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 The synthesis of 4-aryl-NH-1,2,3-triazoles in good to excellent isolated yields (75-95%) has been 
achieved via a [3+2] cycloaddition of aromatic nitroolefins and sodium azide catalyzed by 
recyclable heterogeneous sulfated tin oxide (STO, 10 mol%) in toluene at 60 0C. Aliphatic 
nitrooefines proved to be unsuccessful partners in the present methodology. 
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1. Introduction        

      Azoles are nitrogen-containing heterocyclic moieties with five members that are crucial structural components of a 
variety of naturally occurring biologically active compounds.1 One of the many biological impacts of azoles and their 
derivatives is their potent antibacterial action.2-4 The scientific community has been fascinated by the unusual five-
membered heterocyclic nucleus known as 1,2,3-triazole up to this point because of its remarkable biological characteristics 
and wide range of applications in the organic and material sciences.5-7 Not only can these aromatic monocyclic compounds 
be used to  a plethora of pharmaceutical products, such as anti-allergic, anti-cancer, anti-bacterial, herbicidal, and fungicidal 
drugs,8-12 but they are also specifically identified by their presence in dyes, photostabilizers, and chelating agents in 
numerous metal complexes.13-15  
 
      Alternatively, N-unsubstituted triazoles have entered the scientific community as hopeful contenders for the synthesis 
of numerous biological motifs to compete with N-substituted triazoles in the fight against diseases like HIV, Alzheimer's, 
and tuberculosis, which are fatal to humans if left untreated.16 The literature is largely silent on the roles played by 4-aryl-
NH-1,2,3-triaozles in cancer immunotherapy, methionine aminopeptidase enzyme inhibition, and the development of 
antibacterial and anticancer drugs.  
 
     A few of the significant drugs with the NH-triazole moiety are shown in Fig. 1. Several methodologies have been 
developed to synthesize these molecular structures because of their broad applicability. The fundamental processes utilized 
in the synthesis of the aforementioned compounds are primarily the azide and alkyne condensation reaction, the one-pot 
multicomponent fusion between sodium azide and nitrostyrene produced in situ from nitromethane and aldehyde, and the 
direct synthesis from nitroalkene and sodium azide.17-21 Most universal strategy for the preparation of the 1,2,3-triazole 
molecular system are the non-catalyzed [3+2] cycloaddition reacitons with the participation of azides.22-23 Many examples 
of these-type transformations were described in the literature. Next, some examples of transition-metals catalyzed process 
were also described.24 The cycloaddition based on the azidium anion is a analog of these protocols.  Catalysts that were 
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effectively used were amberlyst-15, p-toluenesulfonic acid, Al-MCM-41, AlCl3, sulfamic acid, sulfated zirconia, 
NH4OAc/AcOH, NaHSO3 or Na2SO3, etc.25-30 

 

 
Fig. 1. Representative biologically relevant NH-1,2,3-triazoles 

 
     Solid heterogeneous catalysts are known to offer anticipated advantages in synthetic chemistry, including straightforward 
regeneration, decreased corrosiveness, cost, convenience of handling, and effective reusing.31-34 Sulfated tin oxide, also 
known as SO4

-2/SnO2, has become a popular and efficient catalyst due to its large surface area, high efficiency, non-corrosive 
nature, low cost, and wide surface area. Utilized widely in chemical and industrial conditions, it comprises sulfated and 
sulfonic acid moieties on a variety of heterogeneous solid bases.35-44 Very recently, we have successfully exploited the 
applications of STO in the synthesis of β-amino alcohols.45 In keeping with our efforts to create innovative methodologies,46-

47 we report here the efficient synthesis of 4-aryl-1,2,3-triazoles via STO catalysis, which is derived from the reaction of 
nitro styrenes with sodium azide.  

2. Results and Discussion  
 
     Substituted nitrostyrenes were produced using a process developed by Pellacani et al.48 First, we used sulfated tin oxide 
in various solvents and reaction conditions to carry out several of the model reactions with nitrostyrene (1a) and NaN3 (2), 
resulting in the product 4-phenyl-NH-1,2,3-triazole (3a, Table 1). When STO was not present, the reaction produced 
significant amounts of triarylbenzene, which was consistent with previous reports. The yields of 3a were observed to be 
slow even at 80 oC when DMSO or DMF were used as the solvent (28 and 40% yields, respectively, entries 1-2, Table 1).  
 
                                          Table 1. Optimization studies 
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    To our delight, adding STO (0.2 equiv.) to DMSO and DMF at room temperature for 30 minutes resulted in a considerable 
increase in yield (79% and 80%, respectively, entries 4-5, Table 1). When the model reaction was carried out in toluene, 
the yield increased to its maximum (entry 6, Table 1). Later, we considered testing the STO stoichiometric ratio (from 0.2 
to 0.05 equiv.) and optimizing the reaction temperature. It's intriguing to see that even with a shorter reaction time, the 
reaction conversion and yields (94, 92, and 81%, respectively, entries 9-11, Table 1) increased. We then reduced the STO 
ratio even further (up to 0.05 equiv.), but the yields did not show any improvement. Ultimately, it was found that the ideal 
reaction conditions in toluene were 0.1 equivalent of STO at 60 0C (entry 9, Table 1).  
 
      After obtaining the ideal reaction conditions, we investigated the protocol's substrate scope using a range of decorated 
nitroolefins to produce distinct NH-1,2,3-triazoles (Scheme 1). This approach underwent [3+2] cycloaddition smoothly, 
regardless of the substitution pattern, and produced the relevant products in moderate to good yields (75-95% yields, 3a-k, 
Scheme 1). The cycloaddition course of the reaction with the participation of conjugated nitroalkenes are determined by the 
local strong electrophilic nature of the β-position of the nitrovinyl moiety.49-52 Furthermore, as seen in Scheme 1, this 
approach is very compatible with a wide range of functional groups, including fluoro, chloro, methyl, methoxy, hydroxy, 
cyano, and nitro. We noticed with great interest that every cycloaddition reaction was finished in less than 1.25 h. 
  

 
Scheme 1. STO-Catalyzed 4-aryl-NH-1,2,3-triazoles 

 
      Notably, nitroolefins containing methyl and methoxy groups on the aryl ring, which are electron-donating groups, 
produced products in excellent yield (91-95%, 3b-c, Scheme 1). When nitroolefin was substituted with an aryl group at the 
ortho-position, the product was produced faster than with other substrates (93%, 3f, Scheme 1).  
Motivated by these outcomes, we shifted our focus to heterocyclic substrates, which are prevalent scaffolds in medicinal 
chemistry, such as furan, thiophene, and indole. We were delighted to find that the cycloaddition process of the heterocyclic 
substituted nitroolefins went well, yielding good yields of 3i, 3j, and 3k (78, 80, and 75%, respectively, Scheme 1). It's 
interesting to note that this reaction is unaffected by strongly coordinating heteroatoms like sulphur, oxygen, and nitrogen. 
Using di-substituted nitroolefine, the  [3+2] cycloaddition reaction proceeded efficiently with a high yield (82%, 3h, Scheme 
1), which was rather fascinating to note. These findings unambiguously demonstrated the applicability and universality of 
sulfated tin oxide as a catalyst or additive for the production of various 4-aryl-NH-1,2,3-triazoles employing a broad variety 
of nitroolefins. Nevertheless, it was discovered that the aliphatic amine was an unsuccessful partner in the intended reaction 
(entry 3l, Scheme 1). 
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Fig. 2. Plausible reaction mechanism 

 
       In Fig. 2, a plausible reaction pathway is proposed. The nitro styrene (NS, 1a) and STO interact in the first stage to 
create an active intermediate NS-STO that can be immobilized in the solid/liquid interface. The triazoline intermediate 
TS2x-STO is created when this intermediate (NS-STO) combines with the PA (NaN3, 2). In order to obtain the desired 
triazole (3a), the last step involves regenerating STO to its initial quantity and removing HNO2 through a transition state 
called TA3.  
 
       In the practice however, the wide range of mechanisms are possible: polar one step mechanism; polar stepwise 
mechanism with the zwitterionic intermediate, non-polar one step mechanism, non-polar mechanism with the biradical 
intermediate. Stepwise mechanism is especially probable in the case of the reaction with the participation of conjugated 
nitroalkenes,53-58 based on the observations from previous literature reports. Fig. 2 suggested the one step" concerted" 
mechanism of the nitrous acid extrusion. In the practice however, the wide range of mechanisms are possible: one-step 
synchronical, one-step asynchronous and stepwise E1-like or E1cB-like.59-62 

 
       The synthesis of 4-aryl-NH-1,2,3-triazoles (3) in the presence of sulfated tin oxide was compared with some of the 
earlier approaches, as indicated in Table 2, to demonstrate the value of this methodology. The data clearly showed that the 
phenylacetylene reaction took longer to complete (entry 3, Table 2). Moreover, nitrostyrene 1a and sodium azide 2 reacted 
with STO in a shorter amount of time and produced in excellent isolated yield (entry 4, Table 2). 

 
Table 2. Comparison of the reaction scope with the literature reports 
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      Subsequently, an analysis was conducted on the STO catalyst's recycling in the reaction between sodium azide 2 and 
nitrostyrene 1a. Following the completion of the reaction, diethyl ether was used to wash the STO and the solution was 
vacuum-filtered via a sintered glass funnel. After being dried, the recovered catalyst was employed again right away without 
needing to be further purified. With no significant reduction in its catalytic activity, the catalyst could be extracted and 
employed up to five more times (88% isolated yield for 3a after the fifth run).  

3. Conclusions  
 
      In conclusion, by using STO as an additive to synthesize a useful substituted 4-aryl-NH-1,2,3-triazoles, we have created 
a simple and reproducable [3+2] cycloaddition procedure using nitroolefins. It proved to serve as a substitute for the 
conventional [3+2] cycloaddition of azides with alkynes. The key components of this protocol are its open-air reaction 
conditions, recyclable heterogeneous catalyst, and straightforward method. This approach demonstrated excellent functional 
group compatibility and is practically applicable to all types of aromatic nitroolefins. Above all, this approach facilitates 
the quick confirmation of 1H-1,2,3-triazole library creation as novel chemical entities in drug development. 

 
4. Experimental 
 
Typical procedure for the synthesis of 4-aryl-NH- 1,2,3-triazoles 
 
Nitroolefine 1 (1 mmol) and sodium azide 2 (1.5 mmol) were stirred in toluene (3 mL), then, STO (10 mol%) was carefully 
added to the reaction mixture. Then, the reaction mixture was stirred at 60 0C in air. When the reaction was completed 
(detected by TLC), the mixture was cooled to room temperature and the reaction mixture was diluted with 10 ml of diethyl 
ether, filtered, and the catalyst was cleaned with 4×5 ml of diethyl ether. The crude product was washed with aqueous 
NaHCO3 solution, and brine, respectively. Drying the organic layer on sodium sulphate and vacuum concentrating, the 
corresponding crude triazole was obtained. After purification by flash chromatography on silica gel with hexane/ethyl 
acetate (v/v＝ 5:1) as the eluent, pure 1H-1,2,3-triazole (3) was synthesized. 
 
Representative spectral data 
 
4-Phenyl-1H-1,2,3-triazole (3a): White solid; mp 140-142 oC; 1H NMR (DMSO-d6, 400 MHz): δ 15.2 (s, 1H), 8.3 (s, 1H), 
7.8 (d, J = 6.80 Hz, 2H), 7.4 (d, J = 7.20 Hz, 2H), 7.3 (d, J = 6.81 Hz, 1H); 13C NMR (DMSO-d6, 100 MHz): δ 145.3, 130.4, 
129.0, 128.2, 127.4, 125.7. HRMS Calcd (ESI) m/z for C8H8N3: [M+H]+ 146.0713, found: 146.0709. 
Caution! Sodium azide is a hazardous and possibly explosive substance. In the meantime, hydrazoic acid-which is also 
exceedingly toxic-is produced when powerful acids are used to cure sodium azide. It is possible for hydrazoic acid to 
develop during the reaction; in that case, it should be removed with water before evaporating over rotovap. A chemical 
fume hood should be used for all operations, including extraction and evaporation, and strong acids should not come into 
touch with the work being done. To capture off any volatile HN3, the top of the condenser was connected via a gas bubbler 
to an aqueous NaOH (1 M) solution.  
 
Supporting Information is available 
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