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 This paper studies the problem of assigning tasks to a workforce with different skills. The 
problem is modeled as an unrelated parallel scheduling problem, incorporating sequence-
dependent setup times (UPMSPSDST). Exact methods generally are not able to solve real large 
problems of UPMSPSDST. Hence, this research introduces an efficient, straightforward 
metaheuristic solution leveraging the Ant Colony Optimization (ACO) algorithm. The objective 
is to minimize the total completion time while assigning jobs to unrelated parallel machines with 
sequence-dependent preparation times. The algorithm establishes a threshold for improving the 
Ants (solutions) to select only promising ants for the improvement phase, thereby reducing the 
computational effort performed by local search operators. The proposed ACO algorithm 
maintains a basic structure and could be extended to solve other scheduling problems. A set of 
test instances available in the literature has been used to validate the efficiency of the proposed 
methodology. In addition, the results have been compared with the best previously published 
works. The ACO algorithm improves 30% of the best-known solutions (BKS) and reaches 30% 
of the BKS. The results show that the average performance of the ACO algorithm exceeds the 
average performance of the methods used by the best previously published works for the 
UPMSPSDST. 
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1. Introduction 

Personnel scheduling or rostering is the process of building work schedules for employees of an organization to satisfy the 
demand for goods or services (Ernst et al., 2004). Precisely, the problem consists of assigning jobs to qualified personnel 
while minimizing the required time to satisfy the services and guaranteeing that each requirement is assigned to adequate 
personnel. This variant of rostering is formally known in the literature as the multi-skill workforce scheduling problem 
(MSWSP) (Firat & Hurkens, 2012). The MSWSP considers a set of scheduled tasks for a group of technicians for a given 
time horizon. Generally, scheduling seeks to reduce the maximum completion time for all tasks (called makespan). A multi-
skill workforce scheduling problem variant is the work assignment problem (Unrelated Parallel Machine Scheduling 
Problem with Sequence-Dependent Setup Times - UPMSPSDST), introduced by Cheng & Sin (1990). The UPMSPSDST 
is considered NP-hard (Pinedo, 2016). The UPMSPSDST has been solved by using exact or approximate techniques. Exact 
methods find the best solution for small problems, usually with high computing times. In contrast, approximate methods 
guarantee good solutions within short computing times. Reviews related to workforce scheduling problems (WSP) have 
been published by Castillo et al. (2009) and De Bruecker et al. (2015). The philosophy of exact early methods of WSP has 
prioritized independent works (Moodie & Roberts, 1967). The concept of preferential partial order for the work units was 
added by Muntz & Coffman (1969). Additionally, some research has been conducted on graph theory (Allahverdi et al., 
1999). The obtained results for the described works are not promising due to their computational complexity. Therefore, 
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the scientific community has proposed approximate optimization models, metaheuristics, and hybrid algorithms for solving 
WSP. Early works dealing with exact methods for WSP have been proposed by Baker & Magazine (1977), Thompson & 
Goodale (2006), Seçkiner et al. (2007), and Kuo et al. (2011). Baker & Magazine (1977) consider the problem of scheduling 
days in continuous operations under various day-off policies when demand for the workforce is given. Thompson & Goodale 
(2006) introduce a nonlinear representation capturing the staffing problem's nonlinear nature and demonstrates their 
representation's superiority via an extensive set of labor tour scheduling problems. Seçkiner et al. (2007) present an integer 
programming model for the hierarchical workforce problem under compressed workweeks. The model is based on the 
formulation developed by Billionnet (1999) for the hierarchical workforce problem. An Unrelated Parallel Machine 
Scheduling Problem with Simultaneous Setup Time and Learning Effects has been studied by Kuo et al. (2011). In this 
scenario, the setup time for each job depends on its past sequence. The goals are to minimize the total absolute deviation of 
job completion times and the overall workload across all machines. 
 
Othman et al. (2012) consider a workforce scheduling model including human aspects, such as skills training, workers' 
personalities, workers' breaks, and workers' fatigue and recovery levels. The model aims to reduce hiring, firing, training, 
and overtime expenses. It considers factors such as the number of high-performing workers terminated, break times, and 
the average fatigue level among workers. Barrera et al. (2012) consider the multiactivity combined timetabling and crew 
scheduling problem. The objective is to arrange the minimum number of workers necessary to effectively attend to a group 
of customers distinguished by specific services that must be matched. Florez et al. (2013) consider the multimode resource-
constrained project scheduling problem (MRCPSP) in projects requiring alternative renewable and nonrenewable resources. 
This work extends the MRCPSP and proposes a new multiobjectiv323456e mixed-integer programming model. 
Laesanklang et al. (2015) propose an approach based on mixed-integer programming (MIP) with decomposition to solve a 
workforce scheduling and routing problem, in which a set of workers should be assigned to tasks that are distributed across 
different geographical locations. Gérard et al. (2016) have studied a multiactivity tour scheduling problem with time-varying 
demand. The authors introduced four methods to address this issue: a mixed-integer linear programming model, an approach 
resembling branch-and-price, which utilizes a nested dynamic program to solve subproblems heuristically, a diving 
heuristic, and a greedy heuristic leveraging the subproblem solver to tackle the given problem. Liu & Liu (2019) investigate 
a satisfaction-driven bi-objective workforce scheduling problem in which workers process different skills to operate the 
available parallel machines. The goal is to maximize workforce satisfaction and the number of on-time jobs (i.e., service 
level). Many approximate methods have been successfully applied. Simulated annealing approaches have been proposed 
by Anagnostopoulos & Rabadi (2012), Kim et al. (2002), and Lin & Ying (2015). Variable Neighborhood search algorithms 
have been studied by De Paula et al. (2007), Avalos-Rosales et al. (2015), and Çakırgil et al. (2020). Tabu search approaches 
have been considered by Yamashita (2000), Chen & Wu (2006), and Lee et al. (2013). Record-to-record algorithms have 
been introduced by Chen (2015), and local search heuristics have been proposed by Tsang & Voudouris (1995) and Xie et 
al. (2017). However, population algorithms for WSP problems have been published since 2006 (Cowling et al., 2006; Valls 
et al., 2009; Arnaout et al., 2010; Vallada & Ruiz, 2011). Recently, there has been a fast-growing population algorithm such 
as the work proposed by Joo & Kim (2015). This work proposes a genetic algorithm with three dispatch rules (processing 
time, total machine time, and task sequence). 
 
Fozveh et al. (2016) propose a multiobjective mathematical model for scheduling multiskilled multiobjective workforce 
problem minimizing the number of night-shift engineers, the workforce's total cost, and maximizing the size of the engaged 
workforce. A bee colony optimization algorithm has been employed to solve the problem. Algethami et al. (2016) present 
a genetic algorithm (GA) for workforce scheduling and routing problems. Yurtkuran et al. (2018) solved a workforce 
scheduling and balancing problem of unpaced subassembly lines with buffers feeding a car manufacturer's paced body 
assembly line. The objective is to ascertain the minimal workforce for handling split lots at subassembly stations to supply 
the paced line within a recurring time frame. The authors introduce an enhanced artificial bee colony (ABC) algorithm with 
a solution acceptance rule and multi-search (SAMSABC). Afzalirad and Rezaeian (2016) proposed an artificial immune 
system exposed to bacteria or pathogens for solving scheduling problems. Besides, Algethami et al. (2019) consider the 
workforce scheduling and routing problem to refer to assigned personnel to visits across various geographical locations. 
The authors introduce an adaptive multiple crossover genetic algorithm to address combined scheduling and routing issues. 
Using online learning to gauge the operator's effectiveness, they assess a combination of problem-specific and conventional 
crossovers. Pereira et al. (2020) examined a novel workforce scheduling and routing challenge, the multiperiod workforce 
scheduling and routing problem with dependent tasks. The aim is to schedule and route teams to minimize makespan, 
ensuring that all services are completed within the shortest possible timeframe. The authors suggest a mixed-integer 
programming model based on the ant colony optimization (ACO) metaheuristic. Simeunović et al. (2015) propose a model 
for complex production systems with unpredictable and volatile demand. Recently, hybrid algorithms combining trajectory 
techniques with managing populations have been proposed by Abreu & Prata (2018). This solution method combines 
simulated annealing with a genetic algorithm by using three types of genetic operators (order crossover (OX), partially 
matched crossover (PMX), and cycle crossover (CX)). 
 
Yaoyuenyong and Nanthavanij (2005) have proposed alternative hybrid approaches for a related problem. Their focus lies 
on a workforce scheduling issue aimed at minimizing the number of workers required to carry out daily physical tasks while 
ensuring that energy capacities remain unexceed. Two heuristics and one exact algorithm are then explained—Remde et al. 
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(2007) study a complex real-world workforce scheduling problem. The authors introduce a reduced variable neighborhood 
search (rVNS) and hyperheuristic approach to decide which subproblems to tackle. Li et al. (2012)  present a hybrid 
approach of goal programming and metaheuristic search to find compromise solutions for a complex employee scheduling 
problem, i.e., nurse rostering with many complex and soft constraints. Musliu (2006) introduced novel heuristic methods 
for automatically generating rotating workforce schedules. The proposed methods include: (1) a tabu search (TS)-based 
algorithm; (2) a heuristic approach utilizing a min-conflict heuristic (MC); (3) a method combining the min-conflict heuristic 
(TS-MC) with random walk (TS-RW) within the tabu search algorithm; and (4) a method integrating the tabu mechanism 
(MC-T), random walk (MC-RW), and both mechanisms (MC-T-RW) within the min-conflicts heuristic. Becker (2020) 
explores rotational workforce planning, which involves constructing schedules comprising alternating work and rest periods. 
This study suggests a novel decomposition approach for rotational shift scheduling that applies to the rotating workforce 
scheduling problem structure and is potentially extendable to other problems. 
 
This work proposes a novel evolutionary ant colony optimization (ACO) algorithm. The logic of the former algorithm is to 
generate feasible random solutions for the problem under consideration. Each ant leaves an artificial trace (pheromone) of 
the positive characteristics that make up the solution, thereby creating subsequent generations (Dorigo & Stützle, 2003). 
The proposed algorithm's efficiency has been compared with the efficiency obtained by the best previous works published 
in the specialized literature and by an international company's real instance. The proposed approach outperforms the best 
results found in the literature. 
 
In Section 2, the proposed algorithm is illustrated. Section 3 presents the experiments' design, the developed application's 
computational results, and its corresponding analysis. Finally, in Section 4, the conclusions and future work resulting from 
this research are presented. 
 
2. Proposed methodology 

 
The ant colony optimization (ACO) algorithm, initially proposed by Dorigo (1992), has been inspired by the pheromone 
trail left by certain species of ants and their influence on the subsequent behavior of the community. ACO has been used to 
address the traveling postman and routing problems (Reinelt, 2003). Due to its good computational performance, the ACO 
algorithm has been considered to solve NP-Hard problems. ACO algorithms have been implemented for different problems, 
such as sequential order (Gambardella & Dorigo, 2000), scheduling (Blum, 2005), balancing of the assembly line (Blum, 
2008), probabilistic TSP (Balaprakash et al., 2009), 2D-HP protein folding (Shmygelska & Hoos, 2005), DNA sequencing 
(Blum et al., 2008), protein-ligand coupling (Korb et al., 2007) and the packing-routing (Di Caro & Dorigo, 1998). The 
ACO's logic generates feasible solutions (ants) randomly based on the population's historical characteristics. Therefore, 
each ant must leave an artificial trail (pheromone). 
 

Algorithm 1. ACO algorithm for combinatorial optimization problems 
1 initialization  
2 While Termination_condition is not met 
3        ConstructAntSolutions 
4        ApplyLocalSearch  *Optional 
5        UpdatePheromones 
6 End While 
7 End ACO  

 
Algorithm 1. General structure of ACO algorithm (Gendreau & Potvin, 2010) 

 
We seek to maintain the ACO structure (see Algorithm 1) by incorporating affine operators into the mathematical and 
computational structure of the problem. Therefore, a random construction of solutions is carried out. These solutions could 
be improved if they pass an established filter. The idea of filtering is to maintain a balance between computational costs, 
improving inferior quality-built ants is not sought, and the refinement of promising ants is guaranteed. 
 
The proposed ACO pseudocode is presented in Algorithm 2. The methodology seeks to propose an algorithm that can 
quickly adapt to other versions of the personnel assignment problem. The algorithm establishes the metaheuristic 
parameters, which consist of the number of ants, the number of generations, the values of 𝛼 and 𝛽, and the threshold value 
for filtering ants (see Line 1 of Algorithm 1). The pheromone matrix (Pheromones) is initialized with the processing times 
of the tasks required in the available machines and the configuration times between tasks (see Line 2). Then, the algorithm's 
iterative scheme is entered. This scheme consists of generating the ants according to the pheromone matrix and the number 
(see Line 4). Then, an attempt is performed to improve them through a local search defined by the swap and insertion 



  732

operators (see Lines 5 to 16). Subsequently, the incumbent's value (the best and reached during the search) and the 
pheromone matrix (incumbent and pheromone in lines 14 and 17, respectively) are updated. 
 
 

Algorithm 2. Proposed ACO 

1 Establish_Parameters(#ants,#iterations,𝛼,𝛽, Incumbent)  
2 Pheromones =  Process time 

3 For i = 0 to #iterations 

4          Population = ConstructionAntSolutions(Pheromones, #ants) 

5          For each Ant in Population  

6                If FO(Ant) is in Umbral Then 
7                       While Improvement 

8                                  For j in Jobs 

9                                           For l in Jobs 

10                                                     Savings.add(Swap(Ant,j,l) 

11                                                     Savings.add(Insertion (Ant,j,l)  

12                                  Improvement = Applyoperators(Savings, Ant) 

13                        End While 

14                        UpdateIncumbent(Ant) 

15                 End If 
16           End For 
17           Updatepheromones(Pheromones) 

18 End For  
19 Return Incumbent  

Algorithm 2. General Proposed Approach 
 
The building phase sets the first job randomly (see Line 1 of Algorithm 3) and is assigned to the machine with the shortest 
total time (see Lines 2 and 3). Subsequently, as long as there are still jobs unassigned, the probabilities of assigning work 
to the machine are calculated based on (1), only for jobs not assigned based on artificial pheromones (see Lines 3 and 4). 
Finally, the criterion of assigning the jobs to the machine with the lowest total processing time is used (see Lines 6 and 7). 
 
Algorithm 3. ConstructAntSolutions 
1 Random = random_between (1, jobs)   
2 Best_machine = best_machine (machines, Random)  
3 First_job = assign (Best_machine, random)  
4 While job is not assigned  
5         Probability = equation (1) (job,pheromones) (1)  
6         Best_machine = best_machine (machines, jobs)  
7         Next_job = assign (Best_machine, Probability)  
8 End while  

 
Algorithm 3. Ant construction scheme 

 𝑝൫𝑐௜௝ห𝑠௣൯ = 𝜋௜௝ఈ ൣ𝜂൫𝑐௜௝൯൧ఉ∑ 𝑐௜௟ ∈ 𝑁(௦௣)𝜋௜௟ఈൣ𝜂൫𝑐௜௝൯൧ఉ              ∀𝑐௜௝ ∈ 𝑁(௦௣) (1) 

Eq. (1) allows assigning a probability to the unassigned jobs based on their execution time and the available information on 
pheromones. In particular, 𝜂 is the probabilistic value, i.e.,  the function assigned to each feasible component of a solution; 
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this value is commonly called heuristic information. Parameters 𝛼  and 𝛽  determine the influence of the heuristic 
information on the algorithm. If 𝛼 =  0, the probabilities are proportional to each work's time unit, and thus, the algorithm's 
behavior would be similar to a GRASP approach. Additionally, if 𝛽 =  0, the probability calculation considers the heuristic 
information collected from the population. 
 
However, each ant can be modified (improved) depending on whether its objective function is within the established 
threshold. Two types of operators are estimated to apply the transition achieving the most significant time savings while 
searching for a promising solution. Therefore, the swap operator and insert operator are estimated. The swap operator 
consists of substituting a job 𝑖  to be performed on machine 𝑘  for a job 𝑗 to be performed on machine 𝑙 . Jobs can be 
performed on the same machine (intramachine) when 𝑘 =  𝑙 . Likewise, jobs can be assigned to different machines 
(intermachine) when 𝑘 ്  𝑙. Details of the operators are illustrated below. 
 
Intra-machine: In Fig. 1, job 𝑖 =  1 is to be performed on machine 𝑘, and job 𝑗 =  8 is to be performed on machine 𝑙, 
where 𝑙 =  𝑘. Then, the operator changes the sequence of jobs. 
 

 
  

 
8  2  3  4  5  6  7  1  9  10  

 
Fig. 1. Swap operator of intra-machine.  

 
Intermachine: In Fig. 2, job 𝑖 =  1 is to be performed on machine 𝑘, and job 𝑗 =  18 is to be performed on machine 𝑙, 
where 𝑘 ്  𝑙. Then, the operator changes the sequence of machines 𝑘 and l. 
 

Machine K 
1 2  3  4  5  6  7  8  9  10  

 
Machine L 

11  12  13  14  15  16  17  18  19  20  
 
 

 
Machine K 

18 2  3  4  5  6  7  8  9  10  
 

Machine L 
11  12  13  14  15  16  17  1  19  20  

 
Fig. 2. Swap operator of inter-machine.  

 
Finally, the insertion operator consists of inserting a job 𝑖 to be performed on machine 𝑘 in the sequence of jobs performed 
on machine 𝑙. Suppose we have a job 𝑖 =  1 inserted into machine 𝑙 where 𝑘 ്  𝑙; its insertion is performed in the first 
position of the sequence formed by the jobs on machine 𝑙.  
 

Machine K 
1 2 3 4 5 6 7 8 9 10 

 
Machine L 

11 12 13 14 15 16 17 18 19 20 
 
 

Machine K 
2 3 4 5 6 7 8 9 10 

 
Machine L 

1 11 12 13 14 15 16 17 1 19 20 
Fig. 3. Insertion operator of intra-machine.  

1 2 3 4 5 6 7 8 9 10 
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Therefore, the insertion operator transforms machines 𝑘 and 𝑙, as shown in Fig. 3. The proposed algorithm is coded to 
analyze all possible positions in the job scheduled 𝑙, and the proposed algorithm carries out an exhaustive search until the 
best movements are found. The movements are carried out methodically: the best ones are applied first until all machines 
have been altered or no improvements are found. 
 
3. Computational results 

 
3.1.  Parameters calibration  
 
The set of instances proposed by Abreu & Prata (2018) and a real instance have been used to validate the performance of 
the proposed methodology. A total of 40 instances of the literature have been used to test the algorithm efficiency. Instances 
combine 2, 4, 8, and 12 machines and 10, 25, 50, and 100 jobs. These instances are published in Abreu (2019). The results 
were obtained after executing the algorithm on a computer with an Intel® Core ™ i5-6200U processor and 4.00 GB of 
memory. The proposed algorithm was implemented in the C# programming language and was executed 30 times for each 
instance due to immersed randomness. The established parameters were selected experimentally (design experiments with 
two levels for each variable). The entire battery of test cases previously described and the values of the intervals 
recommended in the literature were used. The best values of the parameters are illustrated in Table 1. 
 
Table 1  
Best values of the parameters  

Parameter  Obtained Value 
Number of ants  10 
Number of generations  10 𝛼  1 𝛽 2 
Incumbent  0.3 

Source: Owner 
 

3.2. Obtained Results 
 
Table 2 presents the proposed approach's results. These results include the parameter values with which the proposed 
approach obtained the best performance. Additionally, the genetic algorithm (GA) proposed by Abreu and Prata (2018) has 
been considered the best solution published in the literature. The information is organized as follows. First, the best solution 
obtained is compared considering the 30 executions of the proposed ACO versus the AG's ten executions, thus illustrating 
the solution's value, the computing time, and the GAP (percentage differential between solutions). Next, the average 
behavior of both methodologies is compared, thus illustrating the average value of the solutions and their GAP. Finally, the 
confidence intervals of the proposed algorithm illustrate the behavior of the solution's value reached for the sample of 30 
executions. The column headings in Table 2 are formalized below. 
 

• ID: Name of the Instance 
• 𝐁𝐞𝐬𝐭 𝐀𝐂𝐎: Best results obtained after 30 executions carried out with the proposed algorithm. 
• 𝐁𝐞𝐬𝐭 𝐀𝐆: Best result obtained by Abreu & Prata (2018) 
• 𝐁𝐞𝐬𝐭 𝐆𝐀𝐏: Variation with respect to the results obtained by Abreu & Prata (2018). The value is obtained as 

follows: Best GAP = (୆ୣୱ୲ ୅ୋି୆ୣୱ୲ ୅େ୓)୆ୣୱ୲ ୅ୋ × 100 
• ACO Time: Average execution time of the results obtained after 30 iterations of the ACO approach 
• AG Time: Average execution time reported by Abreu & Prata (2018) 
• 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐀𝐂𝐎: Average of the results obtained after 10 executions performed by the ant colony algorithm 
• 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐀𝐆: Average value reported by Abreu & Prata (2018) 
• 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐆𝐀𝐏: Variation with respect to the results obtained by Abreu & Prata (2018). The value is obtained as 

follows: Average GAP = (୅୴ୣ୰ୟ୥ୣ ୅ୋି୅୴ୣ୰ୟ୥ୣ ୅େ୓)୅୴ୣ୰ୟ୥ୣ ୅ୋ × 100 
• CI-: The lower limit of the ACO algorithm runs with a 95% confidence interval. 
• CI+: Upper limit of the ACO algorithm runs with a 95% confidence interval. 

 
  



R. C. Velandia et al.   / Decision Science Letters 13 (2024) 
 

735

Table 2  
Results obtained by ACO for the set of benchmarking instances 

ID  𝐁𝐞𝐬𝐭 𝐀𝐂𝐎 𝐁𝐞𝐬𝐭 𝐀𝐆 𝐁𝐞𝐬𝐭 𝐆𝐀𝐏  ACO Time AG Time 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐀𝐂𝐎 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐀𝐆 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐆𝐀𝐏  CI -  CI +  
MP-10x01  62.00 62.00 0.00 0.10 3.53 62.63 89.00 -29.63 61.14 63.13 
MP-10x02  72.00 72.00 0.00 0.09 3.56 72.40 106.00 -31.70 72.21 72.59 
MP-10x03  61.00 61.00 0.00 0.04 3.54 64.73 105.00 -38.35 63.18 66.29 
MP-10x04  61.00 61.00 0.00 0.08 3.54 64.27 100.00 -35.73 63.46 65.07 
MP-10x05  68.00 68.00 0.00 0.08 3.51 71.80 106.00 -32.26 70.84 72.76 
MP-10x06  80.00 80.00 0.00 0.10 3.56 81.20 120.00 -32.33 80.43 81.97 
MP-10x07  73.00 73.00 0.00 0.64 3.53 78.60 113.00 -30.44 78.03 79.17 
MP-10x08  65.00 65.00 0.00 0.08 3.52 67.20 103.00 -34.76 65.92 68.48 
MP-10x09  59.00 59.00 0.00 0.09 3.49 60.93 96.00 -36.53 59.88 61.98 
MP-10x10  67.00 67.00 0.00 0.07 3.54 71.93 108.00 -33.40 70.75 73.12 
MP-25x01  68.00 68.00 0.00 3.50 8.07 70.87 100.00 -29.13 70.13 71.6 
MP-25x02  69.00 66.00 4.55 3.89 8.13 76.00 113.00 -32.74 74.89 77.11 
MP-25x03  73.00 75.00 -2.67 4.00 8.14 80.97 115.00 -29.59 80.22 81.71 
MP-25x04  73.00 69.00 5.80 3.24 8.10 77.67 111.00 -30.03 76.63 78.71 
MP-25x05  74.00 72.00 2.78 3.19 8.07 80.13 116.00 -30.92 79.11 81.16 
MP-25x06  78.00 73.00 6.85 3.86 8.14 81.50 117.00 -30.34 80.66 82.32 
MP-25x07  69.00 68.00 1.47 3.81 8.12 74.70 113.00 -33.89 73.82 75.58 
MP-25x08  74.00 70.00 5.71 3.41 8.14 76.37 115.00 -33.59 75.53 77.2 
MP-25x09  75.00 73.00 2.74 3.45 8.07 81.27 119.00 -31.71 80.28 82.25 
MP-25x10  71.00 72.00 -1.39 3.73 8.06 77.00 116.00 -33.62 75.78 78.22 
MP-50x01  132.00 125.00 5.60 3.54 21.17 139.60 176.00 -20.68 137.16 142.04 
MP-50x02  232.00 237.00 -2.11 19.27 21.40 243.27 288.00 -15.53 241.46 245.07 
MP-50x03  238.00 235.00 1.28 8.25 21.27 245.33 292.00 -15.98 243.9 246.77 
MP-50x04  238.00 236.00 0.85 25.16 21.39 248.87 290.00 -14.18 246.92 250.82 
MP-50x05  235.00 231.00 1.73 27.07 21.27 245.80 287.00 -14.36 243.58 248.03 
MP-50x06  230.00 227.00 1.32 17.73 21.97 242.87 284.00 -14.48 240.52 245.21 
MP-50x07  239.00 232.00 3.02 44.98 21.19 244.87 289.00 -15.27 243.23 246.5 
MP-50x08  239.00 235.00 1.70 14.58 21.31 245.57 287.00 -14.44 243.84 247.3 
MP-50x09  237.00 235.00 0.85 9.96 21.62 243.30 286.00 -14.93 241.31 245.29 
MP-50x10  238.00 233.00 2.15 13.76 21.43 245.90 288.00 -14.62 244.18 247.62 
MP-100x01  297.00 306.00 -2.94 70.44 59.04 316.80 368.00 -13.91 314.21 319.39 
MP-100x02  302.00 308.00 -1.95 90.24 59.11 318.80 366.00 -12.90 316.22 321.38 
MP-100x03  308.00 312.00 -1.28 55.40 61.24 320.77 371.00 -13.54 318.65 322.88 
MP-100x04  307.00 307.00 0.00 84.52 58.94 318.03 369.00 -13.81 315.84 320.23 
MP-100x05  309.00 319.00 -3.13 56.44 59.00 317.90 366.00 -13.14 315.93 319.87 
MP-100x06  299.00 327.00 -8.56 93.22 59.18 316.53 370.00 -14.45 313.22 319.85 
MP-100x07  308.00 319.00 -3.45 83.23 58.94 315.03 368.00 -14.39 312.94 317.13 
MP-100x08  310.00 329.00 -5.78 68.50 59.13 321.37 370.00 -13.14 319.78 322.95 
MP-100x09  311.00 317.00 -1.89 63.97 58.92 320.80 370.00 -13.30 318.98 322.62 
MP-100x10  305.00 335.00 -8.96 84.13 59.26 316.13 367.00 -13.86 314.11 318.16 

Average  0.11 24.30 23.08 174.99 215.83 -23.54       

Source: Owner 
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The instances are grouped according to the number of available machines (2, 4, 8, and 12) to synthesize the information in 
Table 3. For each group, the average percentage of variation was found concerning the results obtained by Abreu & Prata 
(2018). 
 
Table 3  
Summary of the obtained GAPs 

Number of machines Average GAP (%) Best GAP (%) 
2 -33.51 0.00 
4 -31.56 2.58 
8 -15.45 1.64 

12 -13.64 -3.79 
Average -23.54 0.11 

Source: Owner 
 

The analysis of the performance of the proposed algorithm must be approached from three points of view: 
 

• Best solutions: The first section found better solutions for 12 instances out of 40. Nine of them were found in the 
large set. The best result reported in the literature was equal in 12 instances, 10 of which belonged to small 
instances. In 26 instances, with a maximum deviation of 6.85% for the MP-25x06 instance, the solution built by 
ACO is inferior to that indicated in previously published research. 
 

• Computing time: The proposed algorithm is -34.68% faster than that proposed by Abreu & Prata (2018). 
However, for the set of larger instances, the average is 26.66% slower due to the high computational cost of the 
exhaustive search performed in executing the operators implemented in ACO. Indeed, it is necessary to consider 
the equipment's technical characteristics where the tests have been executed. The used computer is categorized as 
high to midrange with a score of 4,020. In the work proposed by Abreu & Prata (2018), the computer is categorized 
as low to midrange with a score of 1,434, according to Passmark (2019). 
 

• Average value of solutions: The main strength of the proposed algorithm is its stability. In particular, the average 
found in all instances is lower than that presented in the literature (23.54%). Finally, a confidence interval with a 
significance level of 95% is constructed for the average values to show more evidence. The upper limit of the 
interval is lower than the average reported in the literature. 

 
3.3.  Case of study 
 
The company Case of Study is a software development organization specializing in storage logistics. User requirements for 
application failures or modifications have different levels of technical complexity (Table 4). 
 
Table 4  
Type of requirements 

Requirement Level Description 

A Custom installation and developments 

B Logic configuration and operational start-up 

C Report design (Excel, PDF, plain text) 

D Basic functionalities of the program 
Source: Owner 
 
The support department has four engineers dedicated to addressing and solving requirements. Now, the categorization of 
the engineers' capacity to solve each level's requests is given by years of experience in handling the applications, as shown 
in Table 5. 

 
Table 5  
Classification of Engineers 

Level Number of Engineers Years of experience Requirement Level 

1 1 2 years or more A, B 

2 2 Between 1 and 2 years B, C, D 

3 1 Less than 1 year C, D 
Source: Owner 
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The level 1 engineer must characterize the requirement as A, B, C, or D. This person must consider the information listed 
in Table 4 and define the type of request he or she has entered. Subsequently, the engineer must consider the criteria 
indicated in Table 5 to assign the task to a work team member. Therefore, it is necessary to analyze the following factors: 
(the type of requirement, availability, and experience of the personnel). Finally, the status of the solution must be verified 
before the response is given to the customer. The level 1 engineer, as the head of support, performs tasks manually since 
they do not support technological requirements management software, whose nature makes them challenging to manage. In 
technological services organizations, directors allocate at least one day of the week for scheduling activities of their work 
team (Bechtold & Brusco, 1994). Therefore, the level of service suffers when the allocation work is not performed promptly. 
 
Assigning requests to engineers (the support team) can be modeled as assigning tasks to machines to minimize the total 
time for completing tasks. In particular, engineers are interpreted as machines that work in parallel, where the time required 
to complete the same task can vary between them; in the literature, these machines are known as unrelated parallel machines. 
However, requests can be modeled as tasks to be performed sequentially on machines, where the preparation times of tasks 
depend on the sequence of the performed tasks. This problem is known in the literature as the sequence-dependent setup 
time. Thus, the company's problem can be modeled as an unrelated parallel machine scheduling problem with sequence-
dependent setup times (UPMSPST). 
 
The impact on the company's results is significant since informal means to solve the problem are replaced with the proposed 
ACO. A tool has been implemented, classifying the received requests according to the type of requirement and appropriately 
assigning them to the engineers (Tables 4 and 5). The developed application works with storage in the SQL Server database 
engine. This database has three tables (Machine, Jobs, and Setup) fed by the user directly from the application. The sequence 
obtained for each machine is detailed on a Gantt chart.   
 
4. Concluding Remarks 
 
This paper proposes a metaheuristic algorithm for the staffing problem modeled as an unrelated parallel machine scheduling 
problem with a sequence-dependent setup time problem (UPMSPST). The algorithm's structure can be extended to address 
other scheduling problems by modifying and removing some constraints. Regarding the logic presented, there are two 
decisive factors in the positive performance of the proposed approach. The first is establishing a threshold for improving 
solutions since it helps select the promising solutions to which the operators in search of improvements should be applied. 
In computational terms, this factor significantly affects the execution time. However, establishing probabilities according 
to information from previously created individuals improves the quality of solutions over time. This pseudorandom behavior 
allows refinement of the creation, diversification, and introduction of new individuals in the population. 
 
The obtained results by the proposed algorithm outperform the literature results in terms of the best solutions found and the 
average solutions. For future work, parameters 𝛼, 𝛽, and Threshold could be calculated dynamically over time in response 
to various factors, such as other parameters of the algorithm or information obtained during optimization, including the 
number of generations, the size of the population, and the average number of ants that pass the filter. However, to further 
diversify the population, it would be convenient to create a genetic mutation operator that drastically modifies some 
solutions, thereby helping to add a degree of exploration to the algorithm. Additionally, it is proposed to adapt ACO to other 
variants of the problem while considering, for example, the minimization of delay. 
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