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 This research presents a novel approach to address the Virtual Machine Placement Problem 
(VMPP) in cloud data centers with the aim of minimizing energy consumption. The main 
contributions of this study are threefold. Firstly, a Duelist Algorithm specifically designed for 
VMPP, which introduces a unique concept of duelists combined with optimization techniques. 
The algorithm aims to strike a balance between exploration and exploitation in the search space, 
leading to more effective resource allocation and energy-efficient cloud data center management. 
Secondly, enhance the performance of the Duelist Algorithm by reducing the number of 
algorithm-specific parameters. This simplifies the implementation process and increases the 
algorithm's adaptability to various real-world problems, making it more user-friendly and robust. 
Lastly, conduct a comprehensive comparison of the Duelist Algorithm with the widely used 
Hybrid Harmony Search Algorithm (HS+SA+LS) in terms of energy consumption and overall 
efficiency. The experimental results demonstrate that the Duelist Algorithm consistently 
outperforms the Hybrid Harmony Search Algorithm, achieving remarkable improvements in 
both best and mean fitness values. Additionally, the Duelist Algorithm exhibits lower standard 
deviation values, indicating more stable and consistent performance. The findings of this 
research validate the effectiveness of the proposed Duelist Algorithm in minimizing energy 
consumption and optimizing cloud resource allocation. The reduction of algorithm-specific 
parameters further contributes to its versatility and simplicity. 
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1. Introduction 

Cloud computing enables the immediate provision of computing resources on demand, encompassing software, data storage, 
computing power, networking, and databases. This service model includes different types of cloud services, such as 
Infrastructure as a Service (IaaS), Software as a Service (SaaS), and Platform as a Service (PaaS) (Buyya et al., 2010). Both 
data center providers and end-users benefit from cloud computing. Providers can offer computer resources to a large number 
of consumers, while users can access these resources at lower costs compared to maintaining private infrastructure. The 
primary goal of cloud providers is to maximize profits, which involves minimizing the deployment of computer resources. 
Data centers constitute the fundamental infrastructure of cloud computing, housing IT equipment for data storage, 
processing, and communication. To meet user demands, data centers operate continuously with numerous active hosts or 
servers, networking equipment, and storage devices, resulting in significant energy consumption (Shuja et al., 2016). 
Extensive research has been undertaken to address the issue of data center power consumption, with collaborative studies 
involving the United States. In 2010, data center energy consumption stood at 91 billion kWh, with a projected increase to 
140 billion kWh by 2020 (Alharbi et al., 2019). Currently, data centers account for approximately 1.1-1.3 percent of the 
total global energy consumption, a proportion expected to rise to 8% by 2020. The rapid growth in energy consumption by 
data centers raises significant economic and environmental concerns, as data center servers contribute to 0.5 percent of 
global CO2 emissions. Consequently, there is a growing focus on research aimed at reducing data center power usage and 
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addressing challenges related to the optimal placement of virtual machines within cloud infrastructure. 

The major IT infrastructure for cloud computing is the data center, comprising IT equipment for data processing, storage, 
and communication. Data centers continuously operate with a multitude of active hosts, servers, networking equipment, and 
storage devices, resulting in significant energy usage (Shuja et al., 2016). Currently, data centers consume approximately 
3% of the world's electricity, with predictions indicating a rise to 4% by 2030. Hyperscale operations consume 20 to 50 
MW of power annually, equivalent to powering 37,000 households. The increasing energy consumption in data centers has 
led to more scrutiny from governmental authorities (Energy Efficiency Predictions for Data Centres in 2023). Since 2015, 
the electricity used in data centers in Ireland has more than tripled and accounted for 14% of all electricity used by 2021. 
The data center industry overview indicates that 10% of global IT organizations will go server-less before 2023, and data 
centers are projected to consume 20% of the total energy by 2025, with a significant spending of $222 billion on IT data 
centers in 2023 (15 Crucial Data Center Statistics to Know in 2023). According to the International Energy Agency (IEA), 
data center workload significantly increased by 260% from 2015 to 2021, with energy usage rising by 10-60% during the 
same period (IEA, 2022). The energy consumption in cloud data centers remains a critical environmental concern, as the 
operation of data center servers contributes to 0.5% of the world's CO2 emissions. 

As a consequence, there has been a notable increase in research focused on reducing power consumption within data centers 
and addressing the challenge of Virtual Machine Placement (VMP) within cloud infrastructure. Various strategies to curtail 
energy consumption in data centers have been explored by researchers, with one particularly effective approach involving 
the implementation of virtualization technology for server or physical machine (PM) management. Virtual machine 
placement, alternatively known as server consolidation, encompasses the mapping of multiple virtual machines (VMs) onto 
physical machines (PMs), enabling the sharing of resources such as CPU, storage, bandwidth, and memory. This tactic 
serves to optimize resource utilization and assumes a pivotal role in data center management (Speitkamp & Bichler, 2010). 
However, despite the evident advantages of virtual machine placement, substantial challenges remain to be addressed. Of 
primary concern is the task of determining the most optimal allocation or arrangement of VMs onto physical machines, a 
task guided by specific design objectives geared toward minimizing energy consumption within data centers. The 
achievement of this optimization presents a critical research quandary that necessitates thorough consideration and 
continued exploration within the research community. The principal aim of virtual machine placement algorithms is to 
secure an optimal distribution of VMs across PMs while concurrently satisfying designated design objectives (Speitkamp 
& Bichler, 2010). The initial concept entailed the mapping of VMs onto a select number of energy-efficient active servers, 
thereby allowing inactive or underutilized hosts to be deactivated (Tang & Pan, 2015). Such an approach can yield energy 
savings of up to 66% of total consumption (Chen et al., 2008). Given the intricate nature of cloud workloads, characterized 
by their dynamic and unpredictable attributes, coupled with the numerous constraints inherent in VM placement on physical 
hosts, the VMP problem stands as a complex optimization challenge within cloud computing. The fundamental objective 
revolves around efficient management of physical machine utilization, aimed at reducing the overall count of active PMs 
within data centers (Speitkamp & Bichler, 2010). 

Usmani & Singh (2016 conducted a comprehensive survey on the VMP problem, providing valuable insights into different 
approaches employed by researchers to tackle the issue. One essential classification is based on resource types, with several 
studies primarily focusing on the criticality of CPU resources for physical machines (Batista et al., 2007; Breitgand & 
Epstein, 2011). However, the problem is extended in some studies to consider additional resources like memory and 
bandwidth (Van et al., 2010; Zhu et al., 2017). Another classification is based on the considered set of virtual machines, 
with some studies addressing the placement of all virtual machines in the data center simultaneously (Beloglazov et al., 
2012; Biran et al., 2012), while others concentrate on a single virtual machine or a set of VMs belonging to the same 
application (Breitgand & Epstein, 2011; Jayasinghe et al., 2011). The objectives pursued in VMP studies also vary, with 
the majority of works focusing on optimizing energy consumption (Ghribi et al., 2013; Beloglazov et al., 2012), but 
employing different energy models. Some studies consider the number of active physical machines as the primary factor 
influencing energy consumption (Beloglazov & Buyya, 2010), while others aim to reduce overloaded physical equipment 
to mitigate performance loss. Several projects also incorporate the cost of virtual machine migration into their research 
(Wood et al., 2009). 

Researchers have proposed various methods to address the VMP problem effectively. A comprehensive review of virtual 
machine placement methods in a cloud environment using metaheuristic algorithms was provided by (Alsadie, 2022). The 
review discussed the advantages and disadvantages of various methods, emphasizing the need for further research in this 
area. Deterministic algorithms have been explored, such as those introduced by Chaisiri et al. (2009), Alicherry & Lakshman 
(2013), and Dang & Hermenier (2013), which aim to find optimal solutions based on predefined criteria. Additionally, more 
intelligent metaheuristic algorithms, like those proposed by Gao et al. (2013) and Abdel-Basset et al. (2019), have gained 
attention in optimizing VM placement while considering multiple objectives and resource constraints. In the pursuit of 
power efficiency challenges, the Virtual Machine Placement Framework towards the Power Efficiency of Sustainable Cloud 
Environment (MV-PESC) technique is recommended. Furthermore, the FPNSO algorithm, introduced by (Singh et al., 
2023), has shown significant improvements in power consumption, carbon emissions, and resource utilization in cloud data 
centers, using a combination of Flower Pollination Optimization (FPO) and NSGA-II. To enhance the energy efficiency of 
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VMP in cloud data centers, (Wu et al., 2012) presented a new approach that reduced the computational complexity of the 
Genetic Algorithm (GA) by employing a new data structure and an alternative fitness function, leading to faster execution 
times. Moreover, the importance of efficient virtual machine placement in cloud computing, with the aim of reducing energy 
consumption and increasing resource usage, was discussed in (Pushpa & Siddappa, 2022). The authors introduced an 
enhanced Variation of the ABCSO algorithm that integrated the capabilities of Artificial Bee Colony (ABC) and Cat Swarm 
Optimization (CSO) for improved results. Additionally, the Ant Colony Optimization (ACO) algorithm proposed by (Xing 
et al., 2022) takes traffic-awareness into account to enhance overall system performance and improve energy efficiency, 
offering a promising approach for effective resource allocation and management in cloud computing. 

The Duelist algorithm is an evolutionary algorithm that operates based on population dynamics, where each individual in 
the population is referred to as a duelist. In this algorithm, duelist individuals engage in fights with each other to determine 
winners and losers. Both winners and losers adopt different strategies for self-improvement. Winners learn from their past 
mistakes, using them as opportunities for growth, while losers learn from the winners, attempting to incorporate some of 
their successful traits. Through numerous improvements and duels, certain duelists emerge as the best solutions to the given 
set of challenges (Biyanto et al., 2016a; Biyanto et al., 2015). 

The research gap identified in the context of the proposed modifications in the Duelist Algorithm is as follows. 
 

• Balancing Exploitation and Exploration: One of the key challenges in optimization algorithms is finding the right 
balance between exploitation and exploration. Exploitation involves exploiting the current best solutions to converge 
towards a local optimum, while exploration involves exploring new regions of the search space to potentially find a 
global optimum. The research gap in this context is to develop modifications in the Duelist Algorithm that can 
effectively balance exploitation and exploration, allowing the algorithm to efficiently explore the search space while 
converging towards optimal solutions. 

• Improving Energy Efficiency of Cloud Data Centers: Cloud data centers are critical infrastructures that consume 
substantial amounts of energy. Optimizing energy efficiency in cloud data centers is a significant concern, as it can 
lead to cost savings and environmental benefits. The research gap here lies in exploring how the proposed 
modifications in the Duelist Algorithm can be tailored and extended to address the specific challenges of optimizing 
energy efficiency in cloud data centers. By incorporating energy-related constraints and objectives into the algorithm, 
it may be possible to design a more efficient and sustainable cloud resource allocation approach. 

• Reducing Algorithm-Specific Parameters: Optimization algorithms often require the tuning of various parameters to 
achieve optimal performance for specific problem domains. However, having a large number of algorithm-specific 
parameters can make the algorithm complex to implement and tune. The research gap is to investigate methods to 
reduce the number of algorithm-specific parameters in the modified Duelist Algorithm while maintaining or even 
improving its performance. By developing a more parameter-efficient Variation, the algorithm can be more easily 
applied to various real-world problems without extensive parameter tuning. 

The main contributions of the research can be summarized as follows. 
 

• Designing a Duelist Algorithm for VMPP: The primary contribution of this research is the design and development of 
a novel Duelist Algorithm specifically tailored to address the Virtual Machine Placement Problem (VMPP) in cloud 
data centers. The VMPP is a crucial optimization problem that aims to minimize energy consumption while efficiently 
allocating virtual machines to physical machines. By devising a Duelist Algorithm that is well-suited for this specific 
problem domain, the research contributes to the advancement of optimization techniques in cloud computing. 

• Reducing Algorithm-Specific Parameters: Another significant contribution is the reduction of algorithm-specific 
parameters in the proposed Duelist Algorithm. Many optimization algorithms require the tuning of numerous 
parameters to achieve optimal performance, making them complex and time-consuming to implement and calibrate. 
By reducing the number of algorithm-specific parameters in the Duelist Algorithm, the research simplifies its 
implementation and makes it more accessible to practitioners and researchers alike. This reduction in parameters 
enhances the algorithm's efficiency and applicability to a wider range of real-world problems. 

• Performance Comparison with Hybrid Harmony Search Algorithm: The research further contributes by conducting a 
comprehensive performance comparison between the proposed Duelist Algorithm and the Hybrid Harmony Search 
Algorithm (HS+SA+LS), which is a well-known and widely used optimization technique. By comparing the 
performance of both algorithms on the VMPP, the research provides valuable insights into the strengths and 
weaknesses of each approach. This comparison helps identify the relative advantages of the Duelist Algorithm over 
the Hybrid Harmony Search Algorithm in terms of energy consumption optimization and overall efficiency. 

Section 2 presents a virtual machine placement problem with objectives, assumptions and constraints. Duelist algorithm, 
proposed variations, solution representation and fitness function is presented in section 3. Section 4 is about experimental 
details, results and discussion. Section 5 is about the conclusion. 
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2. Virtual Machine Placement Problem 
 
The Virtual Machine Placement (VMP) problem is a crucial challenge in the field of cloud computing, as it directly impacts 
the overall efficiency and performance of cloud environments. In cloud computing, a data center hosts a large number of 
physical machines (PMs), and on these PMs, multiple Virtual Machines (VMs) are mounted. The efficient allocation of 
these VMs onto the available PMs is the key objective of the VMP problem. The primary goal of the VMP problem is to 
achieve optimal resource utilization while minimizing operational costs and meeting the performance requirements of the 
applications running on the VMs. This involves finding a suitable mapping of VMs to PMs that maximizes resource 
utilization, minimizes the number of active physical servers, and balances the workload across the data center. 

In this particular research study, the primary focus is on reducing energy consumption in cloud data centers by optimizing 
the allocation of CPU resources. The VMP problem is addressed using a bin packing problem formulation, which is a well-
known optimization problem. In the context of VMP, the bin packing problem involves assigning VMs (items) to PMs 
(bins) in a way that minimizes the number of PMs used while ensuring that the resource requirements of each VM are met 
by its corresponding PM. 

The study formulates the VMP problem as an energy optimization problem, with the aim of finding a configuration that 
minimizes the total energy consumption of the data center. The constraints of the problem ensure that each VM is assigned 
to a single PM, and each PM has sufficient resources to accommodate its assigned VM. In this particular study, the primary 
objective is to reduce energy consumption in cloud data centers, with a specific focus on considering CPU as a promising 
resource for optimization. The VMP problem is addressed using a bin packing problem formulation, which has been 
previously described in a relevant work (Abohamama & Hamouda, 2020). The formulation involves assigning a set of VMs 
to a set of Physical Machines (PMs) in a cloud data center while adhering to certain constraints. The main goal is to achieve 
a reduction in the total energy usage of the data center. 
 

The formulation of the VMP problem entails the following constraints: 
 

• All virtual machines must be allocated to a physical machine, ensuring that each VM has a dedicated PM. 
• Only one physical machine should be allocated to each virtual machine, ensuring a one-to-one VM-to-PM 

mapping. 
• Physical machines must possess sufficient resources to accommodate the assigned VMs, ensuring that the resource 

requirements of each VM are met by its respective PM. 

The given equations describe a mathematical model for minimizing the total energy consumption of a data center due to 
physical machines (PMs) hosting virtual machines (VMs). The objective function f(p) represents the total energy consumed 
by the data center. The model takes into account the energy consumption of each PM based on its CPU utilization and 
whether or not it contains a VM. The fitness function is given as follows, 

𝑚𝑖𝑛 𝑓ሺ𝑝ሻ =  ෍𝛼௝ொ
௝ୀଵ  × ቄ൫𝑃_𝑚𝑎𝑥௝௕௨௦௬  −  𝑃_𝑚𝑖𝑛௝௜ௗ௟௘൯  × 𝑃௨௧௝௖௣௨  +   𝑃_𝑚𝑖𝑛௝௜ௗ௟௘ቅ (1) 

𝑃௨௧௝௖௣௨ =  ෍𝛽௜௝  ×  𝐶𝑃𝑈_𝑉௜𝐶𝑃𝑈_𝑃௝௏
௜ୀଵ  

(2) 

 
where, 
 

i € {1,2,3,……,V} and j € {1,2,3,……,Q} 𝑓ሺ𝑝ሻ  is total energy consumed by data center due to PMs  
 𝛼௝ show whether or not jth physical machine contains virtual machine 𝑃_𝑚𝑎𝑥௝௕௨௦௬  maximum energy consumption of PM 𝑃_𝑚𝑖𝑛௝௜ௗ௟௘  minimum energy consumption of PM  𝑃௨௧௝௖௣௨   is  CPU utilization ratio of jth  physical machine    𝛽௜௝  is a binary that shows whether or not a virtual machine is assigned to a physical machine 𝐶𝑃𝑈_𝑉௜ is virtual machine’s CPU demand 𝐶𝑃𝑈_𝑃௝  is physical machine’s CPU capacity 

 
 
  

3. Methodology for Solving VMP Problem 
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This section presents the proposed solution representation, initialization and fitness function for virtual machine placement 
problem. 

3.1 Duelist Algorithm 
 
The Duelist algorithm offers a novel approach that draws inspiration from human combative behaviour and learning 
capabilities to tackle these optimization problems effectively. The iterative nature of the Duelist algorithm allows it to refine 
the pool of duelists through competitive learning and adaptation, making it a powerful optimization tool for various 
computer engineering tasks. The flowchart of the fundamental Duelist algorithm is illustrated in Fig. 1.  

 
Fig. 1. Flowchart of basic Duelist algorithm (Biyanto et al., 2016a) 

 
The Duelist algorithm has been successfully applied to various real-world problems across different domains. Some 
examples include solving the refinery crude preheat train cleaning scheduling (Biyanto et al., 2016b), optimizing oil 
production in CO2 enhanced oil recovery and steam injection in enhanced oil recovery (Biyanto et al., 2017a), enhancing 
the dimensional surface quality and material removal rate in turning processes (LASHIN et al., 2020) and optimizing energy 
efficiency and conservation in green building design (Biyanto et al., 2017b). 
 
Steps of the algorithm are, 
 

• Pre-Qualification of Duelists: Before entering the dueling phase, every registered duelist undergoes a pre-qualification 
test to assess their skillset, which is calculated using the fitness function. The fitness function evaluates how well each 
duelist's assigned VM-to-PM assignment satisfies the problem's constraints and objectives. It is crucial for every 
duelist to meet the specific problem's requirements to be considered for further competition. The fitness of each duelist 
is determined based on Equation 1, which quantifies their performance in the given problem context. 

• Establishing the Champion's Board: The board of champions is formed based on the optimal fitness value achieved by 
the duelists. For this study, the duelists with the minimum fitness values are selected to be part of the champion's 
board. A total of five champions are chosen to join this elite group. Each champion possesses an exceptional VM-to-
PM assignment, and they play a significant role in guiding the subsequent steps of the algorithm. These champions 
are given the responsibility to train new duelists, passing on their expertise and capabilities to the next generation of 
participants. As the game progresses, the champions will eventually be replaced by the new duelists they train, ensuring 
a continuous flow of competitive candidates. 

• Duel Between Each Duelist: The dueling phase involves random matchups between the duelists. In these duels, each 
duelist utilizes their fighting skills, represented by their assigned VM-to-PM assignment, and an element of luck, 
determined by a random function. The combination of their skillset and luck will decide the outcome of the duel. 
Duelist A prevails if the combined effect of their fighting ability and luck surpasses that of duelist B, and vice versa. 
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Introducing randomness helps the algorithm to avoid being trapped in local optima and enables it to explore various 
configurations more effectively. 

• Duelist's Improvement: Following each duel, the duelists are categorized as either winners or losers based on their 
performances. The learning process takes place, where the losers receive training from the winners. In this context, 
learning means that the losers may adopt a portion of the winner's array or skillset, enhancing their own abilities. On 
the other hand, the winners undergo self-improvement through mutation. This process involves advancing and refining 
their skillset, introducing variations that may lead to more advanced solutions. The combination of learning and 
mutation allows the duelists to continually evolve and adapt in the competitive environment. 

• Elimination: As new duelists join the competition, the total number of participants may exceed a predefined limit. To 
maintain a constant pool of duelists and prevent excessive computational burden, an elimination process is carried out. 
Based on their individual dueling abilities, the weakest performing duelists are eliminated from the competition. The 
duelist with the poorest performance in a duel is the one to be eliminated. This ensures that only the strongest and most 
competitive duelists continue to participate in the algorithm's iterative progression. 

In the basic the Duelist algorithm, the following parameters play a crucial role in shaping the algorithm's behaviour and 
performance. 

• Luck: The luck parameter represents the influence of randomness in the dueling process. It determines the extent to 
which luck affects the outcome of the duel between two duelists. A higher luck value introduces more randomness, 
allowing the algorithm to explore a wider range of solutions. On the other hand, a lower luck value reduces randomness 
and makes the algorithm more deterministic, focusing on exploiting promising regions. 

• Mutation: The mutation parameter controls the rate at which the skillset of a winning duelist undergoes changes or 
mutations. Mutation introduces small variations in the skillset, allowing the algorithm to explore nearby solutions. A 
higher mutation rate promotes greater exploration, potentially aiding in escaping local optima. Conversely, a lower 
mutation rate encourages exploitation of known good solutions. 

• Innovation (Winner Learning Probability): In the basic Duelist algorithm, the innovation parameter, represented as the 
winner learning probability, determines the likelihood that a winner will learn from its own skillset and improve. A 
higher innovation probability encourages winners to explore their skillsets, potentially leading to more advanced 
solutions and increased diversity. 

• Learning (Loser Learning Probability): The learning parameter, represented as the loser learning probability, controls 
the probability that a loser will adopt a portion of the winner's skillset during the learning process. A higher learning 
probability enables greater knowledge transfer from winners to losers, promoting convergence towards better 
solutions. 

• Number of Champions: The number of champions parameter determines the size of the champion's board. It specifies 
the number of best-performing duelists that are considered champions and contribute to training new duelists. A larger 
board size may increase the diversity of the trained duelists, potentially improving exploration capabilities. 

 
3.2 Proposed Duelist Algorithm Variations 
 

In the different variations of the Duelist algorithm, certain parameters may be modified or removed altogether, as described 
in the specific variations. The innovation and learning probabilities, along with the number of champions, continue to be 
important parameters in these variations as they affect the learning and adaptation mechanisms of the algorithm. Depending 
on the problem characteristics and optimization goals, tuning these parameters is crucial to achieving good performance 
and convergence properties in the Duelist algorithm. 

Fig. 2 and Fig. 3 present the proposed variations 1 and 2 of Duslist algorithms. The modifications proposed in variation 1 
are as follows.   

• Removed Luck Factor: The luck factor, which was previously used to introduce randomness in the dueling process, 
has been eliminated. In this variation, the outcomes of duels are solely determined by the fighting abilities and skillsets 
of the duelists. By removing the luck factor, the algorithm's behavior becomes more deterministic, and the exploration 
of the search space becomes less random. This modification may lead to a more focused search and potentially a faster 
convergence to optimal or near-optimal solutions. 

• Eliminated Champions Training Duelists that are Themselves: In the Duelist algorithm, champions were responsible 
for training new duelists, who inherited the same capabilities as the champions. In variation 1, this mechanism has 
been removed. Champions no longer train new duelists that are similar to themselves. Instead, new duelists are 
generated through other means or strategies. This change can diversify the population of duelists, introducing more 
variations and novel solutions in each generation. It may also reduce the risk of premature convergence by avoiding 
an over-reliance on a specific set of champion solutions. 

By incorporating these modifications, variation 1 of the Duelist algorithm aims to explore the search space more efficiently, 
enhance diversity among the duelists, and potentially improve the algorithm's ability to find better solutions in complex 
optimization problems. However, the effectiveness of these changes depends on the specific problem being addressed and 
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the characteristics of the fitness landscape. Extensive experimentation and comparative analysis with the basic Duelist 
algorithm are required to assess the performance of variation 1 and its suitability for different optimization tasks. 

 
Fig. 2. Proposed variation 1 of DA Fig. 3. Proposed variation 2 of DA 

In variation 2 of the Duelist algorithm, three significant modifications have been introduced, building upon the changes 
made in Variation 1: 

• Removed Luck Factor: Similar to variation 1, the luck factor has been eliminated from the dueling process in 
variation 2. The outcomes of the duels are solely determined by the fighting abilities and skillsets of the duelists, 
making the algorithm more deterministic in its search behaviour. 

• Eliminated Champions Training Duelists that are Themselves: As in variation 1, the mechanism where champions 
train new duelists that are similar to themselves has been removed. New duelists are now generated using other 
methods or strategies to promote diversity and exploration in the population. 

• Winner Learns from Board of Champions (Group of Champions): In variation 2, after each duel, the winner gains 
an opportunity to learn not just from a single champion but from a group of champions known as the "Board of 
Champions". This board consists of the top-performing duelists from previous iterations. The winner incorporates 
knowledge from this diverse group of champions to enhance its own skillset and abilities. This learning from 
multiple champions allows the algorithm to leverage the collective wisdom and best practices of successful 
solutions, potentially leading to better convergence and improved performance. 

• The introduction of this learning mechanism from the Board of Champions further enhances the Duelist algorithm's 
adaptability and ability to explore promising regions of the search space. It can help in efficiently capturing 
valuable knowledge from the champions and propagate it to other duelists, fostering the discovery of better 
solutions in the subsequent iterations. 

By combining these modifications, variation 2 of the Duelist algorithm aims to strike a balance between exploration and 
exploitation, promoting diversity among duelists, and leveraging the knowledge of successful solutions from the Board of 
Champions to drive the algorithm towards more promising regions of the solution space. As with any algorithmic 
modification, the performance of variation 2 would require rigorous testing and evaluation on a variety of optimization 
problems to assess its effectiveness and efficiency compared to previous variations. 
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3.3 Solution Representation and initialization 
 
The Duelist algorithm represents a solution to the assignment of Virtual Machines (VMs) to Physical Machines (PMs) using 
a 1D array. The length of the array is equal to the number of VMs, and each element of the array corresponds to a VM, 
indicating which PM it is assigned to. Each VM is allocated to one of the PMs. In the given representation (figure 4), there 
are seven VMs (VM1 to VM7) and three PMs (PM1, PM2, and PM3). The array represents the assignment of VMs to PMs. 
For example, in the given configuration: 
 

• PM1 contains VM2, VM3, and VM6. 
• PM2 contains VM1 and VM4. 
• PM3 contains VM5 and VM7. 

The array elements show the VM-to-PM assignments, indicating which VM is hosted on which PM. This solution 
representation allows the Duelist algorithm to explore different configurations of VM-PM assignments and optimize the 
assignment to achieve specific objectives, such as minimizing resource utilization, balancing the workload, or optimizing 
power consumption in virtualized environments. 
 

PM2 PM1 PM1 PM2 PM3 PM1 PM3 
VM1 VM2 VM3 VM4 VM5 VM6 VM7 

Fig. 4. Solution representation 

In the initialization phase of the Duelist algorithm for the scenario with 50 VMs and 35 PMs, an array is generated randomly 
to represent the initial assignment of VMs to PMs. The size of this array is 50, where each element corresponds to a VM 
and indicates the PM on which the VM is mounted. As the initialization is done randomly, the assignment of VMs to PMs 
is not optimized at this point and serves as the starting point for the Duelist algorithm's iterative process. 

4. Dataset, Results and Discussion 
 

This section provides the simulation details necessary for conducting experiments to assess the performance of algorithms 
in solving the virtual machine placement problem. Various datasets have been utilized for this purpose, and the duelist 
algorithm along with its proposed variations have been tested using 15 different datasets. These datasets were generated 
using a Python program, which produces datasets with diverse characteristics, including different numbers of virtual 
machines (VMs) and physical machines (PMs). The datasets are classified as small, medium, and large based on the number 
of VMs and PMs they contain, with the maximum number of PMs being 450 and the maximum number of VMs being 600. 
The minimum number of PMs is 35, and the minimum number of VMs is 50. The CPU values for virtual machines are 
generated within the range of 50 to 150, while adhering to the restriction that the VM CPU values must be smaller than the 
available PM CPU capacities. Two Python programs were developed to generate these datasets. The first program generates 
inputs randomly, creating random CPU values for virtual machines. This method produces five datasets. The remaining ten 
datasets are generated by the second program, which generates inputs following a normal distribution, thus creating VM 
CPU values distributed normally. Some parameter values were fixed according to the established standards. 

Table 1  
Experimental scenario and Dataset description 

Dataset 
Number of CPU usage of (in MIPS) 

PM CPU at busy state Category of Dataset Method of generation 
PM VM PM VM 

1 35 50 

1000 (MIPS) 50 to 150 (MIPS) 250 (MIPS) 

Small 

Random 
2 40 100 Small 
3 50 120 Small 
4 70 150 Small 
5 100 200 Medium 
6 150 200 Medium 

Normal 

7 150 300 Medium 
8 200 300 Medium 
9 250 300 Medium 
10 290 400 Medium 
11 300 450 Medium 
12 350 500 Large 
13 400 500 Large 
14 450 600 Large 
15 500 700 Large 
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Table 1 presents the specifications for virtual machines and physical machines along with their corresponding values, with 
CPU measured in Million Instructions per Second (MIPS) and provides details of the datasets used in the experiments. A 
total of 15 datasets were employed to evaluate the performance of the algorithms. These datasets are categorized as small, 
medium, and large based on the number of VMs and PMs they contain. The table also indicates the method of dataset 
generation, specifying whether the dataset was randomly generated or generated using normal distribution. 

For the experiment, the algorithm is tested using a combination of heterogeneous virtual machines and homogeneous 
physical machines. The input to the algorithm includes the number of VMs, CPU values of the virtual machines, the number 
of physical machines, CPU values of the physical machines, and CPU values at the busy state of the physical machines. 
The duelist algorithm and its variations are implemented using the 'Python' programming language. The execution of the 
algorithm programs takes place on a system equipped with an Intel(R) Core(TM) i5-6300U CPU - 2.50GHz - 2.40 GHz 
and 8 GB RAM. 

4.1 Results Comparison 
 

To assess the performance of the algorithms, this study evaluates the best, mean, and standard deviation values. The best 
fitness value represents the optimal result obtained from ten program executions. The mean value is the average fitness 
value of the population obtained at the 100th iteration, and the standard deviation is the statistical measure of the variability 
within that population. In reference (Suganthan et al., 2005), six matrices are provided to measure the effectiveness of the 
algorithms, including the success rate (SR), the number of function evaluations (NFEs), the convergence graph, the 
improvement rate, and the acceleration rate (AR). The following equations are used to calculate these results. Table 2 
presents the results of basic Duelist algorithm and proposed two variations.  𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓  𝑎𝑙𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑         (3) 

𝑁𝐹𝐸𝑠 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 𝑓𝑜𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (4) 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  𝑁𝐹𝐸 𝑜𝑓 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑁𝐹𝐸 𝑜𝑓 𝑏𝑎𝑠𝑖𝑐 𝐷𝐴  (5) 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  ൫ 𝑁𝐸𝐹௢௧௛௘௥ − 𝑁𝐸𝐹௣௥௢௣௢௦௘ௗ൯  ×  100𝑁𝐸𝐹௢௧௛௘௥ (6) 

 

• Throughout all datasets, Duelist Variation 2 consistently showcased superior performance when compared to Duelist 
Variation 1, as evidenced by its higher fitness values for both the best and mean solutions. The algorithm consistently 
achieved better optimization results, indicating its ability to find solutions with higher fitness scores. Additionally, 
Duelist Variation 2 demonstrated improved average performance across all datasets, suggesting that it was consistently 
more effective in converging towards better solutions compared to Duelist Variation 1. 

• In addition to better fitness values, Duelist Variation 2 demonstrated another advantage over Duelist Variation 1. It 
consistently exhibited lower standard deviation values across all datasets. A lower standard deviation implies more 
stable and consistent performance throughout the optimization process. This indicates that Duelist Variation 2 was not 
only capable of achieving higher fitness scores but also demonstrated a more reliable and consistent performance in 
generating solutions, reducing the variability in its results compared to Duelist Variation 1. 

• The observed performance differences between Duelist Variation 2 and Duelist Variation 1 can be attributed to the 
specific modifications made in Duelist Variation 2. By eliminating the luck factor and introducing learning from the 
Board of Champions, Duelist Variation 2 has incorporated new mechanisms to guide the optimization process. These 
modifications have proven to be effective in achieving better and more reliable optimization outcomes compared to 
Duelist Variation 1. The removal of luck reduces randomness and potential biases in the optimization, while learning 
from the Board of Champions likely allows Duelist Variation 2 to benefit from the accumulated knowledge and 
experience of the champions, leading to more informed and effective search strategies. Overall, these improvements 
in Duelist Variation 2 have contributed to its superiority over Duelist Variation 1 in terms of optimization performance. 

• Duelist Variation 2 consistently outperformed the Basic Duelist Algorithm and Duelist Variation 1 in terms of 
improvement percentage. This trend suggests that Duelist Variation 2 possesses enhanced optimization capabilities, 
enabling it to achieve better results in terms of solution quality or convergence towards the optimal solution. 

• In specific datasets (e.g., 1, 2, 4, 6, 9, 11, 13 and 15), Duelist Variation 2 exhibited remarkable improvements, 
exceeding 50% in comparison to the Basic Duelist Algorithm and Duelist Variation 1. These datasets indicate scenarios 
where Duelist Variation 2 was particularly effective in finding significantly better solutions than the other algorithms. 
The noteworthy improvements signify the algorithm's ability to efficiently explore and exploit the search space, 
leading to substantial enhancements in optimization results. 

• This statement highlights a specific observation in Dataset 14, where Duelist Variation 2 showed only a marginal 
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improvement of 2% over the Basic Duelist Algorithm and Duelist Variation 1. In this particular case, Duelist Variation 
2's performance was relatively close to the other algorithms, resulting in a minor enhancement in comparison. This 
suggests that there might be certain scenarios or characteristics in Dataset 14 where Duelist Variation 2's optimization 
approach had limited impact, leading to a small improvement percentage compared to Duelist Variation 1. Further 
analysis may be needed to understand the factors contributing to this minimal improvement and whether it is a 
consistent pattern across multiple datasets. 

 
Table 2  
Best, mean, standard deviation on obtained results 

Dataset  Duelist Variation 1 Variation 2 Improvements V1 (in %) Improvements V2 (in %) 

1 
Best 2681 2081 1931 

42.50 58.60 Mean 2960 2331 2078 
SD 56 73 21 

2 
Best 5023 4423 3823 

32.66 65.30 Mean 5578 4702 3971 
SD 77 56 14 

3 
Best 6600 5400 4500 

4 32 Mean 7282 5713 4648 
SD 77 101 14 

4 
Best 8861 7361 5711 

10 59 Mean 9737 7958 5955 
SD 58 149 75 

5 
Best 12747 11098 8247 

34.54 45.45 Mean 13776 11515 8392 
SD 76 137 39 

6 
Best 17951 16001 11801 

35.16 68.13 Mean 19163 16928 12312 
SD 117 243 137 

 
7 

Best 20175 18225 13575 
17 45 Mean 21324 19284 13827 

SD 90 253 73 

8 
Best 23025 21525 14775 

11 47 Mean 24540 22272 15034 
SD 153 266 87 

9 
Best 25275 22275 15525 

27 68.13 Mean 27126 23100 16053 
SD 172 256 109 

10 
Best 32880 21930 19980 

4 52 Mean 34498 22401 20296 
SD 64 145 99 

11 
Best 35699 24299 22499 

43 50 Mean 37472 24542 22751 
SD 189 81 76 

12 
Best 40883 29934 26183 

6 42 Mean 42839 30689 26361 
SD 103 244 62 

13 
Best 43133 29484 26183 

15 58 Mean 45496 29896 26454 
SD 74 149 62 

14 
Best 50857 38407 32707 

12 22 Mean 53116 39368 33007 
SD 155 284 108 

15 
Best 48981 38181 33381 

3 61 Mean 50974 38711 33625 
SD 87 170 83 

 

Table 3 presents the results of success rate of basic Duelist algorithm and proposed two variations. Duelist Variation 2 
consistently demonstrated better success rates across most datasets compared to Duelist and Duelist Variation 1. The higher 
success rates of Duelist Variation 2 indicate its ability to efficiently explore the solution space and find feasible solutions 
within the constraints of the problem. For some datasets, Duelist Variation 2 achieved a perfect success rate of 100%, 
indicating its reliability in finding optimal or near-optimal solutions for those particular problem instances. The results 
suggest that Duelist Variation 2's modifications, such as the removal of the luck factor and the introduction of learning from 
the Board of Champions, have improved its ability to find feasible solutions with higher success rates. In Table 4, the given 
results provide a comparison of the number of function evaluations required by the Duelist Algorithm and its two Variations 
(Variation 1 and Variation 2) to reach their respective base fitness values in different datasets. Additionally, the acceleration 
rates for each Variation are calculated to understand the efficiency of the algorithms in converging towards the optimal 
solution. 
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The given results provide a comparative analysis of the performance of three algorithms, namely the Duelist Algorithm 
(DA), Variation 1 and Variation 2 across multiple datasets. Each dataset is associated with a specific base fitness value, and 
the algorithms' efficiency is evaluated based on the number of function evaluations required to reach this value. 
Additionally, the acceleration rates of Variation 1 and Variation 2 compared to the Duelist Algorithm are calculated, 
indicating their convergence speed towards the base value. 

Table 3  
Average, best value and success rate 

Dataset Category of dataset Duelist Duelist Variation 1 Duelist Variation 2 
Average Best SR Average Best SR Average Best SR 

1 Small 2801 2681 60 2141 2081 60 1961 1931 80 
2 Small 5203 5023 60 4573 4423 80 3823 3823 100 
3 Small 6690 6600 40 5790 5400 60 4740 4500 60 
4 Small 8951 8861 40 8441 7361 60 6131 5711 60 
5 Medium 13017 13017 40 11997 11098 40 8697 8247 60 
6 Medium 18101 17951 60 16541 16001 80 12251 11801 80 
7 Medium 20265 20175 40 18855 18225 40 14265 13575 40 
8 Medium 23226 23025 40 21775 21525 60 15825 14775 60 
9 Medium 25575 25225 60 23565 22275 60 15855 15525 60 
10 Medium 32850 32580 60 22170 21930 60 20570 19980 60 
11 Medium 35849 35699 40 24299 25469 60 22829 22499 80 
12 Large 40973 40883 40 28673 27683 60 26453 26183 60 
13 Large 43343 43133 40 32663 29484 40 27293 26183 80 
14 Large 51307 50857 60 39457 38407 60 33907 32707 80 
15 Large 49192 48981 60 38181 39891.4 60 34281 33381 60 

 
Table 4  
Function Evaluation and Acceleration rate 

 

In general, all Variations of the Duelist Algorithm demonstrated improvements over the base fitness values in each dataset, 
which indicates their effectiveness in optimizing the solutions. However, Duelist Variation 2 consistently outperformed 
both the Duelist Algorithm and Variation 1, achieving lower fitness values in most datasets. 

The acceleration rates of Variation 2 are generally higher than those of Variation 1, suggesting that Variation 2 converges 
more efficiently towards the base fitness value. This improvement in acceleration rate signifies Variation 2's enhanced 
optimization capabilities and efficiency, making it a more reliable and effective optimization algorithm. 

Dataset-specific analysis revealed interesting observations. In several datasets (e.g., Datasets 6, 9, 11, and 13), Duelist 
Variation 2 demonstrated remarkable improvements, converging towards the optimal solution significantly faster than the 
other Variations. However, there were instances where Variation 1 performed marginally better, as seen in Dataset 14. 

• Performance Comparison: The comparison between Duelist Variation 1 and Variation 2 shows that both algorithms 
achieve improvements over the base value in all datasets. This indicates that both Variations of the Duelist Algorithm 
are effective in optimizing the given problems. However, it is observed that Duelist Variation 2 consistently 
outperforms Variation 1. Lower fitness values indicate better solutions, signifying that Duelist Variation 2 is more 
capable of finding optimal or near-optimal solutions compared to Variation 1. 

• Acceleration Rate: The acceleration rate is a measure of how quickly the algorithm converges towards the base value, 
which represents the optimal solution. In this context, a higher acceleration rate indicates that the algorithm converges 
more efficiently and requires fewer function evaluations to reach the base value. The analysis shows that Duelist 
Variation 2 exhibits a higher acceleration rate compared to Variation 1 for most datasets. This indicates that Duelist 

Dataset 
Base 

fitness  
value 

Number of Function 
Evaluations for Duelist 

Number of Function 
Evaluations for 

Variation 1 

Number of Function 
Evaluations for 

Variation 2 

Acceleration 
rate V1 

Acceleration 
rate V2 

1 2681 8700 5000 3600 1.74 2.41 
2 5023 9800 6600 3400 1.48 2.88 
3 6600 5000 4800 3400 1.04 1.47 
4 8861 6800 6100 2800 1.11 2.42 
5 13017 5500 3600 3000 1.52 1.83 
6 17951 9100 5900 2900 1.54 3.13 
7 20175 4700 3900 2600 1.20 1.80 
8 23025 6700 6000 3600 1.11 1.86 
9 25225 9100 6700 2900 1.35 3.13 
10 33030 5000 4800 2400 1.04 2.08 
11 35699 9300 5300 2100 1.75 4.42 
12 40883 6300 5900 3700 1.06 1.70 
13 43133 7600 6500 3200 1.16 2.37 
14 50857 6000 5300 4700 1.13 1.27 
15 48981 7800 7600 3100 1.02 2.52 
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Variation 2 is more efficient in converging towards optimal solutions than Variation 1. The higher acceleration rate of 
Variation 2 suggests that it can reach a good solution with fewer function evaluations, making it more time and 
resource-efficient. 

• Dataset-specific Analysis: The analysis also considers the performance of the two Variations of the Duelist Algorithm 
in specific datasets. For datasets 2, 5, 6, 9, 11, 13, and 15, Duelist Variation 2 displays significantly higher acceleration 
rates compared to Variation 1. This indicates that Variation 2 is particularly effective in these datasets, as it converges 
faster towards the optimal solution. However, in dataset 14, Duelist Variation 2 shows a slightly lower acceleration 
rate compared to Variation 1. This suggests that Variation 1 performs marginally better in this specific dataset. These 
findings imply that the effectiveness of each Variation may vary depending on the characteristics of the dataset and 
the nature of the optimization problem. 

 
Table 5  
Comparison of Hybrid HSA and Variation 2 of DA  

Dataset Fitness value of Hybrid HS+SA+LS 
(Adamuthe, A., & Kagwade, S. (2022) 

Fitness value of Variation 2 Iterations 

1 2381 1931 100 
2 4475 3823 
3 5845 4500 
4 7452 5711 
5 10145 8247 
6 13235 11801 
7 62210 13575 
8 11775 9775 
9 15525 15525 
10 21002 19980 200 
11 24006 22499 
12 28569 26183 
13 28230 26183 
14 34001 32707 
15 32122 33381 

In Table 5, The given results represent the fitness values of two different optimization algorithms, namely the Hybrid 
Algorithm (HS+SA+LS) and Variation 2, across multiple datasets in table 5. Each dataset is associated with a specific 
dataset number, and the fitness values represent the quality of the solutions obtained by the algorithms for each dataset. In 
general, both the Hybrid Algorithm and Variation 2 demonstrate improvements over the fitness values across all datasets, 
indicating their effectiveness in optimizing the solutions. The fitness values obtained by Variation 2 are consistently lower 
than those obtained by the Hybrid Algorithm, suggesting that Variation 2 achieves better optimization results in most cases. 
The results suggest that Variation 2 is a more efficient and effective optimization algorithm compared to the Hybrid 
Algorithm. It consistently produces better fitness values and better-quality solutions for a diverse range of datasets. Dataset-
specific analysis reveals that Variation 2 significantly outperforms the Hybrid Algorithm in most datasets. For example, in 
Datasets 1, 2, 3, 4, 5, 6, 7,8,9, 10, 11, 12, 13 and 14, the fitness values of Variation 2 are notably lower than those of the 
Hybrid Algorithm, indicating its enhanced optimization capabilities in these datasets. Overall, the results demonstrate that 
Variation 2 is a superior optimization algorithm compared to the Hybrid Algorithm. Its ability to consistently achieve lower 
fitness values across various datasets indicates its robustness and efficiency in finding better solutions. The modifications 
made in Variation 2 have evidently resulted in improved optimization performance, making it a more reliable choice for 
solving optimization problems. 

4.2 Convergence analysis  
 

The convergence behaviour of different algorithms is a crucial aspect in assessing their effectiveness. In this context, Figs. 
(5-10) provide insight into the convergence curves of the Duelist algorithm and its proposed variations across datasets of 
varying sizes. Fig. 5 and Fig. 6 illustrate the convergence curves for two small datasets. These curves depict how the fitness 
values of the algorithms evolve over iterations. Similarly, Fig. 7 and Fig. 8 showcase the convergence curves for two 
medium-sized datasets, while Fig. 9 and Fig. 10 present the convergence curves for two large datasets. These visualizations 
offer a comparative understanding of the algorithms' convergence tendencies across datasets with diverse complexities. A 
notable observation from these results is that the proposed variations of the Duelist algorithm consistently outperform the 
basic Duelist algorithm in terms of convergence speed. The basic Duelist algorithm often encounters challenges in escaping 
local optima, resulting in slower convergence rates. In contrast, the proposed variations demonstrate the ability to avoid 
such pitfalls and maintain steady progress towards optimal solutions. This is particularly evident across all six datasets, 
regardless of their sizes. The convergence curves serve as a valuable means of gauging algorithm performance, providing 
insights into their ability to explore and exploit the solution space effectively. The superiority of the proposed variations in 
achieving faster convergence is indicative of their enhanced capability to adapt, learn, and optimize solutions in a variety 
of scenarios. This observation underscores the significance of introducing novel approaches, such as the proposed 
variations, to enhance the efficiency and effectiveness of optimization algorithms like the Duelist algorithm. 



A. Adamuthe and V. Kupwade  / Decision Science Letters 13 (2024) 
 

763

  
Fig. 5. Convergence graph for Dataset 2 Fig. 6. Convergence graph for Dataset 4 

  
Fig. 7. Convergence graph for Dataset 7 Fig. 8. Convergence graph for Dataset 9 

  
Fig. 9. Convergence graph for Dataset 12 

 
Fig. 10. Convergence graph for Dataset 14 

5. Conclusions 
 

The paper has presented virtual machine placement problem in cloud computing with the objective of minimization of 
energy consumption in cloud data centers. The proposed algorithms, namely Duelist Variation 1 and Duelist Variation 2, 
have been rigorously tested and compared with the Basic Duelist Algorithm using various datasets.  
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Firstly, the Duelist Variation 1 introduces an improvement over the Basic Duelist Algorithm by removing the luck factor 
and allowing champions to train new duelists. This modification shows positive results, as Duelist Variation 1 consistently 
demonstrates improvements in fitness values compared to the Basic Duelist Algorithm across most datasets. However, it is 
evident that there is room for further enhancement. Secondly, the more advanced Duelist Variation 2 goes a step further by 
removing the luck factor, allowing removal of champions to train new duelists stage, and introducing learning from the 
Board of Champions. This additional learning capability proves to be highly beneficial, as Duelist Variation 2 consistently 
outperforms both the Basic Duelist Algorithm and Duelist Variation 1 in terms of fitness values. It exhibits higher 
acceleration rates and converges faster towards optimal fitness values for a majority of datasets. 

The comparison of the acceleration rates clearly indicates that Duelist Variation 2 is more efficient in finding better solutions 
with a reduced number of function evaluations. This efficiency is particularly evident in datasets 1, 2, 4, 6, 9, 11, 13 and 15, 
where Duelist Variation 2 exhibits remarkable improvements of over 50% compared to the Basic Duelist Algorithm. 
However, it is essential to consider that the performance of the algorithms may vary slightly depending on the specific 
dataset. Nonetheless, overall, Duelist Variation 2 demonstrates enhanced optimization capabilities, consistent 
improvements, and more stable performance compared to the other Variations. The proposed algorithms, particularly 
Duelist Variation 2, showcase substantial improvements over the Basic Duelist Algorithm and Duelist Variation 1. They 
exhibit higher acceleration rates, converge towards better fitness values, and demonstrate enhanced optimization 
capabilities. The modifications made in Duelist Variation 2, such as the removal of the luck factor and the introduction of 
winner learning from the Board of Champions, have proven to be effective in achieving these superior results. The 
experimental findings validate the suitability and reliability of Duelist Variation 2 for a wide range of optimization tasks. 
As a more advanced and efficient algorithm, it presents a valuable contribution to the field of optimization, providing 
researchers and practitioners with a powerful tool for solving complex optimization problems 

References 

15 Crucial Data Center Statistics to Know in 2023. (n.d.). Techjury. Retrieved from https://techjury.net/blog/data-center-
statistics/ 

Abdel-Basset, M., Abdle-Fatah, L., & Sangaiah, A. K. (2019). An improved Lévy based whale optimization algorithm for 
bandwidth-efficient virtual machine placement in a cloud computing environment. Cluster Computing, 22(4), 8319-
8334. 

Abohamama, A. S., & Hamouda, E. (2020). A hybrid energy–aware virtual machine placement algorithm for cloud 
environments. Expert Systems with Applications, 150, 113306. 

Adamuthe, A., & Kagwade, S. (2022). Hybrid and adaptive harmony search algorithm for optimizing energy efficiency in 
VMP problem in cloud environment. Decision Science Letters, 11(2), 113-126. 

Alharbi, F., Tian, Y. C., Tang, M., Zhang, W. Z., Peng, C., & Fei, M. (2019). An ant colony system for energy-efficient 
dynamic virtual machine placement in data centers. Expert Systems with Applications, 120, 228-238. 

Alicherry, M., & Lakshman, T. V. (2013, April). Optimizing data access latencies in cloud systems by intelligent virtual 
machine placement. In 2013 Proceedings IEEE INFOCOM (pp. 647-655). IEEE. 

Alsadie, D. (2022). Virtual Machine Placement Methods using Metaheuristic Algorithms in a Cloud Environment-A 
Comprehensive Review. International Journal of Computer Science & Network Security, 22(4), 147-158. 

Batista, D. M., Da Fonseca, N. L., & Miyazawa, F. K. (2007, March). A set of schedulers for grid networks. In Proceedings 
of the 2007 ACM symposium on Applied computing (pp. 209-213). 

Beloglazov, A., & Buyya, R. (2010, May). Energy efficient allocation of virtual machines in cloud data centers. In 2010 
10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (pp. 577-578). IEEE. 

Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation heuristics for efficient management of 
data centers for cloud computing. Future generation computer systems, 28(5), 755-768 

Biran, O., Corradi, A., Fanelli, M., Foschini, L., Nus, A., Raz, D., & Silvera, E. (2012, May). A stable network-aware vm 
placement for cloud systems. In 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing 
(ccgrid 2012) (pp. 498-506). IEEE. 

Biyanto, T. R., Fibrianto, H. Y., Nugroho, G., Hatta, A. M., Listijorini, E., Budiati, T., & Huda, H. (2016a). Duelist 
algorithm: an algorithm inspired by how duelist improve their capabilities in a duel. In Advances in Swarm Intelligence: 
7th International Conference, ICSI 2016, Bali, Indonesia, June 25-30, 2016, Proceedings, Part I 7 (pp. 39-47). Springer 
International Publishing. 

Biyanto, T. R., Irawan, S., Ginting, H. J., & Fitri, A. I. (2017a). Operating Conditions Optimization of Steam Injection in 
Enhanced Oil Recovery Using Duelist Algorithm. International Journal of Industrial and Manufacturing 
Engineering, 11(2), 272-277. 

Biyanto, T. R., Matradji, Syamsi, M. N., Fibrianto, H. Y., Afdanny, N., Rahman, A. H., ... & Putra, Y. A. (2017b, 
November). Optimization of energy efficiency and conservation in green building design using Duelist, Killer-Whale 
and Rain-Water Algorithms. In IOP conference series: materials science and engineering (Vol. 267, No. 1, p. 012036). 
IOP Publishing. 

Biyanto, T. R., Ramasamy, M., Jameran, A. B., & Fibrianto, H. Y. (2016b). Thermal and hydraulic impacts consideration 
in refinery crude preheat train cleaning scheduling using recent stochastic optimization methods. Applied Thermal 
Engineering, 108, 1436-1450. 



A. Adamuthe and V. Kupwade  / Decision Science Letters 13 (2024) 
 

765

Breitgand, D., & Epstein, A. (2011, May). SLA-aware placement of multi-virtual machine elastic services in compute 
clouds. In 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops 
(pp. 161-168). IEEE. 

Buyya, R., Broberg, J., & Goscinski, A. M. (Eds.). (2010). Cloud computing: Principles and paradigms. John Wiley & 
Sons. 

Chaisiri, S., Lee, B. S., & Niyato, D. (2009, December). Optimal virtual machine placement across multiple cloud providers. 
In 2009 IEEE Asia-Pacific Services Computing Conference (APSCC) (pp. 103-110). IEEE. 

Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., & Zhao, F. (2008, April). Energy-Aware Server Provisioning and 
Load Dispatching for Connection-Intensive Internet Services. In NSDI (Vol. 8, pp. 337-350). 

Dang, H. T., & Hermenier, F. (2013, November). Higher SLA satisfaction in datacenters with continuous VM placement 
constraints. In Proceedings of the 9th workshop on hot topics in dependable systems (pp. 1-6). 

Energy Efficiency Predictions for Data Centres in 2023. (2022, December 30). Data Centre Magazine. Retrieved from 
https://www.datacentremagazine.com/articles/efficiency-to-loom-large-for-data-centre-industry-in-2023 

Gao, Y., Guan, H., Qi, Z., Hou, Y., & Liu, L. (2013). A multi-objective ant colony system algorithm for virtual machine 
placement in cloud computing. Journal of computer and system sciences, 79(8), 1230-1242. 

Ghribi, C., Hadji, M., & Zeghlache, D. (2013, May). Energy-efficient vm scheduling for cloud data centers: Exact allocation 
and migration algorithms. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing 
(pp. 671-678). IEEE. 

IEA. (2022). Data Centres and Data Transmission Networks. IEA, Paris. Retrieved from https://www.iea.org/reports/data-
centres-and-data-transmission-networks 

Jayasinghe, D., Pu, C., Eilam, T., Steinder, M., Whally, I., & Snible, E. (2011, July). Improving performance and availability 
of services hosted on iaas clouds with structural constraint-aware virtual machine placement. In 2011 IEEE 
International Conference on Services Computing (pp. 72-79). IEEE. 

LASHIN, M. M., GAAFER, A. M., & Al Nemer, G. N. (2020). Optimization of dimensional, surface quality and material 
removal rate in turning using response surface methodology and duelist algorithm. International Journal of Mechanical 
and Production Engineering Research and Development, 10(1), 499-514. 

Pushpa, R., & Siddappa, M. (2022, January). Adaptive Hybrid Optimization Based Virtual Machine Placement in Cloud 
Computing. In 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1-9). IEEE. 

Ruki Biyanto, T., Yernias Fibrianto, H., Nugroho, G., Listijorini, E., Budiati, T., & Huda, H. (2015). Duelist Algorithm: 
An Algorithm Inspired by How Duelist Improve Their Capabilities in a Duel. arXiv e-prints, arXiv-1512. 

Shuja, J., Gani, A., Shamshirband, S., Ahmad, R. W., & Bilal, K. (2016). Sustainable cloud data centers: a survey of enabling 
techniques and technologies. Renewable and Sustainable Energy Reviews, 62, 195-214. 

Singh, A. K., Swain, S. R., Saxena, D., & Lee, C. N. (2023). A bio-inspired virtual machine placement toward sustainable 
cloud resource management. IEEE Systems Journal. 

Speitkamp, B., & Bichler, M. (2010). A mathematical programming approach for server consolidation problems in 
virtualized data centers. IEEE Transactions on services computing, 3(4), 266-278. 

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A., & Tiwari, S. (2005). Problem definitions and 
evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL report, 2005005(2005), 
2005. 

Tang, M., & Pan, S. (2015). A hybrid genetic algorithm for the energy-efficient virtual machine placement problem in data 
centers. Neural processing letters, 41, 211-221. 

Usmani, Z., & Singh, S. (2016). A survey of virtual machine placement techniques in a cloud data center. Procedia 
Computer Science, 78, 491-498. 

Van den Bossche, R., Vanmechelen, K., & Broeckhove, J. (2010, July). Cost-optimal scheduling in hybrid iaas clouds for 
deadline constrained workloads. In 2010 IEEE 3rd international conference on cloud computing (pp. 228-235). IEEE. 

Wood, T., Shenoy, P., Venkataramani, A., & Yousif, M. (2009). Sandpiper: Black-box and gray-box resource management 
for virtual machines. Computer Networks, 53(17), 2923-2938. 

Wu, G., Tang, M., Tian, Y. C., & Li, W. (2012). Energy-efficient virtual machine placement in data centers by genetic 
algorithm. In Neural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, November 
12-15, 2012, Proceedings, Part III 19 (pp. 315-323). Springer Berlin Heidelberg. 

Xing, H., Zhu, J., Qu, R., Dai, P., Luo, S., & Iqbal, M. A. (2022). An ACO for energy-efficient and traffic-aware virtual 
machine placement in cloud computing. Swarm and Evolutionary Computation, 68, 101012. 

Zhu, W., Zhuang, Y., & Zhang, L. (2017). A three-dimensional virtual resource scheduling method for energy saving in 
cloud computing. Future Generation Computer Systems, 69, 66-74. 

  
 
 
 
 



  766

               

 

 
© 2024 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) 
license (http://creativecommons.org/licenses/by/4.0/). 

 


