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 In this study, an Economic Return Quantity (ERQ) model for the Empty Container Reposition 
(ECR) problem using the reverse logistics (RL) approach is developed. Some of the model’s 
primary considerations are the return rate that depends on the quantity and quality of the empty 
container, and the capacity constraints to hold the empty container in the port. The model of ERQ 
is optimized using an analytical approach. Based on the result of the hypothetical case, the 
authors examined that the acceptable quality level of reusable containers should be set at 67%, 
55%, and 50% for the three types of containers to be able to obtain minimum inventory costs. 
Two cases of binding and nonbinding constraints are investigated, and it is found that the binding 
constraint gives 3.4% higher cost than the latter. The results of this study help the container 
depots to plan, manage, and handle empty containers so that the container utility can be 
increased, and inventory costs can be minimized. 
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1. Introduction 

Nowadays, the world's manufacturing industries, not to mention the maritime industry, are promoting campaigns related to 
the implementation of a supply chain (Seo et al., 2023). This is closely related to the management of used products end-of-
life collected from consumers, often referred to as reverse logistics management (RL) (Sureka et al., 2019). According to 
Campos et al. (2017), RL management aims to promote sustainable development through the handling of end-of-life 
products that are efficient and by environmental regulations. In the context of RL, the quantity, quality, and availability of 
used products (product returns) are highly uncertain variables (Tarin et al., 2020; Mohapatra et al., 2020). The modelling of 
these variables needs to be developed because it has an essential role in RL management (Sanni et al., 2020). 

In the maritime industry, Tong & Yan (2018) stated the need to plan strategy for reverse logistics practices can be observed 
in the management of empty containers which is known as Empty Container Repositioning (ECR). Adetunji et al. (2020) 
defines ECR as an activity to move containers around from areas over-supply to areas of need. This activity is generally 
carried out by a 3PL company, known as container depots. As one of the 'links' in the supply chain, container depots play 
an important role to ensure that the product supply chain runs smoothly (Islam et al., 2019; Basarici & Satir, 2019). 
Container depots refers to open areas in the port work environment area which are managed by a certain company and used 
as a place for all management and handling activities of full containers and / or empty containers (Barrera & Cruz-Mejia, 
2014; Seo et al., 2023; Feng et al., 2024). Generally, activities to handle empty containers include collection, storage and 
piling, sorting, inspection, cleaning, maintenance and repair, disposal, and repositioning (Marsola et al., 2021). In general, 
the process of handling empty containers in container depots is shown in Fig. 1. 
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Fig. 1. Empty containers management process in container depots 

In a port, the handling and management activities of containers are very dense due to the high demand and number of 
container flows (Basarici & Satir, 2019; Wang et al., 2024). According to Basuki et al. (2019), in 2016 the flow of containers 
handled by Indonesia Port Corporation alone reached 6,222,798.00 TEU for both international and domestic trades. Drewry 
(2013) stated that for more than 50% of its life cycle, containers are empty, whether in maintenance, repair, or storage and 
transit, with a total cost per container estimated at 675 USD. Given the fact that equipment and repositioning costs account 
for around 25% of total shipping costs. Efficient management of empty containers repositioning and utilization is one of 
the competitive factors in improving supply chain system performance (Yu et al., 2019). 

In terms of quality and usability, often find poor quality containers, which are in damaged condition and no longer 
suitable for use, are still operating to transport logistics on transportation cost (Feng et al., 2024). Based on a survey 
conducted by the Indonesian Ministry of Transportation in 2018, only 20% of containers in Indonesia are fit for 
use, while 80% of them are in poor condition, they are either damaged or do not meet quality standards (Nur et al., 
2018). Poor quality containers are considered unsafe and can increase the risk of accidents during transportation for 
shipments (Hemalatha et al., 2018). Therefore, the ECR management needs to be studied further by involving the quality 
factor of empty containers. 

The inventory planning of empty containers can be done by utilizing the Economic Return Quantity (ERQ) inventory model. 
Adetunji et al. (2020) developed the Economic Return Quantity (ERQ) inventory model by considering warehouse storage 
limits and shared-cost shipping to plan the inventory of empty containers in the port. The ERQ model is an approach used 
to determine the optimal return quantity of a product that minimizes inventory costs. The concept is similar to the Economic 
Order Quantity (EOQ), in which the EOQ determines the optimal quantity of units a company should purchase to meet 
demand while minimizing inventory costs (Schwarz, 2008; Fiestras-Janeiro et al., 2024). If EOQ determines the optimal 
quantity of orders (Fiestras-Janeiro et al., 2024), then economic order quantity determines the optimal quantity of returns 
from customers in reverse logistics (Sanni et al., 2020). 

This study will discuss a way to determine the optimal inventory policy of an ECR problem, including the ordering cycle 
time, purchasing lot size, and reposition lot size of empty containers. The proposed model develops an ERQ model by 
adding the quality factor of the repositioned empty container. The model was developed to optimize the acceptable 
quality level of the empty container. The specific purpose of the model is to minimize the overall inventory costs using 
RL approach. This study needs to be done due to the low utilization of containers that causes waste of waiting meaning 
the waste due to excessive waiting time. By planning and examining the system properly, container utility can be 
increased, inventory costs can be minimized, and resulting in a reduced supply chain cost. 

The remainder of this paper is organized as follows. Section 2 discusses literature review of several studies regarding 
inventory modelling in similar cases. Section 3 describes the materials and methods used in the study, including systems 
descriptions, notations, and assumptions used to develop the proposed model. Section 4 gives the formulation of the 
proposed model as well as procedure to get the solution and numerical example. Section 5 analyses the results and provides 
sensitivity analysis to get better insights from the proposed model. Finally, Section 6 concludes the outcomes of the proposed 
study and gives directions for possible future development of the model. 
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2. Literature Review 
 

Today, manufacturing industry trends are not only limited to forward logistics management, but also reversed logistic 
management (Campos et al., 2017). Forward logistics management is a management of logistics that focuses on the flow of 
raw materials, finished products, and information flow, which starts from suppliers to end consumers (Feng & Yu, 2023). 
Whereas, reversed logistics refer to the management of backward flow, that is, product returns in the form of used products 
that come from the consumers (Sureka et al., 2019). In a series of stages in the preparation of strategies and logistics network 
design, both forward and backward, one of the stages that is quite crucial and is the key to the success of creating an optimal 
logistics management is inventory planning and management (Özkan et al., 2024). Inventories held by a company must be 
controlled in such a way, to produce a minimum cost, customer loyalty, high service levels and revenue maximization 
(Güçdemir & Taşoğlu, 2024). In the transport industry, good inventory management of raw material supplies, spare parts, 
equipment, containers/pallets, and product returns must be planned and carried out optimally to minimize the costs of the 
supply chain (Londoño et al., 2023). 

The inventory model that utilized the RL approach (Tarin et al., 2020). The demand is assumed to be deterministic, the 
return rate is constant, and no waste disposal activity is carried out (Bazan et al., 2016). Research on the inventory model 
in the RL system has evolved and expanded at the supply chain level involving parties to the supply chain network 
(Mohapatra et al., 2020). In this case, investigations are generally carried out at a multi-echelon level of two parties who 
accommodate integration between the manufacturer and a third party (serving as a collector). In real industry practice, the 
activities of collecting used goods are generally not carried out by the manufacturer itself, but through the help of a third 
party called a collector. Mitra (2009) developed a manufacturer-collector inventory model, a model with deterministic and 
stochastic demand and return rates. In this model, the level of demand and return is assumed to be mutually independent. 
Furthermore, the model was developed for conditions where the level of demand and return are mutually correlated Mitra 
(2012). The development of inventory models in the RL system that has accommodated integration between parties in the 
supply chain has also been carried out by Chung et al. (2008), Yuan and Gao (2010), Giri and Sharma (2015), and 
Dwicahyani et al. (2017). 

Several recent studies that addressed the problem of empty container management were carried out by Bernat et al. (2016), 
Hosseini and Sahlin (2019), and Adetunji et al. (2020). Bernat et al. (2016) developed a stochastic optimization model in 
inventory management of empty containers with pollution, repair options, and street-turn policies. Hosseini and Sahlin 
(2019) developed a distribution network optimization model by considering uncertainties in terms of the type and quality 
of empty containers. In the context of inventory modelling, a recent study of empty container inventory management was 
conducted by Adetunji et al. (2020) who developed the Economic Return Quantity (ERQ) inventory model by considering 
warehouse storage limits and shared-cost shipping.  

In the stochastic stream, many researchers have developed models with uncertain demand and returns. El Saadany and 
Jaber (2010) developed a manufacturing-remanufacturing model with a price and quality dependent return rate. The 
variable return rate is developed in an exponential function, which depends on two factors, which are the collection price 
and the acceptable quality level of the returned products. Mawandiya et al. (2017) developed an optimal production-
inventory model of three entities, consisting of a retailer, a manufacturer, and a remanufacturer, with random 
demand and returns. They considered normally distributed correlated demand and return with full backorder. Liao 
and Deng (2018) developed an evolved environmental sustainability EOQ (EES-EOQ) model with uncertain 
demand and acquisition quantity. Giri and Masanta (2020) developed a model with price and quality dependent demand, 
random returns, and stochastic lead time. The model also involved learning in production. Giri and Masanta (2020) further 
developed the model with uncertain return, learning-forgetting effect in production, and consignment stock policy. 

Various studies have been conducted in the RL system that consider integration between parties in the supply chain 
as well as uncertain environment (Barrera & Cruz-Mejia, 2014). However, in the area of inventory management of ECR 
problems, to the best of the authors knowledge, a study that has considered variable return rate, in terms of quantity, 
quality, or arrival of product returns, is still very limited. Therefore, this research develops an inventory management of 
Economic Return Quantity (ERQ) model for an ECR problem, which considers a variable return rate that depends on the 
quality of empty containers. As an implication of the quality dependent return rate, there is a waste disposal activity for 
empty containers that are no longer suitable for reuse (Marsola et al., 2021). The quality dependent return rate is 
modelled in the form of nonlinear functions. The results of this study provide managerial insights and directions for 
companies engaged in the business of container depots, to support the product delivery and distribution process. 
 
2. Materials and Methods 
 

In this study, the authors discuss how to optimally manage inventory for both repositioned and newly procured containers 
(Yu et al., 2019). The ERQ model is developed based on the model belonging to Adetunji et al. (2020), to an extent where 
the return rate depends on a variable, namely acceptable quality level of the empty containers. Consequently, there will be 
a disposal activity for returned containers that do not exceed the acceptable quality level. Multi-items container management 
system is considered, where each type of container is moved from one port to another (Wang et al., 2024). The used 
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containers from customers are then returned to the port for reuse. However, not all the returned containers are reusable since 
some of them do not exceed the acceptable quality level and hence need to be disposed of and replaced with new containers. 
The developed model also incorporates constraints related to the limited storage capacity due to space restriction in the port. 
Table 1 gives the comparison of the proposed model to the previous model belonging to Adetunji et al. (2020).  

Table 1 
The comparison of the proposed model to its prior models. 

Consideration Adetunji et al. (2020) This model 
Return Rate Known, constant Variable depends on quality 
Waste disposal No Yes 
Capacity constraint Yes Yes 
Type of container Multi-type Multi-type 
Cost-shared of shipping Yes No 
Objective Annual total inventory cost Annual total inventory cost 
Decision variables 𝑇𝑗 cycle time for reposition of type-

j container 𝑚𝑗  number of reposition cycles of 
type-j container 𝑄𝑟𝑗  shipment lot size of type-j 
container to reposition per cycle 𝑄𝑝𝑗  shipment lot size of type-j 
container to purchase per cycle 

𝑇𝑗 cycle time for reposition of type-j 
container 𝑚𝑗  number of reposition cycles of type-j 
container 𝑄𝑟𝑗  shipment lot size of type-j container to 
reposition per cycle 𝑄𝑝𝑗  shipment lot size of type-j container to 
purchase per cycle 𝑞j acceptable quality level of the returned 
containers type-j 

 

Fig. 2 shows the process of the container management system. The problems are to determine the optimal shipment lot size 
of containers to reposition and/or purchase per cycle, along with its cycle times, and optimal acceptable quality level of the 
returned containers. The objective is to minimize total inventory costs of both returned and newly purchased containers. 
The cost parameters considered in the model include holding costs for returned and newly procured containers, ordering 
costs for returned and newly procured containers, cost to purchase new containers, cleaning and maintenance cost for 
reusable containers, and disposal cost for unusable containers.  

Vendor

Customers

Return Rate 
(Rj = xjDj)

Disposal

Returned 
Containers

Containers Ready 
for Issue

New
Containers

qj xj Dj

(1 – qj xj)Dj
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(1 – qj xj ) Dj

(1 – qj xj)Dj

 

Fig. 2. The investigated containers management system 

Parameters used to develop the models are given as follows. 𝑗 index for type of containers (j = 1, 2, …, J), where J is the number of container types 𝐷௝ annual demand rate for type-j container 𝑅௝ annual return rate for type-j container ൫𝑅௝ = 𝑥௝𝐷௝൯ 
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667𝑥௝ return rate quality factor for type-j container ൫𝑥௝ = 𝑏௝𝑒ିφj௤൯, where bj and φj are constants.  𝑇௝ total cycle time for m cycles of type-j container reposition ℎ𝑟௝ annual holding cost for returned containers  ℎ𝑝௝ annual holding cost for purchased containers 𝐾𝑟௝ ordering cost for returned containers 𝐾𝑝௝ ordering cost for purchased containers 𝑐𝑚௝ cleaning and maintenance cost of type-j container 𝑐𝑝௝ purchasing cost of type-j container 𝑑𝑐௝ disposal cost of type-j container 𝑠௝ space requirement for type-j container 𝐶 total capacity available for storage 
 

The following are decision variables of the model: 𝑇௝ cycle time for reposition of type-j container 𝑚௝ number of reposition cycles per one procurement cycle of type-j container 𝑞 acceptable quality level for returned containers 𝑄𝑟௝  shipment lot size of type-j container to reposition per cycle 𝑄𝑝௝  shipment lot size of type-j container to purchase per cycle 𝑄௝  total shipment lot size (both reposition and purchase) of type-j container  

3. Results and Discussion 
 
3.1 Development of ERQ Model 
 

Fig. 3 shows the quantity-time graph (inventory profile) for single container system. 

 

Fig. 3. Quantity-time graph (inventory profile) for single container system 
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For each cycle, the cost to manage inventory for both returned and new containers are given as Eq. (1) and Eq. (2). Eq. (1) 
gives the formulation of inventory cost of the returned containers which consists of ordering cost, holding cost, 
cost of cleaning and maintenance, and disposal cost. Whereas Eq. (2) gives the formulation of the new containers 
inventory cost which consists of ordering cost, holding cost, and purchasing cost, respectively. 

KrjDjxjqj

Qrj

+ hrjQrj

2 + cmjQrj
+ dcjQpj

mj
 (1) 

DjKpj
ቀ1 − xjqjቁ
Qpj

+ hpj
Qpj

2
+ cpj

Qpj
 (2) 

According to Fig. 3, the following relationships are obtained: 

Qrj
= DjxjqjTj (3) 

Qpj
= DjTj ቀ1− xjqj ቁmj (4) 

Qj = Qrj
+ Qpj

= Dj ቀ xjqj + ቀ1− xjqjቁmjቁTj (5) 

Eq. (3) gives the formulation of return/reposition quantity of the type-j container, whereas Eq. (4) gives the formulation 
of purchase quantity of the type-j container. Eq. (5) then formulates the total quantity of type-j container which 
procured during the period Tj. By substituting Eq. (3) to Eq .  (1) and Eq.  (4) to Eq .  (2), the cost functions with 
respect to cycle time, for both returned and new containers, are obtained as given by Eq. (6) and EQ. (7). 

Cost of Returned Containers = Krj

Tj
+ Djቌhrjxjqj

2 + cmjxjqj + dcj ቀ1− xjqjቁቍTj (6) 

Cost of New Containers = Kpj

mjTj
+ Dj  ൮hpj

ቀ1− xjqjቁmj

2 + cpj
ቀ1 − xjqjቁ൲Tj (7) 

Finally, the total inventory cost of both returned and newly purchased containers, 𝑇𝐶(𝑇𝑗, 𝑚𝑗, 𝑞𝑗), for the multi-container 
system is given by Eq. (8). 

 TC = ෍Krj

Tj
+ Kpj

mjTj
+ Dj ቌxjqj ቆhrj

2 + cmjቇ + ቀ1− xjqjቁ൭hpj
 mj

2 + cpj
+ dcj൱ቍTj

J

j=1

 (8) 

 

As explained earlier, qj denotes the acceptable quality level for the type-j container. The existence of the qj variable 
allows us to reposition only part of the existing empty containers, due to the quality level of containers that are not 
suitable for reuse. Meanwhile, the remaining needs will be met by purchasing new containers. Hence, the qj variable will 
affect the number of items to be repositioned, namely xj. The relationship of qj on xj, is modelled in the form of a 
quality dependent return rate function which was adopted from El Saadany and Jaber (2010). The exponential 
function of the quality dependent return rate is given by Eq. (9). 

xj = ൫bjej൯ିφjqj (9) 

With, bj and φj denote the coefficient parameter of the quality dependent return rate. Finally, the optimization problem 
of the proposed model is given by the following set of equations.  𝑚𝑖𝑛 𝑇𝐶 ቀTj, mj, qjቁ (10) 

   subject to 
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෍ sj Dj   ൬xjqj + mj ቀ1− xjqjቁ൰J

jୀ1

Tj ≤ C (11) 

0 ≤ qj ≤ 1 𝑓𝑜𝑟 𝑗 ∈ ሼ1, 2, … , 𝐽ሽ (12) 

mj = ሼ1, 2, 3, … ሽ 𝑓𝑜𝑟 𝑗 ∈ ሼ1, 2, … , 𝐽ሽ (13) 

Tj > 0 𝑓𝑜𝑟 𝑗 ∈ ሼ1, 2, … , 𝐽ሽ (14) 

Qrj
, Qpj

≥ 0 𝑓𝑜𝑟 𝑗 ∈ ሼ1, 2, … , 𝐽ሽ (15) 

The objective function of the model is to minimize the total inventory costs for both returned and newly 
purchased containers in Eq. (10). Eq. (11) gives the capacity constraint to ensure that the port capacity is sufficient 
to store all the containers. Eq. (12) to Eq. (15) are the rationality, integrality and the non-negativity constraints for the 
decision variables.  

3.2 Solution Procedure 
 

The ECR inventory problems are divided into two cases for binding and nonbinding constraints. The unbinding constraint 
is required in cases where the maximum capacity limit can be violated. In the real case, this can illustrate whether we can 
save costs when the capacity constraint is violated. Meanwhile, the binding capacity constraint is needed in cases where 
there is no violation of the maximum capacity available at the port. This means that it is no longer possible to expand the 
storage area at the Port. Case 1 and Case 2 will later be compared with each other to illustrate how much cost savings can 
be obtained under such conditions. The solution procedure to find optimum levels of Tj and mj is given for each case. 

Case 1: Constraint is not binding  

For a case where the constraint is not binding, the objective function in Equation (8) is simply optimized as if unconstrained. 
The total cost function in Equation (8) is partially differentiated with respect to (w.r.t) Tj. By solving the equation, we get 
the optimum level of Tj denotes by Tj

*(mj, qj) as given by Equation (16). 

Tj
# ቀmj, qjቁ =

⎷⃓⃓⃓⃓
⃓⃓⃓⃓⃓⃓
ለ⃓

2෎ ൬Krj + Kpj

mj
൰n

jୀ1෎ Dj ൭hrjxj qj + hpj
mj ቀ1− xj qjቁ + 2ቆcmj xj qj + ቀ1− xjqjቁ ቀcpj

+ dcjቁቇ൱n

jୀ1

 (16) 

 

By substituting the function of Tj
# in Equation (16) into TCj(Tj, mj, qj) in Eq. (8), we obtain TCj(qj, mj). The optimal value 

of mj, denoted by mj
#, can be obtained by letting the derivative of TCj(qj, mj) w.r.t mj equal to zero. Thus, the function of mj

# 
is given as 

mj
# ቀqjቁ = ⎷⃓⃓⃓⃓

⃓⃓⃓⃓⃓ለ2෎ Kpj
ቆቀcpj

+ dcjቁ − xjqj ቀhrj

2
+ cmj − cpj

+ dcjቁቇn

jୀ1 ෍ hpj
Krj ቀ1− xjqjቁn

jୀ1

 
(17) 

The optimization of return quality qj can be simply done by using an optimization tool (e.g. Solver from Microsoft Excel or 
Optimization function in Wolfram Mathematica). With TC (Tj

#, mj
#, qj) being the objective function subject to Eq. (12). 

Case 2: Constraint is binding  

For a case when the constraint is binding, we use the Lagrangian approach to solve the problem. First, we derive the 
Lagrangian function as given by Eq. (18). 
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Tj
ቆKrj + Kpj

mj
ቇJ

j=1

቏
+ ቎෍DjTj

2 ቆቀhrj + 2cmj + 2λsjቁ xjqj + ቀ1− xjqjቁ ቀ mj ቀhpj
+ 2λsjቁ+ 2cpj

+ 2dcjቁቇJ

j=1

቏− λC 

(18) 

By setting the partial derivative of Eq. (18) w.r.t. Tj equals to zero, we obtain the following function of Tj
# as given by Eq. 

(19). 

Tj
# ቀmj, qjቁ = ⎷⃓⃓⃓⃓

⃓⃓⃓⃓⃓ለ2෎ ൬Krj + Kpj

mj
൰n

jୀ1෍ Djሺ𝝍 + 2𝜫ሻn

jୀ1

 (19) 

With 𝜓 and 𝛱 are given by Equation (20) and (21), respectively. 𝜓 = ቀhrj + 2λsjቁ xjqj + mj ቀ1− xjqjቁ ቀhpj
+ 2λsjቁ (20) 𝛱 = cmjxjqj + ቀ1− xjqjቁ ቀcpj

+ dcjቁ (21) 
In a case where the constraint is binding, Eq. (11) holds true and the following relationship applies 

Tj = C෍ sj Dj  ቀxjqj + ቀ1− xjqjቁmjቁn

jୀ1

 (22) 

λ is obtained by adopting the mj values obtained from Eq. (17) and subsequently solve the Eq. (19) and Eq. (22). Finally, 
the optimal value of qj is simply obtained by solving the model with Mixed-Integer Non-Linear Programming (MINLP) 
approach, for 0 < qj < 1, with the help of any optimization software, such as Excel Solver or Wolfram Mathematica. 

3.3 Numerical Example 
 

Here, an ECR case with 3 types of containers (J = 3) is investigated. Table 2 shows the input parameters, which are adopted 
from Adetunji et al. (2020) and (El Saadany dan Jaber, 2010), to illustrate the problem for both Case 1 and Case 2. The 
space limitation to store all types of container (C) for Case 1 and Case 2 are given by 150,000 ft3 and 100,000 ft3, 
respectively. 

Table 2 
Hypothetical input parameters adopted from Adetunji et al. (2020) and El Saadany and Jaber (2010) 

Parameter Type-1 Container Type-2 Container Type-3 Container 
Annual Demand (Dj) 15,000 units 20,000 units 25,000 units 
Space requirement (sj) 20 ft3 15 ft3 10 ft3 
Ordering cost for returned containers (Krj) $10,000 $8,000 $7,000 
Ordering cost for new containers (Kpj) $15,000 $12,000 $10,500 
Annual holding cost for returned containers (hrj) $40 $30 $20 
Annual holding cost for new containers (hpj) $50 $40 $30 
Cleaning and maintenance cost (cmj) $50/unit $40/unit $30/unit 
Purchasing cost (cpj) $2000/unit $1750/unit $1500/unit 
Disposal cost (dcj) $10/unit $8/unit $6/unit 
bj 0.95 0.90 0.85 
φj 1.50 1.75 2.00 
 

Optimization result of Case 1 (constraint is not binding) is summarized in Table 3, whereas Table 4 gives the optimization 
result of Case 2 (constraint is binding). Case 1 refers to a condition where the capacity constraint is not binding, meaning 
that the available space is still sufficient to store all types of containers. For case 1, the available space is 150,000 ft3, 
whereas the requirement to store the three types of containers is C = 125,513.90 ft3, resulting in an untapped capacity of 
24,816.10 ft3. The optimum repositions cycle times for the three types of containers are 7.5 days, 6.1 days, and 5.4 days, 
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respectively. The optimum number of cycles for reposition per one procurement are 10 cycles, 10 cycles, and 11 cycles, 
respectively. Finally, the optimum acceptable quality levels are 0.67, 0.57, and 0.50, respectively.  

Table 3 
Optimization result of Case 1 

j qj
* xj Tj* (years) mj

* TCj (/year) Cj (ft3) 
1 0.67 0.347 0.02068 10 $1,110,760 49,030.90 
2 0.57 0.332 0.01669 10 $1,098,160 41,544.30 
3 0.50 0.312 0.01481 11 $1,078,560 34,938.70 
 ∑ = $3,287,480 125,513.90 
 
Table 4 
Optimization result of Case 2 

j qj
* xj Tj* (years) mj

* TCj (/year) Cj (ft3) 
1 0.67 0.347 0.013852 10 $1,201,740 32,841.90 
2 0.57 0.332 0.013852 10 $1,118,100 34,479.70 
3 0.50 0.312 0.013852 11 $1,080,680 32,678.40 
 ∑ = $3,400,520 100,000.00 
 

Case 2 refers to a condition where the capacity constraint is binding, meaning that the available space, C, is not sufficient 
to store the optimum quantity, Qj

*. Then, the solution becomes infeasible and results in a condition where C is the best 
quantity to select. As one can see in Table 4, the optimum repositions cycle times for the three types of containers have 
decreased to the same level, which is around 5.1 days. Compared to Case 1, the values of mj

* and qj
* in Case 2 remain, but 

the total cost increases to $3,400,520 per year due to the condition in Case 2, which requires binding capacity constraint. 
 
4. Discussion & Analysis 
 

This section discusses how the acceptable quality level (q) of return containers affects the overall total cost (TC). In addition, 
we also conduct sensitivity analysis to understand the behaviour of the model regarding changes in several parameters, 
including annual demand (D), holding cost (hp), and ordering cost (Kp and Kr). The analysis is done to explain how the 
effects of these parameters on the model’s optimal solution are. We discuss the results from Case 2 where the constraint is 
binding. 

4.1 Effects of the Acceptable Quality Level (q) on Total Cost (TC) 
 

To further understand how the acceptable quality level of the returned containers affects the total cost, Fig. 4 shows a 
simulation plot for variable q against TC. 

 

Fig. 4. Effects of the acceptable quality level of empty container on the overall total cost (j=1). 

Fig. 4 clearly illustrates the effect of variable q on TC. From Fig. 4, we see that q has a convex effect on total cost, where 
the minimum TC value is obtained at q = 0.67. From the model, q = 0 indicates there is no empty container returned for 
repositioning, while q = 1 indicates all containers will be returned for repositioning and reuse. From Fig. 4, repositioning 
100% empty containers will not necessarily minimize costs. This is due to a trade-off between the cost of repositioning and 
maintaining the empty container. As found in the practical case, not all entire empty containers have a quality that is suitable 
for reuse, even some may be in damaged or poor conditions. So, it will be inefficient for the system to reposition empty 
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containers with poor quality. Determination of the acceptable quality level of the returned containers should involve the 
related costs, to get the optimal level that truly minimizes the overall cost of the system. 

4.2 Analysis on Changes in Demand (D) 
 

Analysis was carried out for the case of type-3 container with five variations in the value of annual demand (D), -50%, -
25%, 0%, +25%, and +50%. The result given by the changes in demand on the total cost (TC) and reposition cycle time (T) 
are shown in Table 5. 

Table 5 
Effects of Demand Parameter on Total Cost and Reposition Cycle Time 

Annual Demand (units) Annual Total Cost (TC) Reposition Cycle Time (T) 
12,500 (-50%) $     762,608 7.6 days 
18,750 (-25%) $     835,395 7.0 days 
25,000 (+0%) $ 1,078,490 5.4 days 
31,250 (+25%) $ 1,205,790 4.8 days 
37,500 (+50%) $ 1,320,880 4.4 days 
 

As the demand varied, from -50% to +50%, it is found that the reposition cycle time (T*) and the total cost are also changing. 
A decrease in demand will extend the cycle time and decrease the total cost, and vice versa. Figure 4 shows how TC and T* 
will be changed in a case where the demand varied between -50% to +50%.  
 

 
Fig. 5. How the annual demand changes the total cost and reposition cycle time (j = 3) 

From Fig. 5, it is examined that when the demand decreases by 50%, the reposition cycle time is increased by 41%. 
However, by that scenario, it will also decrease the total cost by 29%. Whereas, in a scenario where the demand increases 
by 50%, the optimum time to reposition is shortened by 18%, while the total cost will increase by 22%. From these results 
it is clear that demand actually has a significant effect on the optimal solution of reposition cycle time and total cost. Where 
the level of the demand is lower, the system should shorten the empty container return cycle time, in order to minimize the 
total cost, and vice versa. 

4.3 Analysis on Changes in New Container Holding Cost (hp) 
 
Here, an analysis on how the holding cost parameter for new container (hp) affects the optimal decisions is investigated. 
Analysis was carried out for the case of type-3 containers with five different inputs for hp parameters, which are -50%, -
25%, 0%, +25%, and +50%. The result, given by the changes in hp parameter on the total cost (TC) and number of reposition 
cycles (m), are summarized in Table 6. 
 
Table 6 
Effects of Holding Cost Parameter on Total Cost and Number of Reposition Cycles 

Cost to Hold New Container (hp) Total Cost (TC) Number of Reposition Cycles (m) 
$20/unit (-50%) $1,039,520 15 
$30/unit (-25%) $1,060,680 12 
$40/unit (+0%) $1,078,490 11 
$50/unit (+25%) $1,094,220 10 
$60/unit (+50%) $1,108,420 9 

-50% -25% +0% +25% +50%
Total Cost (TC) -29% -23% 0% 12% 22%
Optimum Cycle Time (T*) 41% 29% 0% -11% -18%
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From Table 6, it is observed that in a scenario where the cost to hold a new container is cheaper, the solution will be to 
increase the number of return cycles, which obviously will lower the total cost. Fig. 6 shows how TC and m* will be changed 
in a case where the holding cost of a new container varied between -50% to +50%. 

 
 Fig. 6. How the new product holding cost changes the total cost and number of reposition cycles (j=3) 

By examining Fig. 6, it is understanded that when there is a decrease in holding cost by 50%, the number of reposition 
cycles should be increased by 36%. Whereas, whenever the system faces a condition where the holding cost is increased by 
50%, the solution will be to reduce the number of reposition cycles by 18%. However, variation in new product holding 
cost from -50% to +50% do not give a significant impact on total cost. From these results, it implies that variations in cost 
to store new containers will change decisions regarding repositioning cycles of empty containers, although the effect on 
total costs is not that great. 

 

4.4 Analysis on Changes in New Container Ordering Cost (Kp) 
 
Here, an analysis on how Kp parameter affects the model’s optimal solution is also done, by varying five different values of 
new container ordering cost (Kp), which are -50%, -25%, 0%, +25%, and +50%. The result given by the changes in Kp 
parameter on the total cost (TC) and number of reposition cycles (m) are shown in Table 7. 
 
Table 7 
Effects of New Product Ordering Cost on Total Cost and Number of Reposition Cycles  

Cost to Order New Container (Kp) Total Cost (TC) Number of Reposition Cycles (m) 
$5,250 (-50%) $1,039,520 8 
$7,875 (-25%) $1,060,680 9 
$10,500 (+0%) $1,078,490 11 
$13,125 (+25%) $1,094,220 12 
$15,750 (+50%) $1,108,420 13 
 
As the new container ordering cost (Kp) varied, from -50% to +50%, it is found that the number of reposition cycles (m*) is 
significantly changing, but not for total cost. A decrease in Kp will cause the number of reposition cycles to be lower, and 
vice versa. Fig. 7 shows how TC and m* will be changed in a case where the cost to order a new container varied between -
50% to +50%. 

 
 Fig. 7. How new product ordering cost changes the total cost and number of reposition cycles (j=3). 

-50% -25% +0% +25% +50%
Total Cost (TC) -4% -2% 0% 1% 3%
Optimum Number of Shipments
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A lower Kp, of 50%, reduces m* by 27% and TC by 4%, while a higher Kp of 50% increases m* by 18% and TC by 3%. 
From these results, it is understandable that the cost to order a new container has a significant influence on the number of 
reposition cycles, but not on total cost. A cheaper cost to order a new container will reduce the number of return cycles, and 
vice versa. 

4.5 Analysis on Changes in Empty Container Repositioning Cost (Kr) 
 

Similarly, an investigation on how Kr parameter affects the optimal solution of the model is also performed, by varying five 
different values of empty container repositioning cost (Kr), which are -50%, -25%, 0%, +25%, and +50%. The result given 
by the changes in Kr parameter on the total cost (TC), reposition cycle time (T), and number of reposition cycles (m) are 
shown in Table 8. 
 
Table 8 
Effects of Empty Container Repositioning Cost on Total Cost, Reposition Cycle Time, and Number of Reposition Cycles 

Cost to Reposition Empty Container (Kr) Total Cost (TC) Reposition Cycle Time (T) Number of Reposition Cycles (m) 
$3,500 (-50%) $   801,608 3.8 days 15 
$5,250 (-25%) $   951,850 4.7 days 12 
$7,000 (+0%) $1,078,490 5.4 days 11 
$8,750 (+25%) $1,190,100 6.0 days 10 
$10,500 (+50%) $1,290,980 6.6 days 9 

 
As the empty container repositioning cost (Kr) varies, from -50% to +50%, it is known that the reposition cycle time (T*) 
and the number of reposition cycles (m*) are significantly changing, as well as total cost (TC). A lower price to reposition 
an empty container will elevate the reposition cycle time as well as number of reposition cycles and drop the total cost quite 
significantly. Fig. 8 shows how TC, T* and m* will react to a case where the cost to reposition an empty container varied 
between -50% to +50%. 
 

 
 Fig. 8. How empty container repositioning cost changes the total cost, reposition cycle time, and number of 

reposition cycles (j = 3) 

From Fig. 8, it is observed that a decrease in Kr by 50% increases m* by 36% and T* by 29.29% and decreases TC by 26%. 
On the other hand, an increase in Kr by 50% caused m* and T* to be reduced by 18 % and 22.47% and increased TC by 20%. 
From these results it is known that Kr has a significant effect on total cost, reposition cycle time, as well as number of 
reposition cycles. At an inexpensive reposition price, the system should set a higher level of reposition cycles number and 
times, to minimize the total cost, and vice versa. In addition, as Kr also gives a great effect on TC, the company should be 
focusing more on trying to make the reposition price lower. Many attempts may be considered, such as developing a better 
repositioning network and coordination, using better equipment to handle and transport the empty containers, or designing 
an optimal scheduling for the reposition itself. With good planning, both will lead to a lower reposition price of empty 
containers. 
 
5. Conclusion and Further Remarks 
 
This study developed a model of Economic Return Quantity (ERQ) for an Empty Container Reposition (ECR) problem. 
Uncertainty in terms of quantity and quality of product return, which is the empty container for this case, was modelled in 
the form of quality dependent return rate exponential function. The problem to be solved here is to minimize inventory 
related costs by optimizing several variables, including cycle time for reposition, number of return cycles, as well as 
acceptable quality level of the reusable containers. Here, the authors also consider limited space capacity to store containers 
in the port. The model was analytically optimized for cases where the constraint is either binding or not.  
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Total Cost (TC) -26% -12% 0% 10% 20%
Optimum Number of Shipments
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The results show that the acceptable quality level of reusable containers should be set at an optimum level to be able to 
obtain minimum inventory costs. For a case where the capacity constraint is binding, the annual total cost incurred to the 
system is higher than the latter, where the capacity constraint is not binding. This also leads to a finding where for Case 1 
the proportion of space utility for type-1, type-2, and type-3 containers are 39.06%, 33.10%, and 27.84%, respectively. 
Whereas for Case 2, the proportion of space utility for the three container types are 32.84%, 34.48%, and 32.68%, 
respectively. The decision to determine which type of container to store more depends on the type of case.  

In addition, the authors also observe that the price to handle a particular type of container, including the purchase price, 
cleaning and maintenance costs, and disposal cost, affects the optimal acceptable quality level. Containers with higher prices 
should be set at a higher acceptable quality level, and vice versa. This provides a managerial insight for companies engaged 
in port logistics, especially container depot companies. However, companies should still consider the condition and 
characteristics of their container management system. Some adjustments and subjective judgments may be needed, since 
this model was built on assumptions and limitations, which still need to be developed and improved in the future. 
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