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 Fatigue crack growth studies require models that accurately predict component life with low 
uncertainty. Despite the large number of proposed models, there is no clarity on their applicability, 
which justifies a comparative analysis between some of them. The dual boundary element method 
(DBEM) was applied for cracked bodies, whereby the stress intensity factors (SIF), the growth rate, 
and the number of cycles were computed. Three crack increment models were studied under constant 
amplitude fatigue loads: the Paris, the Klesnil-Lucas, and the Forman models. Results were validated 
with experimental literature and through the finite element method, indicating that each model 
represents a specific zone of the crack growth curve. Klesnil-Lucas model reproduces the region near 
the fracture threshold, Paris fits the controlled crack growth zone, whereas Forman’s model recreates 
the unstable fracture zone, i.e., when the stress intensity factor approaches the material’s fracture 
toughness. The J-integral with stress field decomposition gave errors below 0.8% for mode I. Results 
were similar for the propagation path and the number of cycles to those obtained with the finite element 
method, with errors of about 3% considering different K-equivalent approaches. Klesnil-Lucas 
accurately predicts the number of cycles with an error margin below 3%, considering the curved region 
in the growth rate at the propagation onset, while the Paris model becomes very conservative, 
predicting values up to 50% lower than experimental data. The Klesnil-Lukas model is advised for 
simulating the entire crack propagation. 

© 2024 Growing Science Ltd.  All rights reserved. 
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1. Introduction 

       The classical design of mechanical components considers three main factors: the applied load, the geometry of the element 
and some physical properties. The computational model, the low operational reliability, and the required experimental tests 
lead to high safety factors for this approach; therefore, in high performance applications such as medical equipment and 
aerospace, a design scheme that provides higher confidence is required. Fracture mechanics emerges as an engineering 
discipline that studies the resistance of an element by adding a new variable to the analysis, that is, crack nucleation and 
propagation (Aliabadi, 1997). Based on such guidelines, a more reliable design is made, facilitating preventive decision 
making. The analysis of cracked elements can only be performed purely analytically for basic geometries with certain 
simplifications. The time and cost required for experimental setup makes it inefficient in typical applications, therefore, a 
computational analysis using numerical methods presents an alternative for solving general problems with defined geometry 
and mixed boundary conditions (Shlyannikov et al., 2021). There are several numerical methods used in fracture mechanics: 
among them, the finite element method (FEM) and the boundary element method (BEM). Portela (Santana & Portela, 2016a) 
pioneered the use of the boundary element method to study the coalescence of multiple cracks using the ligament yield 
criterion theory, Liu (Liu et al., 2020) analyzed fatigue crack propagation in pressurized pipe bends subjected to alternating 
bending using the finite element method, Mantilla (Mantilla et al., 2021) simulated the variation of stress intensity factor for 
the wedge splitting test using FEM, Shlyannikov (Shlyannikov et al., 2021) used FEM to analyze mixed mode (I + II) 
propagation in aviation engine compressor disk while Leite (Leite & Gomes, 2019) applied the dual boundary element method 
to simulate the same fracture mode. Some studies have considered a hybrid between the two methods, Citarella (Citarella et 
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al., 2016) used a combined DBEM + FEM approach for crack propagation in a low pressure aeroengine turbine vane segment. 
Although both methods present numerical accurate solutions, the BEM is more suitable for this type of analysis (Sedmak, 
2018), because it only discretizes the boundary and not the complete domain of the model (Fig. 1), facilitating the meshing 
algorithms, resulting in a lower order system of equations and, consequently, decreasing the computational time (Leite & 
Gomes, 2019; Price & Trevelyan, 2014a). On the other hand, the 2D simplification of a 3D cracked body might induce errors 
due to thickness strain variation (Gómez et al., 2024). 
 

 
Fig. 1. Mesh comparison for cracked gear tooth using FEM and BEM. a) Finite element method, b) Boundary element method. 
 
      Simulating fatigue crack propagation phenomenon requires a mathematical model to predict the behavior of the material 
based on the crack growth curve, which relates the growth ratio (da/dN) to the variation of the applied stress intensity factor 
(∆K) obtained experimentally. If there is mixed mode loading, a crack kinking criterion is also needed (Díaz & Freire, 2022). 
Several crack growth models have been reported in the literature (Machniewicz, 2013), some of which use the J-integral 
introduced by Rice (Rice, 1968) as the main parameter (Liu et al., 2020; Tanaka, 1983), others evaluate the energy release 
ratio (G) to estimate the propagation (Amsterdam et al., 2023), other use the crack opening displacement (Vaidya et al., 2010) 
and many models state that the growth ratio depends on the variation of the stress intensity factor (∆K) when linear elastic 
conditions apply. It is useful to compare the estimation of growth ratios and component life with different stress intensity 
factors-based models. Therefore, a comparative analysis of three crack growth models under constant amplitude fatigue 
loading has been developed: the Paris-Erdogan (Paris & Erdogan, 1963), the Klesnil-Lucas (Klesnil & Lukáš, 1972) and the 
Forman models (Forman et al., 1967). 
 
      In this paper, the Dual Boundary Element Method (DBEM) with the J-integral has been applied to several problems for 
the simulation of cracked bodies under a plane (stress or strain) state, most of them restricted to fracture mode I for free 
traction cracks. The analysis contrasted the results of the growth ratios and number of cycles for each of the propagation 
models with experimental data from the three crack growth regions. The results obtained by the dual boundary element method 
were also used to validate the calculation of the stress intensity factor, the crack path, and the implementation of the models 
with other simulations, using the finite element method. 
 
2. Materials and methods 
 
      The method of two-dimensional (2D) analysis of fatigue crack growth in homogeneous and isotropic materials includes 
firstly the overall simulation strategy and therefore the specific fundamentals of each operation performed during the 
simulation. 
 
2.1 Overall simulation strategy 
 
      In the simulations performed, the process shown in Fig. 2a was carefully followed. With the initial conditions known, the 
DBEM with the J-integral was used to solve the mixed boundary problem and to calculate the stress intensity factors as the 
main result. Then, a cycle was run for each of the simulated increments. The maximum tangential stress (MTS) criterion was 
used to determine the crack growth direction (θ୲) and in this way the functional mesh can be modified as shown in Fig. 2b. 
DBEM is employed again to recalculate stresses, strains, displacements, and SIFs, initially and at the end of each increment. 
Once the calculation cycle was complete, one of the fatigue crack growth models was used to integrate the number of elapsed 
cycles and to locate the next point on the crack growth plot. 
 
2.2 Dual Boundary Element Method (DBEM) 
 
    Table 1 compares some features between the DBEM and the finite element method (FEM) that support the use of DBEM 
in the current work, however, the main feature that makes the boundary element method particularly useful in the analysis of 
cracked bodies and crack growth is the model discretization (Fig. 1). For the computational crack growth analysis with DBEM, 
only new elements must be added in the growth direction (Wen & Aliabadi, 2012), whereas with the finite element method 
the whole domain, or at least a large part of it, must be re-meshed, which simplifies the meshing algorithms in the pre-
processing and reduces the computation time. Since the general topology of the mesh remains unchanged, only new rows and 
columns are added to the system of equations used in the previous increment (Leite & Gomes, 2019; Price & Trevelyan, 
2014b; Santana & Portela, 2016b). 

a) b) 
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Fig. 2. General methodology for crack growth simulations. a) General flow diagram, b) Example of discretization showing 
the change in the functional mesh for the first two simulated increments.  
 
Table 1. A comparison between DBEM and FEM algorithms. 

Feature DBEM FEM 
Discretization Boundary (Γ) Domain (Ω) 
Computing time Short Time – consuming 
Elements dimensionality One dimension lower than the problem Same problem dimension 
Solution and results Boundary calculation, postprocessing for internal points Domain computation (all nodes) 

 
      The formulation of the boundary integral equations for two-dimensional (2D) elasticity in homogeneous isotropic 
materials with linear behavior is based on the Somigliana identity (Portela et al., 1993). This expression (1) allows the 
calculation of stresses and displacements in an internal point 𝐱ᇱϵ Ω, by integrating the tractions and displacements at every 
boundary node 𝐱 ϵ Γ (Fig. 3b). 
 
 u୧ሺ𝐱ᇱሻ ൅ නT୧୨ሺ𝐱ᇱ. 𝐱ሻu୨ሺ𝐱ሻdΓሺ𝐱ሻ୻ ൌ නU୧୨ሺ𝐱ᇱ.𝐱ሻt୨ሺ𝐱ሻdΓሺ𝐱ሻ୻  (1) 
 

where u୧ሺ𝐱ᇱሻ is the displacement in the i-direction for the point of interest 𝐱′, u୨ሺ𝐱ሻ and t୨ሺ𝐱ሻ are the displacement and traction 
in the j-direction at 𝐱 ϵ Γ. The terms T୧୨ሺ𝐱ᇱ, 𝐱ሻ and U୧୨ሺ𝐱ᇱ,𝐱ሻ represent the Kelvin fundamental solutions (Balderrama et al., 
2006). 

 
Fig. 3. Integral equations evaluated at a point x′. a) Boundary integral equations. b) Somigliana Identity. 

a) b) 

a) b) 
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      The conventional boundary element method, just defined by the displacement equation, is indeterminate for cracked 
bodies, i.e., coincident boundaries on the crack faces (Leite & Gomes, 2019; Price & Trevelyan, 2014b). Consequently, the 
dual boundary elements method was used, made up of two independent equations (Wen & Aliabadi, 2012). The displacement 
Eq. (2) and the traction Eq. (3). 
 C୧୨ሺ𝐱ᇱሻu୨ሺ𝐱ᇱሻ ൅ නT୧୨ሺ𝐱ᇱ.𝐱ሻu୨ሺ𝐱ሻdΓሺ𝐱ሻ୻ ൌ නU୧୨ሺ𝐱ᇱ. 𝐱ሻt୨ሺ𝐱ሻdΓሺ𝐱ሻ୻  (2) 12 t୨ሺ𝐱ᇱሻ ൅ n୧ሺ𝐱ᇱሻනS୩୧୨ሺ𝐱ᇱ. 𝐱ሻu୩ሺ𝐱ሻdΓሺ𝐱ሻ୻ ൌ n୧ሺ𝐱ᇱሻනD୩୧୨ሺ𝐱ᇱ. 𝐱ሻt୩ሺ𝐱ሻdΓሺ𝐱ሻ୻  (3) 

where C୧୨ሺ𝐱ᇱሻ ൌ δ୧୨/2 for a smooth boundary and n୧ሺ𝐱ᇱሻ is the normal to the boundary in the i-direction. S୩୧୨ሺ𝐱ᇱ,𝐱ሻ and D୩୧୨ሺ𝐱ᇱ, 𝐱ሻ contain the derivatives of the fundamental solutions T୧୨ሺ𝐱ᇱ,𝐱ሻ and U୧୨ሺ𝐱ᇱ,𝐱ሻ, respectively. 
 
      The boundary integral equations (2 and 3) were applied on the boundary discretization nodes xᇱϵ Γ by evaluating the 
integrals throughout the boundary (Figure 3a), this involves dealing with different types of singularity cases during the 
integration of the element containing the application node 𝐱′, a 1/r strong singularity in T୧୨ሺ𝐱ᇱ,𝐱ሻ and D୩୧୨ሺ𝐱ᇱ,𝐱ሻ, a ln ሺ1/rሻ 
soft singularity in U୧୨ሺ𝐱ᇱ,𝐱ሻ and a 1/rଶ hyper singularity in S୩୧୨ሺ𝐱ᇱ, 𝐱ሻ (Price & Trevelyan, 2014b). The displacement integral 
Eq. (2) was used on one of the crack faces and the traction integral Eq. (3) on the geometrically coincident opposite face. The 
displacement integral equation was applied for the rest of the boundary (Fig. 4). 
 

 
Fig. 4. A general sketch of the cracked body under mixed boundary conditions. The boundary integral equations approach is 
shown. The tractions and displacements are known in Γ௧ and Γ௨, respectively. The J-integral was computed on an arbitrary 
contour S around the crack tip. 
 
      To solve all the tractions and displacements at the boundary, the method consists of first use Eq. (2) and Eq. (3) to solve 
the boundary and then apply the Somigliana identity (1) in the internal points required for the J integral evaluation and the 
stress intensity factor calculation. The cracked body was discretized completely with quadratic elements, the faces of the crack 
and the surrounding elements were discretized with discontinuous quadratic elements to work the singular and hyper singular 
integrals under the concept of Cauchy and Hadamard (Kats & Katz, 2019), the rest of the boundary was meshed with 
continuous elements.  
 
2.3 J Integral   
 
     For the calculation of the stress intensity factors, the J integral was computed. The J integral is equal to the energy release 
rate for a body without volumetric forces (Rice, 1968). Eq. (4) illustrates the expression of the J-integral and its equivalence 
to the stress intensity factors in the case of linear elastic behavior. 
 J ൌ න൫Wnଵ − t୨u୨.ଵ൯dSୗ ൌ 1Eᇱ ሺKଶ୍ ൅ K୍ଶ୍ ሻ (4) 

where W is the strain energy density, S is an arbitrary path around the crack tip (Fig. 4),  nଵ is the normal vector to the 
integration path in direction 1, t୨ is the traction vector, 𝑢௝,ଵ is the displacement,  Eᇱ ൌ E for plane stress and  Eᇱ ൌ E/ሺ1 − vଶሻ 
for plane strain and v is the Poisson's ratio. 
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      For each simulated increment, two elements (6 functional nodes) were added on each crack face in the growth direction, 
to define the local coordinate system xଵ, xଶ (Fig. 4). The J-integral (4) was evaluated for a circular path around the crack tip 
made up of thirty-two internal points where the radius of the circle is defined as the distance from the crack tip to the fifth 
closest functional node. To decouple the SIFs, the elastic field is decomposed into the symmetric and the antisymmetric 
components (Liu et al., 2020). The J-integral was calculated using the trapezium rule with constant elements; however, it can 
be used with quadratic elements or even without contour discretization via Gauss-Legendre quadrature (Peixoto et al., 2023). 
This approach has been used with finite elements (Wang et al., 2023), boundary elements and experimentally using DIC to 
calculate stress intensity factors (Koko et al., 2020), as well as to establish the da/dN growth ratio as a function of ∆J for 
materials with elastoplastic behavior (Tanaka, 1983; Xu et al., 2022). 
 
2.4 Crack growth path 
 
      Based on the Westergaard elastic stress field solutions (Gdoutos, 1990), the maximum shear stress criterion was proposed 
and postulates that the crack grows in a direction perpendicular to the maximum tangential stress (MTS). This criterion was 
selected since the growth direction only depends on the ratio between the stress intensity factors K୍/K୍୍ given by expression 
(5) and has proved to fit accurately in the implementation (Malíková et al., 2016; Wang et al., 2023). 
 tan ൬θ୲2 ൰ = 14ቌK୍K୍୍ ± ඨ൬K୍K୍୍൰ଶ + 8ቍ (5) 

where 𝜃௧ refers to the growth angle measured from the local coordinate system at the crack tip (Figure 4). Two growth angles 
are available from expression (5), however, is chosen the one that produces the maximum principal stress in an equivalent I-
mode (6). 
 K୍ୣ୯ = K୍ cosଷ ൬θ୲2 ൰ − 3K୍୍ cosଶ ൬θ୲2 ൰ sin ൬θ୲2 ൰ (6) 

 
2.5 Fatigue crack growth models 
 
      Three fatigue crack propagation models were analyzed where the growth rate is related to the applied stress intensity 
factors. 
 
2.5.1 Paris-Erdogan model (Paris & Erdogan, 1963): 
 dadN = Cሺ∆Kሻ୫ (7)  
2.5.2 Klesnil-Lucas model (Klesnil & Lukáš, 1972): 
 dadN = C ∗ ሺΔK୫ − ΔK୲୦୫ሻ (8)  
2.5.3 Forman model (Forman et al., 1967): 
 dadN = CሺΔKሻ୫ሺ1 − RሻK୍େ − ΔK (9) 

where da/dN denote the crack growth rate, R is the fatigue load ratio, ∆K is the stress intensity factor variation, C and m are 
material-dependent experimental constants, ∆K୲୦ and K୍େ  are the fracture threshold and the fracture toughness, respectively. 

      For the stress intensity factor variation (∆K) in the crack growth models, the expression (10) postulated by Tanaka (Tanaka, 
1974) was applied. Tanaka (10) works with two-dimensional problems in terms of an equivalent SIF variation (∆Kୣ୯) as a 
function of ∆K୍ and ∆K୍୍ for the opening and sliding shear loading modes, respectively. Sajith (Sajith et al., 2020) found 
Tanaka’s model gives the closest fit to experimental results by comparing various equations of ∆Kୣ୯ for mixed mode in AISI 
316 austenitic stainless Steel, Gómez (Gómez et al., 2024) found Tanaka’s model best fits the experimental behavior of low-
carbon steel under mixed mode and Shukla (Shukla & Murthy, 2023) showed that using the mixed mode Paris constants along 
with Tanaka's ∆Kୣ୯ model accurately and consistently predicts the fatigue life in Al 7075-T6 alloy. 

∆Kୣ୯ = ሺ∆Kଶ୍ + 2∆K୍ଶ୍ ሻଵ/ଶ (10) 
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      Once the variation of the equivalent stress intensity factor was known, the simple trapezoid rule was used to integrate the 
number of elapsed cycles for each increment. A summary of the performed simulations is shown in Table 2. 

Table 2. Summary of applied problems 
Type of sample Reference Reference method Fracture mode Crack growth 

models 

SENT 

Zhu (Zhu, 2017) 
Shen (Shen et al., 2009) 
Bassindale (Bassindale et 
al., 2018) 

Experimental 
FEM 

Pure mode I 
 

Paris 

Rectangular Notch Plate 
(RNP) Singh (Singh et al., 2011) 

Experimental 
Paris  
Klesnil-Lucas 
Forman Compact tension (CT) in 

7075 aluminum alloy 

Zhao (Zhao et al., 2008)  
Newman (Newman et al., 
2014) 

Perforated plate (PP) 
Boljanovic (Boljanović & 
Maksimović, 2011) 
Sajith (Sajith et al., 2019) 

Experimental 
FEM Mixed mode ሺI + IIሻ Paris  

 
3. Results and discussion 
 
     A simulation performed to validate the dual boundary element method and the J-integral is first presented, followed by 
comparative tests of the propagation models. 
 
3.1 Single Edge Notched Test (SENT) 
 
      To validate the results of the stress intensity factors measured by DBEM, the simulation of the SENT test adopted by the 
BS 8571 standard to determine fracture toughness and the crack growth ratios in metals was conducted (Moore & Pisarski, 
2017). This test is an alternative to those adopted in the American society with the Compact Tension (CT) and the Single 
Edge Notched Bending (SENB) specimens (Sajuri et al., 2011). The test involves the fracture of a specimen with the 
dimensions shown in Fig. 5a, subjected to an axial load P at both ends. According to the recommendation of the standard, H/w = 10 and H∗/w = 4 were used, where H is the clear length and H∗ is the clamping length at each end, the thickness B is 
equal to the width w. 
 

 
Fig. 5. SENT simulation.  a) Geometry and boundary conditions, b) Percentage errors.  
 

a) b) 



J. A. Mantilla et al.  / Engineering Solid Mechanics12(2024) 
 

415

a) b) 

      The SIF were compared with three references. The expression given by Zhu (Zhu, 2017) obtained from experimental 
correlations for pure tension and bending, the correlation of Shen (Shen et al., 2009) by simulation fitting and the Bassindale 
approach (Bassindale et al., 2018) through the finite element method from ABAQUS (Dassault Systèmes, Vélizy-
Villacoublay, France). Crack lengths were varied from a/w = 0.1 to a/w = 0.9 with 0.05 increments, range in which the 
models were calibrated in the references. 
 
      Errors (Fig. 5b) of less than 1.7 % were obtained throughout the study range, in standard recommended range of 0.2 ≤ a/w ≤0.7 the errors were less than 0.8 % that is in the absence of plasticity effects.  
 
3.2 Rectangular Notched Probe (RNP) 
 
     The experimental test performed by Singh (Singh et al., 2011) on nano twinned copper was simulated with the specimen 
shown in Fig. 6. The material properties as well as general simulation parameters are presented in Table 3. 

Table 3. RNP simulation parameters 
Feature Description Feature Description Feature Description 
Problem type Plane stress Applied traction 135.9MPa, 

R=0.1 
Poisson ሺυሻ 0.34 

Fracture toughness (𝐊𝐈𝐂ሻ  22.3 MPa√m Elastic modulus  207 GPa Fracture threshold (∆K୲୦ሻ 5 MPa √m 
 
     The growth analysis was run from an initial crack size a୧ = 1.36 mm to a୤ = 5.057 mm, for a growth length ∆a = 3.697 
mm. The crack was discretized with elements of length Lୣ୪ୣ୫ = 0.045 mm, therefore, the growth length is achieved by 
running forty-one increments of twice the element length at the crack tip. 
 

 
Fig. 6. Geometry and boundary conditions, dimensions in mm. a) General dimensions, b) Notch dimensions. 
 
      The initial geometric mesh contains 216 elements with 432 nodes, adding 4 new elements for each increment. Due to the 
loading conditions only mode I is dominantly present when the stress intensity factors were calculated (Fig. 7a). The stress 
intensity factor for mode II is almost zero, making  Kୣ୯ ൎ K୍. In consequence, crack propagation follows perpendicular to the 
applied load (Fig. 7b), consistent with experimental data (Singh et al., 2011). 
 
 

 
Fig. 7. Stress intensity factors and propagation path for RNP simulation. Scale for displacements 100:1.  
 

a) b) 
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b) 

      For the Paris Erdogan model and the Klesnil Lucas model, C = 1.1049 ൈ 10ିଵଶ and m = 3.7719 were used as growth 
constants, while for the Forman model C = 6.0490 ൈ 10ିଵ଴  and m = 2.1719 . These constants were adjusted to the 
experimental data using the MATLAB optimization toolbox (MathWorks Inc., Massachusetts, USA). The crack growth plot 
and the number of elapsed cycles is presented in Figure 8. 
 
 

   
Fig. 8. Numerical vs. experimental results (Singh et al., 2011) comparison for RNP simulation. a) Crack growth plot, b) Crack 
size vs. number of cycles. 
 
      The experimental test (Singh et al., 2011) only presents results for crack growth in part of zone II and zone III. No data 
are available for zone I, so the estimation of the fracture threshold was done with considerable uncertainty. The Paris-Erdogan 
model represents a straight line in the growth graph; therefore, it assumes no deviation from the linear behavior of zone II. 
The Forman model, which includes fracture toughness, reproduces the fast and uncontrolled crack growth, i.e., the final part 
of zone II and zone III until total failure. Klesnil-Lucas presents a curve that resembles the Paris line for high growth rates 
(൐ 2 ൈ 10ି଼ m/cycle) away from slow crack propagation. 
 
     The Paris-Erdogan model, which best fits the experimental data in Fig. 8a, accurately estimates the number of cycles for 
this specific case (Fig. 8b). However, the three models do not have notable differences in the lifetime estimation, this is 
because they are only considering zones II and III of the growth. The fast growth region represents a very small percentage 
of the total number of cycles, and for this reason, although the Forman model takes it into account, it is recognized that it has 
no applicability in engineering terms, since life cycle analysis is the main objective in the design of a component. In the 
following simulation the propagation is analyzed when the slow growing region I is included.  
 
3.3 Crack growth in 7075 - T651 aluminum alloy 
 
      The simulation reproduces the experimental test performed by Zhao (Zhao et al., 2008) based on ASTM E647 (ASTM, 
2023), by controlled fracture of the compact tension specimen with the dimensions shown in Fig. 9. A maximum load of P୫ୟ୶ 
= 1.6 kN was applied with a fatigue load ratio R = 0.1.  The test starts with a crack size a୧ = 7.3 mm up to a୤ = 34.3 mm, 
noting that the last one does not correspond to the final fracture of the specimen. 54 increments of 0.5 mm were simulated to 
achieve a total variation of ∆a = 27 mm.  

 
Fig. 9. Compact tension geometry based on ASTM E647 (ASTM, 2023), dimensions in mm. 

 

a) 



J. A. Mantilla et al.  / Engineering Solid Mechanics12(2024) 
 

417

a) b) 

b) 

     The mechanical properties used were E = 71100 MPa and v = 0.33 (Mukherjee et al., 2015). Crack growth was simulated 
using the Klesnil-Lucas and Paris-Erdogan models with C∗ = 8.3399 ൈ 10ିଵଵ, m∗ = 3.5 and ∆K୲୦∗ = 4.58 MPa√m. 
 

  
Fig. 10. Numerical vs. experimental reference (Zhao et al., 2008) comparison for crack growth in 7075 – T651 alloy. a) Crack 
growth plot, b) Crack size vs. number of cycles. 
 

      When part of region I is experimentally known, the fracture threshold can be correctly estimated (Fig. 10a). It was 
observed that the Klesnil-Lucas model contemplates an initial curve in the growth ratio, fitting the slow growth behavior and 
the controlled growth region II. Fig. 10b compares the estimated number of cycles between the models and although the 
detailed progress of the crack versus cycling is not recorded, it is known that 498900 cycles were necessary in the experimental 
test (Zhao et al., 2008). In general, Paris-Erdogan underestimates the lifetime of the element by predicting higher-than-actual 
growth rates at the beginning of propagation, which implies that using Paris-Erdogan (Paris & Erdogan, 1963) to simulate full 
growth is a very conservative approach. Moreover, Klesnil-Lucas estimates the number of elapsed cycles with a low 
percentage error (Table 4). 

Table 4. Percentage error in the number of cycles for 7075 – T651 aluminum alloy simulation.  
Experimental elapsed cycles Paris - Erdogan Error [%] Klesnil - Lucas Error [%] 
498900 246682 50.55 513262 2.88 

 
      Considering that the fracture threshold refers to the variation of the stress intensity factor for a growth rate of 10ିଵ଴ 
m/cycle and since the values presented in Fig. 10 start from approximately 4.5 ൈ 10ିଽ m/cycle, the experimental results of 
Newman (Newman et al., 2014) were used to conclude that the behavior presented by Zhao (Zhao et al., 2008) only covers 
region II of crack growth and still does not give a clear indication of the actual fracture threshold of the material. The 7075-
T651 alloy presents a curvature in the crack growth behavior between 3 × 6 MPa√m even in region II, so the fracture threshold ∆K∗୲୦= 4.58 MPa√m works as an apparent value that provides good results only when ∆K ൐ 5 MPa√m. The real fracture 
threshold is ∆K୲୦ = 2.05 MPa√m, using this value and with a fracture toughness of K୍ୡ = 54 MPa√m the results in Fig. 11 
were computed for the entire crack growth in the three propagation regions and are overlapped with the experimental data 
reported by Newman (Newman et al., 2014). The three models show similar results in region II, that is, closely resemble the 
Paris-Erdogan line for medium values of ∆K ൫4 ൑ ∆K ൑ 10 MPa√m൯.  
 

   
Fig. 11. Fatigue crack growth simulation of 7075-T651 aluminum alloy. a) Crack growth plot, b) Crack size vs. number of 
cycles. 
 

a) 
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      Since the slow crack growth typical of region 𝐼 is the most cycle demanding, the Klesnil-Lucas model is considered 
suitable for modeling crack growth involving all 3 regions. Klesnil-Lucas (Klesnil & Lukáš, 1972) is recommended only 
when the experimental behavior of the material is well known, and the fracture threshold can be accurately calculated. A small 
variation in this parameter drastically changes the number of cycles. Note in Fig. 11b the difference in the number of cycles 
estimated between Paris-Erdogan and Forman; this variation represents the small error introduced by not considering the 
behavior of region III in the analysis, whereas if region I, represented by Klesnil-Lucas, is not considered, less than half of 
the element lifetime is estimated. Forman is recognized as the most conservative of the models analyzed. As a result, it is 
widely used in simulations and integrity analysis, Krscanski (Krscanski & Brnic, 2020) used the standard Forman model to 
estimate the lifetime of metallic elements with FEM virtual crack closure technique and Cheng (Cheng & Chen, 2017) applied 
the Forman model in pipeline carbon steels to various regions of the fatigue crack growth plot, as the shape changes due to 
hydrogen embrittlement. 
 
3.4 Perforated Plate (PP) 
 
      Finally, an application case is discussed, due to the loading conditions, geometry and spatial configuration of the crack, 
the two stress intensity factors (KI and KII) are significantly present at the onset of propagation. The maximum tangential 
stress criterion was validated with the experimental path obtained by Boljanovic (Boljanović & Maksimović, 2011) and with 
the finite element simulation with NASTRAN (Autodesk Inc., California, USA) performed by this author. Sajith (Sajith et 
al., 2019) approaches the same problem with FRANC2D (Cornell University, USA) and his results were also used for 
trajectory validation and predictions through Paris-Erdogan model. Crack growth was modeled in aluminum alloy 2024-T3 
with mechanical properties E = 71200 Mpa, v = 0.33 and with the dimensions of Fig. 12. The crack emerges from a hole, with 
an angle of 45° and initial length a୧ = 2 mm. The traction applied at both ends is t = 20.8 MPa with a load ratio R = 0.1, 
however, regarding the boundary conditions, the bottom face of the specimen was fixed, and the traction was only applied to 
the top face. Growth was simulated up to a final size a୤ = 18.2 mm, by 162 increments of 0.1 mm each. 

 
Fig. 12. Geometry and boundary conditions for PP simulation, dimensions in mm. 

 
      Fig. 13 shows the results for the stress intensity factors obtained during propagation. At the onset of growth, due to the 
crack orientation, there is a mixed mode of loading, which implies that the crack propagates with an initial angle of - 43° 
relative to the local coordinate system (Fig. 14). This angle estimated by the maximum tangential stress criterion agrees with 
the - 42° obtained by Boljanovic (Boljanović & Maksimović, 2011). 
 
 

  
Fig. 13. Stress intensity factors for PP simulation. a) overall behavior, b) detail at the propagation onset (4 increments).  
 

a) b) 



J. A. Mantilla et al.  / Engineering Solid Mechanics12(2024) 
 

419

 
Fig. 14. Crack propagation path for PP simulation. Model agreement with the references, two by the finite element method 
and one experimental. 
 
      After the first step, the stress intensity factor K୍୍ cancels out completely while K୍ increases with crack size, this behavior 
leads to the trajectory being perpendicular to the applied load (Fig. 14), i.e., in a mode I fracture. To validate the Paris model 
implementation and calculate an error in the number of cycles estimation, parameters C = 2.22ൈ 10ିଵ଴ and m = 3.545 were 
used as in the reference (Boljanović & Maksimović, 2011). Fig. 15 shows the comparison in the number of cycles between 
the implemented Paris model and the finite element reference. 
 

 
Fig. 15. Number of cycles using Paris law, DBEM vs. Finite elements method (Boljanović & Maksimović, 2011).  

       A percentage error of 3% was calculated between the estimated cycles (Table 5), this variation might be due to the method 
used for the calculation of the effective stress intensity factor. Boljanovic uses a polynomial expression based on previous 
simulations, in contrast to the present study which uses Tanaka's model (10) based on Lardner's dislocation theory (Lardner, 
1968). 

Table 5. Percentage error in the number of cycles for PP simulation.  
FEM / Nastran DBEM Error [%] 
705000 726223 3.01 

 
      Although the number of cycles was validated with another computational simulation, it is important to verify that, with 
these conditions, the crack growth only takes place in the stable propagation region and can be accurately simulated with 
Paris-Erdogan. 
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4. Conclusions 
 
     Several study cases of the general cracked body problem have been analyzed under mixed boundary conditions using the 
dual two-dimensional (2D) boundary element method, which is an effective approach for the proposed analysis. Each growth 
model has the problem constraint of not being able to successfully represent one or more of the crack growth zones. The Paris 
model can only consider a straight line corresponding to the stable crack growth behavior; Klesnil includes I and II regions 
without being able to predict values for fast and uncontrolled crack growth, while Forman models the fast crack growth region 
and part of the stable propagation. 
 
      Based on the simulations performed, it was deduced that region III of crack growth occurs in a few load cycles, less than 
2% of the total, and for this reason it can be disregarded in the estimation of component lifetime. Moreover, the region I 
demands the largest number of cycles in the entire propagation, about 50% of the total, and therefore the Klesnil-Lukas model 
becomes the most suitable for estimating the growth ratios and the total number of elapsed cycles; however, special caution 
must be taken with the fracture threshold; a small variation in this parameter of 5% is reflected in errors of 25% in the 
estimation of the number of cycles. In the absence of a known fracture threshold, a traditional crack growth analysis using the 
Paris model is recommended. 
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