with INSM for antisymmetric GTSPLIB instances 
Instance Results PMX OX CX SCX  Instance Results PMX OX CX SCX 
4br17 BS 31 31 31 31  13ftv64 BS 756 735 751 708 
(31) AS 31.00 31.00 31.00 31.00  (708) AS 820.20 800.20 829.65 733.45 
 AE(%) 0.00 0.00 0.00 0.00   AE(%) 15.85 13.02 17.18 3.59 
 SD 0.00 0.00 0.00 0.00   SD 39.95 33.54 45.14 34.39 
 AT 0.00 0.00 0.00 0.00   AT 0.01 0.01 0.01 0.00 
7ftv33 BS 476 476 476 476  14ft70 BS 7980 7960 7965 7922 
(476) AS 488.12 486.20 511.50 476.00  (7707) AS 8283.20 8233.20 8226.40 8047.25 
 AE(%) 2.55 2.14 7.46 0.00   AE(%) 7.48 6.83 6.74 4.41 
 SD 32.47 24.82 30.16 0.00   SD 151.94 145.23 145.62 119.09 
 AT 0.00 0.00 0.00 0.00   AT 0.01 0.01 0.01 0.01 
8ftv35 BS 525 525 525 525  15ftv70 BS 646 636 647 594 
(525) AS 560.30 554.20 565.30 534.80  (594) AS 693.55 643.55 676.30 604.40 
 AE(%) 6.72 5.56 7.68 1.87   AE(%) 16.76 8.34 13.86 1.75 
 SD 32.58 25.93 32.58 24.42   SD 44.99 39.78 81.00 26.06 
 AT 0.00 0.00 0.00 0.00   AT 0.01 0.01 0.01 0.00 
8ftv38 BS 513 511 516 511  20kro124p BS 13564 13564 13572 12108 
(511) AS 531.00 518.60 541.00 512.45  (11203) AS 15867.85 14767.85 14493.50 12779.50 
 AE(%) 3.91 1.49 5.87 0.28   AE(%) 41.64 31.82 29.37 14.07 
 SD 25.69 19.21 25.69 11.09   SD 635.78 635.78 532.55 325.72 
 AT 0.00 0.00 0.00 0.00   AT 0.04 0.04 0.05 0.01 
9p43 BS 5563 5563 5563 5563  35ftv170 BS 1502 1414 1636 1281 
(5563) AS 5563.80 5564.65 5563.90 5563.00  (1205) AS 1595.32 1485.65 1807.85 1370.55 
 AE(%) 0.01 0.03 0.02 0.00   AE(%) 32.39 23.29 50.03 13.74 
 SD 2.64 3.24 2.64 0.00   SD 96.54 102.32 124.28 61.68 
 AT 0.00 0.00 0.00 0.00   AT 0.31 0.31 0.33 0.38 
9ftv44 BS 510 510 543 510  65rbg323 BS 695 625 636 500 
(510) AS 539.20 534.20 550.65 517.10  (471) AS 756.70 683.32 678.10 531.10 
 AE(%) 5.73 4.75 7.97 1.39   AE(%) 60.66 45.08 43.97 12.76 
 SD 18.18 15.23 20.15 21.51   SD 14.57 1325.00 25.80 18.16 
 AT 0.00 0.00 0.00 0.00   AT 1.03 1.03 1.88 3.78 
10ftv47 BS 578 573 575 572  72rbg358 BS 987 878 869 708 
(569) AS 589.20 583.70 602.25 580.60  (693) AS 1037.55 908.63 900.60 749.80 
 AE(%) 3.55 2.58 5.84 2.04   AE(%) 49.72 31.12 29.96 8.20 
 SD 18.23 17.52 21.18 8.52   SD 21.76 20.13 18.18 23.15 
 AT 0.00 0.00 0.00 0.00   AT 1.77 1.59 2.65 7.11 
10ry48p BS 6319 6309 6309 6284  81rbg403 BS 1357 1267 1317 1271 
(6284) AS 6484.95 6435.45 6450.75 6309.95  (1170) AS 1388.40 1298.40 1349.55 1300.40 
 AE(%) 3.20 2.41 2.65 0.41   AE(%) 18.67 10.97 15.35 11.15 
 SD 109.87 99.85 196.03 85.87   SD 16.89 15.32 19.93 14.74 
 AT 0.01 0.01 0.00 0.00   AT 2.25 2.15 3.77 9.34 
11ft53 BS 2683 2673 2674 2651  89rbg443 BS 893 897 910 632 
(2648) AS 2780.75 2729.55 2734.35 2668.65  (632) AS 1134.75 986.24 987.85 688.60 
 AE(%) 5.01 3.08 3.26 0.78   AE(%) 79.55 56.05 56.31 8.96 
 SD 64.91 61.32 87.32 42.34   SD 18.38 18.38 16.21 21.71 
 AT 0.01 0.01 0.01 0.00   AT 2.79 2.79 3.89 6.48 
12ftv55 BS 689 689 689 689        
(689) AS 698.55 693.55 715.05 689.00        
 AE(%) 1.39 0.66 3.78 0.00        
 SD 16.41 15.75 35.20 0.00        
 AT 0.00 0.00 0.01 0.00        
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We now execute different GAs using four crossovers with the INSM using the same mutation probability. A comparative 
investigation among these GAs is shown in Table 4. In Table 4, investigating the boldfaces, the GA using SCX with INSM 
is in the first position among all the other GAs using other crossovers. Looking at the best solution, the GA using PMX with 
INSM could hit (at least once in 20 runs) the BKS for six instances-4br17, 7ftv33, 8ftv35, 9p43, 9ftv44 and 12ftv55; the GA 
using OX with INSM could hit the BKS for seven instances-4br17, 7ftv33, 8ftv35, 8ftv38, 9p43, 9ftv44 and 12ftv55; the GA 
using CX with INSM could hit the BKS for five instances-4br17, 7ftv33, 8ftv35, 9p43, and 12ftv55; and the GA using SCX 
with INSM could hit the BKS for eleven instances-4br17, 7ftv33, 8ftv35, 8ftv38, 9p43, 9ftv44, 10ry48p, 12ftv55, 13ftv64, 
15ftv70 and 89rbg443. From this observation, one can say that the GA using SCX with INSM is in the top position, the GA 
using OX with INSM is in the next position, the GA using PMX with INSM is in third position, and the GA using CX with 
INSM is in the last position. Considering the average solution in Table 4, one can conclude that the GA using SCX with INSM 
is in the first position, the GA using OX with INSM is in the second position, the GA using CX with INSM is in the third 
position, and the GA using PMX with INSM is in the last position. Fig. 5 shows the results that confirm the usefulness of GA 
using SCX with the INSM. 
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the GA using CX with INVM could hit the BKS for six instances-4br17, 7ftv33, 8ftv35, 8ftv38, 9p43 and 12ftv55; and the 
GA using SCX with INVM could hit the BKS for eleven instances-4br17, 7ftv33, 8ftv35, 8ftv38, 9p43, 9ftv44, 10ftv47, 
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using SCX with INVM is in the first position, the GA using OX with INVM is in the second position, the GA using CX with 
INVM is in the third position, and the GA using PMX with INVM is in the last position. Fig. 6 shows the results that confirm 
the usefulness of GA using SCX with INVM. 
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Table 5  
Comparison of GAs using four crossovers with the INVM for antisymmetric GTSPLIB instances 
Instance Results PMX OX CX SCX  Instance Results PMX OX CX SCX 
4br17 BS 31 31 31 31  13ftv64 BS 763 751 745 712 
(31) AS 31.00 31.00 31.00 31.00  (708) AS 825.00 802.50 825.75 742.60 
 AE(%) 0.00 0.00 0.00 0.00   AE(%) 16.53 13.35 16.63 4.89 
 SD 0.00 0.00 0.00 0.00   SD 29.97 23.78 55.03 19.27 
 AT 0.00 0.00 0.00 0.00   AT 0.01 0.01 0.01 0.00 
7ftv33 BS 476 476 476 476  14ft70 BS 8238 8155 8264 8000 
(476) AS 497.03 493.40 520.25 476.00  (7707) AS 8451.40 8255.14 8443.95 8119.45 
 AE(%) 4.42 3.66 9.30 0.00   AE(%) 9.66 7.11 9.56 5.35 
 SD 35.45 25.15 34.00 0.00   SD 143.70 154.32 149.55 113.93 
 AT 0.00 0.00 0.00 0.00   AT 0.01 0.01 0.02 0.01 
8ftv35 BS 525 525 525 525  15ftv70 BS 735 705 678 594 
(525) AS 552.70 549.80 582.70 531.75  (594) AS 748.80 722.80 700.70 612.85 
 AE(%) 5.28 4.72 10.99 1.29   AE(%) 26.06 21.68 17.96 3.17 
 SD 29.42 28.92 29.42 26.84   SD 42.54 43.02 60.95 19.05 
 AT 0.00 0.00 0.00 0.00   AT 0.02 0.02 0.01 0.00 
8ftv38 BS 511 511 511 511  20kro124p BS 14472 14472 14128 11504 
(511) AS 536.70 533.35 546.70 511.65  (11203) AS 15988.90 14988.90 14577.50 12320.50 
 AE(%) 5.03 4.37 6.99 0.13   AE(%) 42.72 33.79 30.12 9.98 
 SD 28.63 20.13 28.63 4.73   SD 666.82 666.82 651.07 443.11 
 AT 0.00 0.00 0.00 0.00   AT 0.04 0.04 0.07 0.01 
9p43 BS 5563 5563 5563 5563  35ftv170 BS 1601 1425 1704 1309 
(5563) AS 5564.75 5565.75 5564.80 5563.00  (1205) AS 1764.60 1664.60 2151.80 1393.20 
 AE(%) 0.03 0.05 0.03 0.00   AE(%) 46.44 38.14 78.57 15.62 
 SD 2.34 3.52 2.34 0.00   SD 82.49 98.32 112.74 67.15 
 AT 0.00 0.00 0.00 0.00   AT 0.29 0.29 0.40 0.29 
9ftv44 BS 510 510 515 510  65rbg323 BS 685 645 678 532 
(510) AS 543.70 538.23 584.05 510.15  (471) AS 748.10 699.63 716.90 563.32 
 AE(%) 6.61 5.54 14.52 0.03   AE(%) 58.83 48.54 52.21 19.60 
 SD 14.60 13.24 39.28 16.62   SD 15.65 13.48 26.54 17.52 
 AT 0.00 0.00 0.00 0.00   AT 1.03 1.03 1.87 3.69 
10ftv47 BS 582 573 589 569  72rbg358 BS 1025 905 889 792 
(569) AS 591.00 584.32 622.30 581.05  (693) AS 1063.65 934.53 903.75 826.15 
 AE(%) 3.87 2.69 9.37 2.12   AE(%) 53.48 34.85 30.41 19.21 
 SD 13.94 12.87 29.73 7.14   SD 13.96 12.56 18.08 23.32 
 AT 0.00 0.00 0.00 0.00   AT 1.48 1.49 2.41 4.58 
10ry48p BS 6332 6312 6303 6284  81rbg403 BS 1403 1243 1341 1253 
(6284) AS 6528.40 6474.45 6543.40 6300.85  (1170) AS 1427.30 1287.30 1364.95 1313.75 
 AE(%) 3.89 3.03 4.13 0.27   AE(%) 21.99 10.03 16.66 12.29 
 SD 128.34 121.24 218.23 118.46   SD 14.49 13.89 14.57 18.54 
 AT 0.01 0.01 0.00 0.01   AT 1.85 1.86 3.37 7.08 
11ft53 BS 2757 2643 2659 2648  89rbg443 BS 1245 952 908 681 
(2648) AS 2805.55 2768.45 2930.80 2674.55  (632) AS 1086.05 1037.32 1000.45 747.25 
 AE(%) 5.95 4.55 10.68 1.00   AE(%) 71.84 64.13 58.30 18.24 
 SD 70.97 65.49 89.31 35.22   SD 15.24 15.24 23.99 32.20 
 AT 0.01 0.01 0.01 0.00   AT 2.52 2.52 3.10 10.01 
12ftv55 BS 689 689 689 689        
(689) AS 714.70 705.45 732.80 689.00        
 AE(%) 3.73 2.39 6.36 0.00        
 SD 26.56 25.63 48.41 0.00        
 AT 0.01 0.01 0.01 0.00        

From the above observation, it is very clear that with or without any mutation operator, SCX can produce the best solutions 
among the crossover operators. However, it is not clear which mutation operator, SCX can produce the best solutions among 
the mutation operators. For that reason, we summarize the above results in Table 6. In this table, the instance name and 
mutation name are reported in the first and second columns, respectively; however, AEs (%) caused by distinct crossovers 
with distinct mutations are reported in the next four columns; and the grand average (GAV) using all crossovers with a 
particular mutation operator is reported in the last column. Furthermore, a partial average solution (PAV) using a crossover 
operation with all the mutations is reported for each instance. The best results are shown in boldface. 

Irrespective of any mutation, as shown in Table 6, by observing at PAV (in boldface), except for instance 4br17, the 
crossover operators PMX and CX could not obtain the best average for any problem instance; OX was the best for only one 
instance-81rbg403, whereas SCX was the best for the remaining seventeen instances. The PAVs that are reported in Table 6 
are shown in Fig. 7. Hence, SCX is in the first position, OX is in the second position, and PMX is in the third position. 
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Table 6  
Comparison of the crossovers and mutations for several GTSPLIB instances 
Inst Mute PMX OX CX SCX GAV  Inst Mute PMX OX CX SCX GAV 
4br17 NO 0.00 0.00 0.00 0.00 0.00  13ftv64 NO 22.46 16.07 59.92 9.75 27.05 
 SWPM 0.00 0.00 0.00 0.00 0.00   SWPM 15.53 13.27 18.52 4.23 12.89 
 INSM 0.00 0.00 0.00 0.00 0.00   INSM 15.85 13.02 17.18 3.59* 12.41 
 INVM 0.00 0.00 0.00 0.00 0.00   INVM 16.53 13.35 16.63 4.89 12.85 
 PAV 0.00 0.00 0.00 0.00    PAV 17.59 13.93 28.06 5.62  
7ftv33 NO 12.25 5.25 14.23 1.02 8.19  14ft70 NO 13.16 7.18 23.37 7.32 12.76 
 SWPM 2.74 2.51 5.15 0.00 2.60   SWPM 8.28 7.64 8.51 4.46 7.23 
 INSM 2.55 2.14 7.46 0.00 3.04   INSM 7.48 6.83 6.74 4.41* 6.36 
 INVM 4.42 3.66 9.30 0.00 4.34   INVM 9.66 7.11 9.56 5.35 7.92 
 PAV 5.49 3.39 9.03 0.25    PAV 9.64 7.19 12.05 5.39  
8ftv35 NO 10.90 6.90 22.90 6.01 11.68  15ftv70 NO 27.92 22.23 94.79 9.78 38.68 
 SWPM 7.67 4.61 12.56 1.58 6.60   SWPM 19.78 11.36 26.19 2.69 15.01 
 INSM 6.72 5.56 7.68 1.87 5.46   INSM 16.76 8.34 13.86 1.75* 10.18 
 INVM 5.28 4.72 10.99 1.29* 5.57   INVM 26.06 21.68 17.96 3.17 17.22 
 PAV 7.64 5.45 13.53 2.69    PAV 22.63 15.90 38.20 4.35  
8ftv38 NO 17.24 4.84 22.95 1.09 11.53  20kro124p NO 42.60 33.56 107.79 13.84 49.45 
 SWPM 4.02 3.09 7.35 0.28 3.69   SWPM 42.12 31.40 19.46 13.65 26.66 
 INSM 3.91 1.49 5.87 0.28 2.89   INSM 41.64 31.82 29.37 14.07 29.23 
 INVM 5.03 4.37 6.99 0.13* 4.13   INVM 42.72 33.79 30.12 9.98* 29.15 
 PAV 7.55 3.45 10.79 0.45    PAV 42.27 32.65 46.69 12.88  
9p43 NO 0.14 0.03 0.17 0.05 0.10  35ftv170 NO 47.20 44.67 130.09 21.44 60.85 
 SWPM 0.02 0.02 0.02 0.00 0.01   SWPM 32.88 24.59 39.97 14.42 27.96 
 INSM 0.01 0.03 0.02 0.00 0.02   INSM 32.39 23.29 50.03 13.74* 29.86 
 INVM 0.03 0.05 0.03 0.00 0.03   INVM 46.44 38.14 78.57 15.62 44.69 
 PAV 0.05 0.03 0.06 0.01    PAV 39.73 32.67 74.67 16.30  
9ftv44 NO 10.27 8.32 32.96 2.51 13.52  65rbg323 NO 62.47 49.16 115.46 22.86 62.49 
 SWPM 7.38 6.40 14.02 1.10 7.23   SWPM 61.99 43.38 44.69 15.38 41.36 
 INSM 5.73 4.75 7.97 1.39 4.96   INSM 60.66 45.08 43.97 12.76* 40.62 
 INVM 6.61 5.54 14.52 0.03* 6.67   INVM 58.83 48.54 52.21 19.60 44.80 
 PAV 7.50 6.25 17.37 1.26    PAV 60.99 46.54 64.08 17.65  
10ftv47 NO 18.23 6.84 37.62 6.66 17.34  72rbg358 NO 57.42 34.95 75.45 22.59 47.60 
 SWPM 3.65 2.77 8.03 1.95* 4.10   SWPM 51.41 32.50 27.33 11.75 30.75 
 INSM 3.55 2.58 5.84 2.04 3.50   INSM 49.72 31.12 29.96 8.20* 29.75 
 INVM 3.87 2.69 9.37 2.12 4.51   INVM 53.48 34.85 30.41 19.21 34.49 
 PAV 7.32 3.72 15.22 3.19    PAV 53.01 33.36 40.79 15.44  

10ry48p NO 9.90 4.76 18.85 3.15 9.16  81rbg403 NO 33.95 11.32 30.93 12.74 22.24 
 SWPM 3.73 3.11 2.88 1.08 2.70   SWPM 23.94 10.26 14.12 12.12 15.11 
 INSM 3.20 2.41 2.65 0.41 2.17   INSM 18.67 10.97 15.35 11.15* 14.03 
 INVM 3.89 3.03 4.13 0.27* 2.83   INVM 21.99 10.03 16.66 12.29 15.24 
 PAV 5.18 3.33 7.13 1.23    PAV 24.64 10.65 19.26 12.07  
11ft53 NO 10.07 9.01 25.34 2.45 11.72  89rbg443 NO 87.87 64.36 128.42 26.53 76.80 
 SWPM 5.94 4.10 5.42 0.42* 3.97   SWPM 23.94 10.26 14.12 12.12 15.11 
 INSM 5.01 3.08 3.26 0.78 3.03   INSM 18.67 10.97 15.35 11.15* 14.03 
 INVM 5.95 4.55 10.68 1.00 5.55   INVM 21.99 10.03 16.66 12.29 15.24 
 PAV 6.74 5.18 11.17 1.16    PAV 38.12 23.91 43.64 15.52  
12ftv55 NO 13.90 3.74 38.40 0.17 14.05         
 SWPM 1.02 0.73 2.12 0.00 0.97         
 INSM 1.39 0.66 3.78 0.00 1.46         
 INVM 3.73 2.39 6.36 0.00 3.12         
 PAV 5.01 1.88 12.66 0.04          
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Irrespective of any crossover, as shown in Table 6, by observing at GAV (in boldface), except for instance 4br17, the mutation 
operator INVM could not obtain the best average for any problem instance; SWPM was the best for five instances-7ftv33, 
9p43, 12ftv55, 20kro124p, and 35ftv170, whereas INSM was the best for the remaining thirteen instances. The GAV that is 
reported in Table 6 is shown in Fig. 8. Although SWPM and INSM compete, INSM is in the first position, SWPM is in the 
second position, and INVM is in the last position. Furthermore, GAs generated from mutations exhibited significant 
improvements compared with GAs without mutations. 

Since the GAs using SCX with any mutation, the GAs using SWPM with any crossover, and the GAs using INSM with any 
crossover are better combinations, we now look at the GAs using SCX combined with any mutation, as shown in Table 6. We 
mark the best average excess (%) with an asterisk*. By observing the average excess (%), except for four instances 4br17, 
7ftv33, 9p43, and 12ftv55, the GA combining SCX and SWPM is the best for only two instances, the GA combining SCX 
and INSM is the best for six instances, and the GA combining SCX and INVM is the best for five instances. Hence, the GA 
using SCX combined with INSM is in the first position, and the GA using SCX combined with INVM is in the second position. 

 

5. Conclusions and future work 

We suggest several simple genetic algorithms using four crossover and three mutation operators for solving the generalized 
travelling salesman problem (GTSP). We first illustrated the crossover and mutation operators using several examples. We 
then implemented the algorithms using Visual C++ and ran them on asymmetric GTSPLIB instances. To evaluate the 
performance of the crossovers, algorithms were run using only crossovers with a crossover probability of 1.00 and with no 
mutation on the problem instances. It was observed that sequential constructive crossover is highly effective. Next, to evaluate 
the performance of the combination of crossover and mutation operators, we run the algorithms using four crossovers with a 
probability of 1.00 and three mutations with a probability of 0.20 on asymmetric instances. From our present study, it appears 
that the genetic algorithm using sequential constructive crossover combined with insertion mutation is the top algorithm, and 
the genetic algorithm using sequential constructive crossover combined with inversion mutation is the second best. 

In this research, we aimed to investigate different combinations of crossovers and mutations in genetic algorithms to find a 
solution to the GTSP and determine the best combination. We did not aim to find the best quality solution; hence, no local 
search algorithm was incorporated into the genetic algorithms. Even though the sequential constructive crossover combined 
with the insertion mutation was the topmost method, it was not able to find the exact optimal solution for some problem 
instances. Therefore, we plan to incorporate several local search algorithms and/or heuristic algorithms into simple genetic 
algorithms to obtain quality solutions for the problem instances. 
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