
* Corresponding author.
E-mail address: john.wilmer.escobar@correounivalle.edu.co (J. W. Escobar)

© 2024 by the authors; licensee Growing Science, Canada.
doi: 10.5267/dsl.2024.3.006

Decision Science Letters 13 (2024) 729–740

Contents lists available at GrowingScience

Decision Science Letters

homepage: www.GrowingScience.com/dsl

A metaheuristic algorithm based on Ant Colony Based approach for the assigning tasks problem to a
workforce with different skills

Roosvell Camilo Velandiaa, David Alvarez Martinezb and John Willmer Escobarc*

aVGG Aplicaciones, Colombia
bDepartment of Industrial Engineering, Universidad de los Andes, Bogotá, Bogotá 110110, Cundinamarca, Colombia
cDepartment of Accounting and Finance, Universidad del Valle, Cali, Cali 760001, Valle del Cauca, Colombia
C H R O N I C L E A B S T R A C T

Article history:
Received: October 23, 2023
Received in revised format:
March 20, 2024
Accepted: March 29, 2024
Available online:
March 29, 2024

 This paper studies the problem of assigning tasks to a workforce with different skills. The
problem is modeled as an unrelated parallel scheduling problem, incorporating sequence-
dependent setup times (UPMSPSDST). Exact methods generally are not able to solve real large
problems of UPMSPSDST. Hence, this research introduces an efficient, straightforward
metaheuristic solution leveraging the Ant Colony Optimization (ACO) algorithm. The objective
is to minimize the total completion time while assigning jobs to unrelated parallel machines with
sequence-dependent preparation times. The algorithm establishes a threshold for improving the
Ants (solutions) to select only promising ants for the improvement phase, thereby reducing the
computational effort performed by local search operators. The proposed ACO algorithm
maintains a basic structure and could be extended to solve other scheduling problems. A set of
test instances available in the literature has been used to validate the efficiency of the proposed
methodology. In addition, the results have been compared with the best previously published
works. The ACO algorithm improves 30% of the best-known solutions (BKS) and reaches 30%
of the BKS. The results show that the average performance of the ACO algorithm exceeds the
average performance of the methods used by the best previously published works for the
UPMSPSDST.

.by the authors; licensee Growing Science, Canada 4220©

Keywords:
Ant Colony Optimization
Multiskill Workforce Scheduling
Unrelated Parallel Machine
Scheduling Problem

1. Introduction

Personnel scheduling or rostering is the process of building work schedules for employees of an organization to satisfy the
demand for goods or services (Ernst et al., 2004). Precisely, the problem consists of assigning jobs to qualified personnel
while minimizing the required time to satisfy the services and guaranteeing that each requirement is assigned to adequate
personnel. This variant of rostering is formally known in the literature as the multi-skill workforce scheduling problem
(MSWSP) (Firat & Hurkens, 2012). The MSWSP considers a set of scheduled tasks for a group of technicians for a given
time horizon. Generally, scheduling seeks to reduce the maximum completion time for all tasks (called makespan). A multi-
skill workforce scheduling problem variant is the work assignment problem (Unrelated Parallel Machine Scheduling
Problem with Sequence-Dependent Setup Times - UPMSPSDST), introduced by Cheng & Sin (1990). The UPMSPSDST
is considered NP-hard (Pinedo, 2016). The UPMSPSDST has been solved by using exact or approximate techniques. Exact
methods find the best solution for small problems, usually with high computing times. In contrast, approximate methods
guarantee good solutions within short computing times. Reviews related to workforce scheduling problems (WSP) have
been published by Castillo et al. (2009) and De Bruecker et al. (2015). The philosophy of exact early methods of WSP has
prioritized independent works (Moodie & Roberts, 1967). The concept of preferential partial order for the work units was
added by Muntz & Coffman (1969). Additionally, some research has been conducted on graph theory (Allahverdi et al.,
1999). The obtained results for the described works are not promising due to their computational complexity. Therefore,

 730

the scientific community has proposed approximate optimization models, metaheuristics, and hybrid algorithms for solving
WSP. Early works dealing with exact methods for WSP have been proposed by Baker & Magazine (1977), Thompson &
Goodale (2006), Seçkiner et al. (2007), and Kuo et al. (2011). Baker & Magazine (1977) consider the problem of scheduling
days in continuous operations under various day-off policies when demand for the workforce is given. Thompson & Goodale
(2006) introduce a nonlinear representation capturing the staffing problem's nonlinear nature and demonstrates their
representation's superiority via an extensive set of labor tour scheduling problems. Seçkiner et al. (2007) present an integer
programming model for the hierarchical workforce problem under compressed workweeks. The model is based on the
formulation developed by Billionnet (1999) for the hierarchical workforce problem. An Unrelated Parallel Machine
Scheduling Problem with Simultaneous Setup Time and Learning Effects has been studied by Kuo et al. (2011). In this
scenario, the setup time for each job depends on its past sequence. The goals are to minimize the total absolute deviation of
job completion times and the overall workload across all machines.

Othman et al. (2012) consider a workforce scheduling model including human aspects, such as skills training, workers'
personalities, workers' breaks, and workers' fatigue and recovery levels. The model aims to reduce hiring, firing, training,
and overtime expenses. It considers factors such as the number of high-performing workers terminated, break times, and
the average fatigue level among workers. Barrera et al. (2012) consider the multiactivity combined timetabling and crew
scheduling problem. The objective is to arrange the minimum number of workers necessary to effectively attend to a group
of customers distinguished by specific services that must be matched. Florez et al. (2013) consider the multimode resource-
constrained project scheduling problem (MRCPSP) in projects requiring alternative renewable and nonrenewable resources.
This work extends the MRCPSP and proposes a new multiobjectiv323456e mixed-integer programming model.
Laesanklang et al. (2015) propose an approach based on mixed-integer programming (MIP) with decomposition to solve a
workforce scheduling and routing problem, in which a set of workers should be assigned to tasks that are distributed across
different geographical locations. Gérard et al. (2016) have studied a multiactivity tour scheduling problem with time-varying
demand. The authors introduced four methods to address this issue: a mixed-integer linear programming model, an approach
resembling branch-and-price, which utilizes a nested dynamic program to solve subproblems heuristically, a diving
heuristic, and a greedy heuristic leveraging the subproblem solver to tackle the given problem. Liu & Liu (2019) investigate
a satisfaction-driven bi-objective workforce scheduling problem in which workers process different skills to operate the
available parallel machines. The goal is to maximize workforce satisfaction and the number of on-time jobs (i.e., service
level). Many approximate methods have been successfully applied. Simulated annealing approaches have been proposed
by Anagnostopoulos & Rabadi (2012), Kim et al. (2002), and Lin & Ying (2015). Variable Neighborhood search algorithms
have been studied by De Paula et al. (2007), Avalos-Rosales et al. (2015), and Çakırgil et al. (2020). Tabu search approaches
have been considered by Yamashita (2000), Chen & Wu (2006), and Lee et al. (2013). Record-to-record algorithms have
been introduced by Chen (2015), and local search heuristics have been proposed by Tsang & Voudouris (1995) and Xie et
al. (2017). However, population algorithms for WSP problems have been published since 2006 (Cowling et al., 2006; Valls
et al., 2009; Arnaout et al., 2010; Vallada & Ruiz, 2011). Recently, there has been a fast-growing population algorithm such
as the work proposed by Joo & Kim (2015). This work proposes a genetic algorithm with three dispatch rules (processing
time, total machine time, and task sequence).

Fozveh et al. (2016) propose a multiobjective mathematical model for scheduling multiskilled multiobjective workforce
problem minimizing the number of night-shift engineers, the workforce's total cost, and maximizing the size of the engaged
workforce. A bee colony optimization algorithm has been employed to solve the problem. Algethami et al. (2016) present
a genetic algorithm (GA) for workforce scheduling and routing problems. Yurtkuran et al. (2018) solved a workforce
scheduling and balancing problem of unpaced subassembly lines with buffers feeding a car manufacturer's paced body
assembly line. The objective is to ascertain the minimal workforce for handling split lots at subassembly stations to supply
the paced line within a recurring time frame. The authors introduce an enhanced artificial bee colony (ABC) algorithm with
a solution acceptance rule and multi-search (SAMSABC). Afzalirad and Rezaeian (2016) proposed an artificial immune
system exposed to bacteria or pathogens for solving scheduling problems. Besides, Algethami et al. (2019) consider the
workforce scheduling and routing problem to refer to assigned personnel to visits across various geographical locations.
The authors introduce an adaptive multiple crossover genetic algorithm to address combined scheduling and routing issues.
Using online learning to gauge the operator's effectiveness, they assess a combination of problem-specific and conventional
crossovers. Pereira et al. (2020) examined a novel workforce scheduling and routing challenge, the multiperiod workforce
scheduling and routing problem with dependent tasks. The aim is to schedule and route teams to minimize makespan,
ensuring that all services are completed within the shortest possible timeframe. The authors suggest a mixed-integer
programming model based on the ant colony optimization (ACO) metaheuristic. Simeunović et al. (2015) propose a model
for complex production systems with unpredictable and volatile demand. Recently, hybrid algorithms combining trajectory
techniques with managing populations have been proposed by Abreu & Prata (2018). This solution method combines
simulated annealing with a genetic algorithm by using three types of genetic operators (order crossover (OX), partially
matched crossover (PMX), and cycle crossover (CX)).

Yaoyuenyong and Nanthavanij (2005) have proposed alternative hybrid approaches for a related problem. Their focus lies
on a workforce scheduling issue aimed at minimizing the number of workers required to carry out daily physical tasks while
ensuring that energy capacities remain unexceed. Two heuristics and one exact algorithm are then explained—Remde et al.

R. C. Velandia et al. / Decision Science Letters 13 (2024)

731

(2007) study a complex real-world workforce scheduling problem. The authors introduce a reduced variable neighborhood
search (rVNS) and hyperheuristic approach to decide which subproblems to tackle. Li et al. (2012) present a hybrid
approach of goal programming and metaheuristic search to find compromise solutions for a complex employee scheduling
problem, i.e., nurse rostering with many complex and soft constraints. Musliu (2006) introduced novel heuristic methods
for automatically generating rotating workforce schedules. The proposed methods include: (1) a tabu search (TS)-based
algorithm; (2) a heuristic approach utilizing a min-conflict heuristic (MC); (3) a method combining the min-conflict heuristic
(TS-MC) with random walk (TS-RW) within the tabu search algorithm; and (4) a method integrating the tabu mechanism
(MC-T), random walk (MC-RW), and both mechanisms (MC-T-RW) within the min-conflicts heuristic. Becker (2020)
explores rotational workforce planning, which involves constructing schedules comprising alternating work and rest periods.
This study suggests a novel decomposition approach for rotational shift scheduling that applies to the rotating workforce
scheduling problem structure and is potentially extendable to other problems.

This work proposes a novel evolutionary ant colony optimization (ACO) algorithm. The logic of the former algorithm is to
generate feasible random solutions for the problem under consideration. Each ant leaves an artificial trace (pheromone) of
the positive characteristics that make up the solution, thereby creating subsequent generations (Dorigo & Stützle, 2003).
The proposed algorithm's efficiency has been compared with the efficiency obtained by the best previous works published
in the specialized literature and by an international company's real instance. The proposed approach outperforms the best
results found in the literature.

In Section 2, the proposed algorithm is illustrated. Section 3 presents the experiments' design, the developed application's
computational results, and its corresponding analysis. Finally, in Section 4, the conclusions and future work resulting from
this research are presented.

2. Proposed methodology

The ant colony optimization (ACO) algorithm, initially proposed by Dorigo (1992), has been inspired by the pheromone
trail left by certain species of ants and their influence on the subsequent behavior of the community. ACO has been used to
address the traveling postman and routing problems (Reinelt, 2003). Due to its good computational performance, the ACO
algorithm has been considered to solve NP-Hard problems. ACO algorithms have been implemented for different problems,
such as sequential order (Gambardella & Dorigo, 2000), scheduling (Blum, 2005), balancing of the assembly line (Blum,
2008), probabilistic TSP (Balaprakash et al., 2009), 2D-HP protein folding (Shmygelska & Hoos, 2005), DNA sequencing
(Blum et al., 2008), protein-ligand coupling (Korb et al., 2007) and the packing-routing (Di Caro & Dorigo, 1998). The
ACO's logic generates feasible solutions (ants) randomly based on the population's historical characteristics. Therefore,
each ant must leave an artificial trail (pheromone).

Algorithm 1. ACO algorithm for combinatorial optimization problems
1 initialization
2 While Termination_condition is not met
3 ConstructAntSolutions
4 ApplyLocalSearch *Optional
5 UpdatePheromones
6 End While
7 End ACO

Algorithm 1. General structure of ACO algorithm (Gendreau & Potvin, 2010)

We seek to maintain the ACO structure (see Algorithm 1) by incorporating affine operators into the mathematical and
computational structure of the problem. Therefore, a random construction of solutions is carried out. These solutions could
be improved if they pass an established filter. The idea of filtering is to maintain a balance between computational costs,
improving inferior quality-built ants is not sought, and the refinement of promising ants is guaranteed.

The proposed ACO pseudocode is presented in Algorithm 2. The methodology seeks to propose an algorithm that can
quickly adapt to other versions of the personnel assignment problem. The algorithm establishes the metaheuristic
parameters, which consist of the number of ants, the number of generations, the values of 𝛼 and 𝛽, and the threshold value
for filtering ants (see Line 1 of Algorithm 1). The pheromone matrix (Pheromones) is initialized with the processing times
of the tasks required in the available machines and the configuration times between tasks (see Line 2). Then, the algorithm's
iterative scheme is entered. This scheme consists of generating the ants according to the pheromone matrix and the number
(see Line 4). Then, an attempt is performed to improve them through a local search defined by the swap and insertion

 732

operators (see Lines 5 to 16). Subsequently, the incumbent's value (the best and reached during the search) and the
pheromone matrix (incumbent and pheromone in lines 14 and 17, respectively) are updated.

Algorithm 2. Proposed ACO

1 Establish_Parameters(#ants,#iterations,𝛼,𝛽, Incumbent)
2 Pheromones = Process time

3 For i = 0 to #iterations

4 Population = ConstructionAntSolutions(Pheromones, #ants)

5 For each Ant in Population

6 If FO(Ant) is in Umbral Then
7 While Improvement

8 For j in Jobs

9 For l in Jobs

10 Savings.add(Swap(Ant,j,l)

11 Savings.add(Insertion (Ant,j,l)

12 Improvement = Applyoperators(Savings, Ant)

13 End While

14 UpdateIncumbent(Ant)

15 End If
16 End For
17 Updatepheromones(Pheromones)

18 End For
19 Return Incumbent

Algorithm 2. General Proposed Approach

The building phase sets the first job randomly (see Line 1 of Algorithm 3) and is assigned to the machine with the shortest
total time (see Lines 2 and 3). Subsequently, as long as there are still jobs unassigned, the probabilities of assigning work
to the machine are calculated based on (1), only for jobs not assigned based on artificial pheromones (see Lines 3 and 4).
Finally, the criterion of assigning the jobs to the machine with the lowest total processing time is used (see Lines 6 and 7).

Algorithm 3. ConstructAntSolutions
1 Random = random_between (1, jobs)
2 Best_machine = best_machine (machines, Random)
3 First_job = assign (Best_machine, random)
4 While job is not assigned
5 Probability = equation (1) (job,pheromones) (1)
6 Best_machine = best_machine (machines, jobs)
7 Next_job = assign (Best_machine, Probability)
8 End while

Algorithm 3. Ant construction scheme

 𝑝൫𝑐௜௝ห𝑠௣൯ = 𝜋௜௝ఈ ൣ𝜂൫𝑐௜௝൯൧ఉ∑ 𝑐௜௟ ∈ 𝑁(௦௣)𝜋௜௟ఈൣ𝜂൫𝑐௜௝൯൧ఉ ∀𝑐௜௝ ∈ 𝑁(௦௣) (1)

Eq. (1) allows assigning a probability to the unassigned jobs based on their execution time and the available information on
pheromones. In particular, 𝜂 is the probabilistic value, i.e., the function assigned to each feasible component of a solution;

R. C. Velandia et al. / Decision Science Letters 13 (2024)

733

this value is commonly called heuristic information. Parameters 𝛼 and 𝛽 determine the influence of the heuristic
information on the algorithm. If 𝛼 = 0, the probabilities are proportional to each work's time unit, and thus, the algorithm's
behavior would be similar to a GRASP approach. Additionally, if 𝛽 = 0, the probability calculation considers the heuristic
information collected from the population.

However, each ant can be modified (improved) depending on whether its objective function is within the established
threshold. Two types of operators are estimated to apply the transition achieving the most significant time savings while
searching for a promising solution. Therefore, the swap operator and insert operator are estimated. The swap operator
consists of substituting a job 𝑖 to be performed on machine 𝑘 for a job 𝑗 to be performed on machine 𝑙 . Jobs can be
performed on the same machine (intramachine) when 𝑘 = 𝑙 . Likewise, jobs can be assigned to different machines
(intermachine) when 𝑘 ് 𝑙. Details of the operators are illustrated below.

Intra-machine: In Fig. 1, job 𝑖 = 1 is to be performed on machine 𝑘, and job 𝑗 = 8 is to be performed on machine 𝑙,
where 𝑙 = 𝑘. Then, the operator changes the sequence of jobs.

8 2 3 4 5 6 7 1 9 10

Fig. 1. Swap operator of intra-machine.

Intermachine: In Fig. 2, job 𝑖 = 1 is to be performed on machine 𝑘, and job 𝑗 = 18 is to be performed on machine 𝑙,
where 𝑘 ് 𝑙. Then, the operator changes the sequence of machines 𝑘 and l.

Machine K
1 2 3 4 5 6 7 8 9 10

Machine L

11 12 13 14 15 16 17 18 19 20

Machine K

18 2 3 4 5 6 7 8 9 10

Machine L
11 12 13 14 15 16 17 1 19 20

Fig. 2. Swap operator of inter-machine.

Finally, the insertion operator consists of inserting a job 𝑖 to be performed on machine 𝑘 in the sequence of jobs performed
on machine 𝑙. Suppose we have a job 𝑖 = 1 inserted into machine 𝑙 where 𝑘 ് 𝑙; its insertion is performed in the first
position of the sequence formed by the jobs on machine 𝑙.

Machine K
1 2 3 4 5 6 7 8 9 10

Machine L

11 12 13 14 15 16 17 18 19 20

Machine K
2 3 4 5 6 7 8 9 10

Machine L

1 11 12 13 14 15 16 17 1 19 20
Fig. 3. Insertion operator of intra-machine.

1 2 3 4 5 6 7 8 9 10

 734

Therefore, the insertion operator transforms machines 𝑘 and 𝑙, as shown in Fig. 3. The proposed algorithm is coded to
analyze all possible positions in the job scheduled 𝑙, and the proposed algorithm carries out an exhaustive search until the
best movements are found. The movements are carried out methodically: the best ones are applied first until all machines
have been altered or no improvements are found.

3. Computational results

3.1. Parameters calibration

The set of instances proposed by Abreu & Prata (2018) and a real instance have been used to validate the performance of
the proposed methodology. A total of 40 instances of the literature have been used to test the algorithm efficiency. Instances
combine 2, 4, 8, and 12 machines and 10, 25, 50, and 100 jobs. These instances are published in Abreu (2019). The results
were obtained after executing the algorithm on a computer with an Intel® Core ™ i5-6200U processor and 4.00 GB of
memory. The proposed algorithm was implemented in the C# programming language and was executed 30 times for each
instance due to immersed randomness. The established parameters were selected experimentally (design experiments with
two levels for each variable). The entire battery of test cases previously described and the values of the intervals
recommended in the literature were used. The best values of the parameters are illustrated in Table 1.

Table 1
Best values of the parameters

Parameter Obtained Value
Number of ants 10
Number of generations 10 𝛼 1 𝛽 2
Incumbent 0.3

Source: Owner

3.2. Obtained Results

Table 2 presents the proposed approach's results. These results include the parameter values with which the proposed
approach obtained the best performance. Additionally, the genetic algorithm (GA) proposed by Abreu and Prata (2018) has
been considered the best solution published in the literature. The information is organized as follows. First, the best solution
obtained is compared considering the 30 executions of the proposed ACO versus the AG's ten executions, thus illustrating
the solution's value, the computing time, and the GAP (percentage differential between solutions). Next, the average
behavior of both methodologies is compared, thus illustrating the average value of the solutions and their GAP. Finally, the
confidence intervals of the proposed algorithm illustrate the behavior of the solution's value reached for the sample of 30
executions. The column headings in Table 2 are formalized below.

• ID: Name of the Instance
• 𝐁𝐞𝐬𝐭 𝐀𝐂𝐎: Best results obtained after 30 executions carried out with the proposed algorithm.
• 𝐁𝐞𝐬𝐭 𝐀𝐆: Best result obtained by Abreu & Prata (2018)
• 𝐁𝐞𝐬𝐭 𝐆𝐀𝐏: Variation with respect to the results obtained by Abreu & Prata (2018). The value is obtained as

follows: Best GAP = (୆ୣୱ୲ ୅ୋି୆ୣୱ୲ ୅େ୓)୆ୣୱ୲ ୅ୋ × 100
• ACO Time: Average execution time of the results obtained after 30 iterations of the ACO approach
• AG Time: Average execution time reported by Abreu & Prata (2018)
• 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐀𝐂𝐎: Average of the results obtained after 10 executions performed by the ant colony algorithm
• 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐀𝐆: Average value reported by Abreu & Prata (2018)
• 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐆𝐀𝐏: Variation with respect to the results obtained by Abreu & Prata (2018). The value is obtained as

follows: Average GAP = (୅୴ୣ୰ୟ୥ୣ ୅ୋି୅୴ୣ୰ୟ୥ୣ ୅େ୓)୅୴ୣ୰ୟ୥ୣ ୅ୋ × 100
• CI-: The lower limit of the ACO algorithm runs with a 95% confidence interval.
• CI+: Upper limit of the ACO algorithm runs with a 95% confidence interval.

R. C. Velandia et al. / Decision Science Letters 13 (2024)

735

Table 2
Results obtained by ACO for the set of benchmarking instances

ID 𝐁𝐞𝐬𝐭 𝐀𝐂𝐎 𝐁𝐞𝐬𝐭 𝐀𝐆 𝐁𝐞𝐬𝐭 𝐆𝐀𝐏 ACO Time AG Time 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐀𝐂𝐎 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐀𝐆 𝐀𝐯𝐞𝐫𝐚𝐠𝐞 𝐆𝐀𝐏 CI - CI +
MP-10x01 62.00 62.00 0.00 0.10 3.53 62.63 89.00 -29.63 61.14 63.13
MP-10x02 72.00 72.00 0.00 0.09 3.56 72.40 106.00 -31.70 72.21 72.59
MP-10x03 61.00 61.00 0.00 0.04 3.54 64.73 105.00 -38.35 63.18 66.29
MP-10x04 61.00 61.00 0.00 0.08 3.54 64.27 100.00 -35.73 63.46 65.07
MP-10x05 68.00 68.00 0.00 0.08 3.51 71.80 106.00 -32.26 70.84 72.76
MP-10x06 80.00 80.00 0.00 0.10 3.56 81.20 120.00 -32.33 80.43 81.97
MP-10x07 73.00 73.00 0.00 0.64 3.53 78.60 113.00 -30.44 78.03 79.17
MP-10x08 65.00 65.00 0.00 0.08 3.52 67.20 103.00 -34.76 65.92 68.48
MP-10x09 59.00 59.00 0.00 0.09 3.49 60.93 96.00 -36.53 59.88 61.98
MP-10x10 67.00 67.00 0.00 0.07 3.54 71.93 108.00 -33.40 70.75 73.12
MP-25x01 68.00 68.00 0.00 3.50 8.07 70.87 100.00 -29.13 70.13 71.6
MP-25x02 69.00 66.00 4.55 3.89 8.13 76.00 113.00 -32.74 74.89 77.11
MP-25x03 73.00 75.00 -2.67 4.00 8.14 80.97 115.00 -29.59 80.22 81.71
MP-25x04 73.00 69.00 5.80 3.24 8.10 77.67 111.00 -30.03 76.63 78.71
MP-25x05 74.00 72.00 2.78 3.19 8.07 80.13 116.00 -30.92 79.11 81.16
MP-25x06 78.00 73.00 6.85 3.86 8.14 81.50 117.00 -30.34 80.66 82.32
MP-25x07 69.00 68.00 1.47 3.81 8.12 74.70 113.00 -33.89 73.82 75.58
MP-25x08 74.00 70.00 5.71 3.41 8.14 76.37 115.00 -33.59 75.53 77.2
MP-25x09 75.00 73.00 2.74 3.45 8.07 81.27 119.00 -31.71 80.28 82.25
MP-25x10 71.00 72.00 -1.39 3.73 8.06 77.00 116.00 -33.62 75.78 78.22
MP-50x01 132.00 125.00 5.60 3.54 21.17 139.60 176.00 -20.68 137.16 142.04
MP-50x02 232.00 237.00 -2.11 19.27 21.40 243.27 288.00 -15.53 241.46 245.07
MP-50x03 238.00 235.00 1.28 8.25 21.27 245.33 292.00 -15.98 243.9 246.77
MP-50x04 238.00 236.00 0.85 25.16 21.39 248.87 290.00 -14.18 246.92 250.82
MP-50x05 235.00 231.00 1.73 27.07 21.27 245.80 287.00 -14.36 243.58 248.03
MP-50x06 230.00 227.00 1.32 17.73 21.97 242.87 284.00 -14.48 240.52 245.21
MP-50x07 239.00 232.00 3.02 44.98 21.19 244.87 289.00 -15.27 243.23 246.5
MP-50x08 239.00 235.00 1.70 14.58 21.31 245.57 287.00 -14.44 243.84 247.3
MP-50x09 237.00 235.00 0.85 9.96 21.62 243.30 286.00 -14.93 241.31 245.29
MP-50x10 238.00 233.00 2.15 13.76 21.43 245.90 288.00 -14.62 244.18 247.62
MP-100x01 297.00 306.00 -2.94 70.44 59.04 316.80 368.00 -13.91 314.21 319.39
MP-100x02 302.00 308.00 -1.95 90.24 59.11 318.80 366.00 -12.90 316.22 321.38
MP-100x03 308.00 312.00 -1.28 55.40 61.24 320.77 371.00 -13.54 318.65 322.88
MP-100x04 307.00 307.00 0.00 84.52 58.94 318.03 369.00 -13.81 315.84 320.23
MP-100x05 309.00 319.00 -3.13 56.44 59.00 317.90 366.00 -13.14 315.93 319.87
MP-100x06 299.00 327.00 -8.56 93.22 59.18 316.53 370.00 -14.45 313.22 319.85
MP-100x07 308.00 319.00 -3.45 83.23 58.94 315.03 368.00 -14.39 312.94 317.13
MP-100x08 310.00 329.00 -5.78 68.50 59.13 321.37 370.00 -13.14 319.78 322.95
MP-100x09 311.00 317.00 -1.89 63.97 58.92 320.80 370.00 -13.30 318.98 322.62
MP-100x10 305.00 335.00 -8.96 84.13 59.26 316.13 367.00 -13.86 314.11 318.16

Average 0.11 24.30 23.08 174.99 215.83 -23.54

Source: Owner

 736

The instances are grouped according to the number of available machines (2, 4, 8, and 12) to synthesize the information in
Table 3. For each group, the average percentage of variation was found concerning the results obtained by Abreu & Prata
(2018).

Table 3
Summary of the obtained GAPs

Number of machines Average GAP (%) Best GAP (%)
2 -33.51 0.00
4 -31.56 2.58
8 -15.45 1.64

12 -13.64 -3.79
Average -23.54 0.11

Source: Owner

The analysis of the performance of the proposed algorithm must be approached from three points of view:

• Best solutions: The first section found better solutions for 12 instances out of 40. Nine of them were found in the
large set. The best result reported in the literature was equal in 12 instances, 10 of which belonged to small
instances. In 26 instances, with a maximum deviation of 6.85% for the MP-25x06 instance, the solution built by
ACO is inferior to that indicated in previously published research.

• Computing time: The proposed algorithm is -34.68% faster than that proposed by Abreu & Prata (2018).
However, for the set of larger instances, the average is 26.66% slower due to the high computational cost of the
exhaustive search performed in executing the operators implemented in ACO. Indeed, it is necessary to consider
the equipment's technical characteristics where the tests have been executed. The used computer is categorized as
high to midrange with a score of 4,020. In the work proposed by Abreu & Prata (2018), the computer is categorized
as low to midrange with a score of 1,434, according to Passmark (2019).

• Average value of solutions: The main strength of the proposed algorithm is its stability. In particular, the average
found in all instances is lower than that presented in the literature (23.54%). Finally, a confidence interval with a
significance level of 95% is constructed for the average values to show more evidence. The upper limit of the
interval is lower than the average reported in the literature.

3.3. Case of study

The company Case of Study is a software development organization specializing in storage logistics. User requirements for
application failures or modifications have different levels of technical complexity (Table 4).

Table 4
Type of requirements

Requirement Level Description

A Custom installation and developments

B Logic configuration and operational start-up

C Report design (Excel, PDF, plain text)

D Basic functionalities of the program
Source: Owner

The support department has four engineers dedicated to addressing and solving requirements. Now, the categorization of
the engineers' capacity to solve each level's requests is given by years of experience in handling the applications, as shown
in Table 5.

Table 5
Classification of Engineers

Level Number of Engineers Years of experience Requirement Level

1 1 2 years or more A, B

2 2 Between 1 and 2 years B, C, D

3 1 Less than 1 year C, D
Source: Owner

R. C. Velandia et al. / Decision Science Letters 13 (2024)

737

The level 1 engineer must characterize the requirement as A, B, C, or D. This person must consider the information listed
in Table 4 and define the type of request he or she has entered. Subsequently, the engineer must consider the criteria
indicated in Table 5 to assign the task to a work team member. Therefore, it is necessary to analyze the following factors:
(the type of requirement, availability, and experience of the personnel). Finally, the status of the solution must be verified
before the response is given to the customer. The level 1 engineer, as the head of support, performs tasks manually since
they do not support technological requirements management software, whose nature makes them challenging to manage. In
technological services organizations, directors allocate at least one day of the week for scheduling activities of their work
team (Bechtold & Brusco, 1994). Therefore, the level of service suffers when the allocation work is not performed promptly.

Assigning requests to engineers (the support team) can be modeled as assigning tasks to machines to minimize the total
time for completing tasks. In particular, engineers are interpreted as machines that work in parallel, where the time required
to complete the same task can vary between them; in the literature, these machines are known as unrelated parallel machines.
However, requests can be modeled as tasks to be performed sequentially on machines, where the preparation times of tasks
depend on the sequence of the performed tasks. This problem is known in the literature as the sequence-dependent setup
time. Thus, the company's problem can be modeled as an unrelated parallel machine scheduling problem with sequence-
dependent setup times (UPMSPST).

The impact on the company's results is significant since informal means to solve the problem are replaced with the proposed
ACO. A tool has been implemented, classifying the received requests according to the type of requirement and appropriately
assigning them to the engineers (Tables 4 and 5). The developed application works with storage in the SQL Server database
engine. This database has three tables (Machine, Jobs, and Setup) fed by the user directly from the application. The sequence
obtained for each machine is detailed on a Gantt chart.

4. Concluding Remarks

This paper proposes a metaheuristic algorithm for the staffing problem modeled as an unrelated parallel machine scheduling
problem with a sequence-dependent setup time problem (UPMSPST). The algorithm's structure can be extended to address
other scheduling problems by modifying and removing some constraints. Regarding the logic presented, there are two
decisive factors in the positive performance of the proposed approach. The first is establishing a threshold for improving
solutions since it helps select the promising solutions to which the operators in search of improvements should be applied.
In computational terms, this factor significantly affects the execution time. However, establishing probabilities according
to information from previously created individuals improves the quality of solutions over time. This pseudorandom behavior
allows refinement of the creation, diversification, and introduction of new individuals in the population.

The obtained results by the proposed algorithm outperform the literature results in terms of the best solutions found and the
average solutions. For future work, parameters 𝛼, 𝛽, and Threshold could be calculated dynamically over time in response
to various factors, such as other parameters of the algorithm or information obtained during optimization, including the
number of generations, the size of the population, and the average number of ants that pass the filter. However, to further
diversify the population, it would be convenient to create a genetic mutation operator that drastically modifies some
solutions, thereby helping to add a degree of exploration to the algorithm. Additionally, it is proposed to adapt ACO to other
variants of the problem while considering, for example, the minimization of delay.

References

Abreu, L. R., & Prata, B. A. (2018). A Hybrid Genetic Algorithm for Solving the Unrelated Parallel Machine Scheduling

Problem with Sequence Dependent Setup Times. IEEE Latin America Transactions, 16(6), 1715-1722.
Abreu, L. R., (2019). Set of instances for the Unrelated Parallel Machine Scheduling problem with Sequence Dependent

 Setup Times. Available in:
 https://www.researchgate.net/publication/315771587_Instances_Tested. Consulted 10 of January of 2019.
Afzalirad, M., & Rezaeian, J. (2016). Resource-constrained unrelated parallel machine scheduling problem with sequence

dependent setup times, precedence constraints and machine eligibility restrictions. Computers & Industrial Engineering,
98, 40-52.

Algethami, H., Pinheiro, R. L., & Landa-Silva, D. (2016). A genetic algorithm for a workforce scheduling and routing
problem. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 927-934). IEEE.

Algethami, H., Martínez-Gavara, A., & Landa-Silva, D. (2019). Adaptive multiple crossover genetic algorithm to solve
workforce scheduling and routing problem. Journal of Heuristics, 25(4), 753-792.

Allahverdi, A., Gupta, J. N., & Aldowaisan, T. (1999). A review of scheduling research involving setup considerations.
Omega, 27(2), 219-239.

Anagnostopoulos, G. C., & Rabadi, G. (2002). A simulated annealing algorithm for the unrelated parallel machine
scheduling problem. In Proceedings of the 5th Biannual world automation congress (Vol. 14, pp. 115-120). IEEE.

 738

Arnaout, J. P., Rabadi, G., & Musa, R. (2010). A two-stage ant colony optimization algorithm to minimize the makespan
on unrelated parallel machines with sequence-dependent setup times. Journal of Intelligent Manufacturing, 21(6), 693-
701.

Avalos-Rosales, O., Angel-Bello, F., & Alvarez, A. (2015). Efficient metaheuristic algorithm and re-formulations for the
unrelated parallel machine scheduling problem with sequence and machine-dependent setup times. The International
Journal of Advanced Manufacturing Technology, 76(9-12), 1705-1718.

Baker, K. R., & Magazine, M. J. (1977). Workforce scheduling with cyclic demands and day-off constraints. Management
Science, 24(2), 161-167.

Balaprakash, P., Birattari, M., Stützle, T., Yuan, Z., & Dorigo, M. (2009). Estimation-based ant colony optimization and
local search for the probabilistic traveling salesman problem. Swarm Intelligence, 3(3), 223-242.

Barrera, D., Velasco, N., & Amaya, C. A. (2012). A network-based approach to the multi-activity combined timetabling
and crew scheduling problem: Workforce scheduling for public health policy implementation. Computers & Industrial
Engineering, 63(4), 802-812.

Bechtold, S. E., & Brusco, M. J. (1994). Working set generation methods for labor tour scheduling. European Journal of
Operational Research, 74(3), 540-551.

Becker, T. (2020). A decomposition heuristic for rotational workforce scheduling. Journal of Scheduling, 23(5), 539-554.
Billionnet, A. (1999). Integer programming to schedule a hierarchical workforce with variable demands. European Journal

of Operational Research, 114(1), 105-114.
Blum, C. (2005). Beam-ACO—Hybridizing ant colony optimization with beam search: An application to open shop

scheduling. Computers & Operations Research, 32(6), 1565-1591.
Blum, C. (2008). Beam-ACO for simple assembly line balancing. INFORMS Journal on Computing, 20(4), 618-627.
Blum, C., Vallès, M. Y., & Blesa, M. J. (2008). An ant colony optimization algorithm for DNA sequencing by hybridization.

Computers & Operations Research, 35(11), 3620-3635.
Çakırgil, S., Yücel, E., & Kuyzu, G. (2020). An integrated solution approach for multi-objective, multi-skill workforce

scheduling and routing problems. Computers & Operations Research, 118, 104908.
Castillo, I., Joro, T., & Li, Y. Y. (2009). Workforce scheduling with multiple objectives. European Journal of Operational

Research, 196(1), 162-170.
Chen, J. F., & Wu, T. H. (2006). Total tardiness minimization on unrelated parallel machine scheduling with auxiliary

equipment constraints. Omega, 34(1), 81-89.
Chen, J. F. (2015). Unrelated parallel-machine scheduling to minimize total weighted completion time. Journal of Intelligent

Manufacturing, 26(6), 1099-1112.
Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal

of Operational Research, 47(3), 271-292.
Cowling, P., Colledge, N., Dahal, K., & Remde, S. (2006). The trade off between diversity and quality for multi-objective

workforce scheduling. In European Conference on Evolutionary Computation in Combinatorial Optimization (pp. 13-
24). Springer, Berlin, Heidelberg.

De Bruecker, P., Van den Bergh, J., Beliën, J., & Demeulemeester, E. (2015). Workforce planning incorporating skills:
State of the art. European Journal of Operational Research, 243(1), 1-16.

De Paula, M. R., Ravetti, M. G., Mateus, G. R., & Pardalos, P. M. (2007). Solving parallel machines scheduling problems
with sequence-dependent setup times using variable neighbourhood search. IMA Journal of Management Mathematics,
18(2), 101-115.

Di Caro, G., & Dorigo, M. (1998). AntNet: Distributed stigmergetic control for communications networks. Journal of
Artificial Intelligence Research, 9, 317-365.

Dorigo, M. (1992). Optimization, learning and natural algorithms. Ph. D. Thesis, Politecnico di Milano.
Dorigo, M., & Stützle, T. (2003). The ant colony optimization metaheuristic: Algorithms, applications, and advances. In

Handbook of metaheuristics (pp. 250-285). Springer, Boston, MA.
Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of applications,

methods and models. European journal of operational research, 153(1), 3-27.
Fırat, M., & Hurkens, C. A. (2012). An improved MIP-based approach for a multi-skill workforce scheduling problem.

Journal of Scheduling, 15(3), 363-380.
Florez, L., Castro-Lacouture, D., & Medaglia, A. L. (2013). Sustainable workforce scheduling in construction program

management. Journal of the Operational Research Society, 64(8), 1169-1181.
Fozveh, K. I., Salehi, H., & Mogharehabed, K. (2016). Presentation of Multi-Skill Workforce Scheduling Model and Solving

the Model Using Meta-Heuristic Algorithms. Modern Applied Science, 2(10), 194-205.
Gambardella, L. M., & Dorigo, M. (2000). An ant colony system hybridized with a new local search for the sequential

ordering problem. INFORMS Journal on Computing, 12(3), 237-255.
Gendreau, M., & Potvin, J. Y. (Eds.). (2010). Handbook of metaheuristics (Vol. 2, p. 9). New York: Springer.
Gérard, M., Clautiaux, F., & Sadykov, R. (2016). Column generation based approaches for a tour scheduling problem with

a multi-skill heterogeneous workforce. European Journal of Operational Research, 252(3), 1019-1030.
Joo, C. M., & Kim, B. S. (2015). Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling

with setup time and production availability. Computers & Industrial Engineering, 85, 102-109.

R. C. Velandia et al. / Decision Science Letters 13 (2024)

739

Kim, D. W., Kim, K. H., Jang, W., & Chen, F. F. (2002). Unrelated parallel machine scheduling with setup times using
simulated annealing. Robotics and Computer-Integrated Manufacturing, 18(3-4), 223-231.

Korb, O., Stützle, T., & Exner, T. E. (2007). An ant colony optimization approach to flexible protein–ligand docking. Swarm
Intelligence, 1(2), 115-134.

Kuo, W. H., Hsu, C. J., & Yang, D. L. (2011). Some unrelated parallel machine scheduling problems with past-sequence-
dependent setup time and learning effects. Computers & Industrial Engineering, 61(1), 179-183.

Laesanklang, W., Silva, D. L., & Castillo-Salazar, J. A. (2015). Mixed Integer Programming with Decomposition to Solve
a Workforce Scheduling and Routing Problem. In ICORES (pp. 283-293).

Lee, J. H., Yu, J. M., & Lee, D. H. (2013). A tabu search algorithm for unrelated parallel machine scheduling with sequence-
and machine-dependent setups: minimizing total tardiness. The International Journal of Advanced Manufacturing
Technology, 69(9-12), 2081-2089.

Li, J., Burke, E. K., Curtois, T., Petrovic, S., & Qu, R. (2012). The falling tide algorithm: a new multi-objective approach
for complex workforce scheduling. Omega, 40(3), 283-293.

Lin, S. W., & Ying, K. C. (2015). A multi-point simulated annealing heuristic for solving multiple objective unrelated
parallel machine scheduling problems. International Journal of Production Research, 53(4), 1065-1076.

Liu, M., & Liu, X. (2019). Satisfaction-driven bi-objective multi-skill workforce scheduling problem. IFAC-PapersOnLine,
52(13), 229-234.

Moodie, C. L., & Roberts, S. D. (1967). Experiments with priority dispatching rules in a parallel processor shop.
International Journal of Production Research, 6(4), 303-312.

Muntz, R. R., & Coffman, E. G. (1969). Optimal preemptive scheduling on two-processor systems. IEEE Transactions on
Computers, 100(11), 1014-1020.

Musliu, N. (2006). Heuristic methods for automatic rotating workforce scheduling. International Journal of Computational
Intelligence Research, 2(4), 309-326.

Othman, M., Gouw, G. J., & Bhuiyan, N. (2012). Workforce scheduling: A new model incorporating human factors. Journal
of Industrial Engineering and Management (JIEM), 5(2), 259-284.

Passmark, (2019). Sitio web especializado para benchmark de computadores. Disponible en línea:
http://www.passmark.com. Consultado 20 February of 2019.

Pereira, D. L., Alves, J. C., & de Oliveira Moreira, M. C. (2020). A multiperiod workforce scheduling and routing problem
with dependent tasks. Computers & Operations Research, 118, 104930.

Pinedo, M. (2016). Scheduling Theory, Algorithms, and Systems. ed. 5, Editorial Springer, Cap 5.
Reinelt, G. (2003). The traveling salesman: computational solutions for TSP applications (Vol. 840). Springer.
Remde, S., Cowling, P., Dahal, K., & Colledge, N. (2007). Exact/heuristic hybrids using rVNS and hyperheuristics for

workforce scheduling. In European Conference on Evolutionary Computation in Combinatorial Optimization (pp. 188-
197). Springer, Berlin, Heidelberg.

Seçkiner, S. U., Gökçen, H., & Kurt, M. (2007). An integer programming model for hierarchical workforce scheduling
problem. European Journal of Operational Research, 183(2), 694-699.

Shmygelska, A., & Hoos, H. H. (2005). An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein
folding problem. BMC bioinformatics, 6(1), 1-22.

Simeunović, N., Kamenko, I., Bugarski, V., Jovanović, M., & Lalić, B. (2017). Improving workforce scheduling using
artificial neural networks model. Advances in Production Engineering & Management, 12(4), 337-352.

Thompson, G. M., & Goodale, J. C. (2006). Variable employee productivity in workforce scheduling. European Journal of
Operational Research, 170(2), 376-390.

Tsang, E., & Voudouris, C. (1997). Fast local search and guided local search and their application to British Telecom's
workforce scheduling problem. Operations Research Letters, 20(3), 119-127.

Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling problem with sequence
dependent setup times. European Journal of Operational Research, 211(3), 612-622.

Valls, V., Pérez, Á., & Quintanilla, S. (2009). Skilled workforce scheduling in service centres. European Journal of
Operational Research, 193(3), 791-804.

Xie, F., Potts, C. N., & Bektaş, T. (2017). Iterated local search for workforce scheduling and routing problems. Journal of
Heuristics, 23(6), 471-500.

Yamashita, D. S. (2000). Tabu search for scheduling on identical parallel machines to minimize mean tardiness. Journal of
Intelligent Manufacturing, 11(5), 453-460.

Yaoyuenyong, K., & Nanthavanij, S. (2005). Energy-based workforce scheduling problem: mathematical model and
solution algorithms. ScienceAsia, 31, 383-93.

Yurtkuran, A., Yagmahan, B., & Emel, E. (2018). A novel artificial bee colony algorithm for the workforce scheduling and
balancing problem in sub-assembly lines with limited buffers. Applied Soft Computing, 73, 767-782.

 740

© 2024 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY)
license (http://creativecommons.org/licenses/by/4.0/).

