How to cite this paper
Phan, T & Athigakunagorn, N. (2022). Discrete-event simulation-based decision making of Just-In-Time strategies for precast concrete supply chain using batch delivery and offsite inventory level.Uncertain Supply Chain Management, 10(3), 679-692.
Refrences
Abedi, M., Fathi, M. S., Mirasa, A. K., & Rawai, N. M. (2016). Integrated collaborative tools for precast supply chain management. Scientia Iranica, 23(2), 429-448. https://doi.org/10.24200/sci.2016.2129
Ahmadian, M. M., Salehipour, A., & Cheng, T. C. E. (2021). A meta-heuristic to solve the just-in-time job-shop scheduling problem. European Journal of Operational Research, 288(1), 14-29. https://doi.org/10.1016/j.ejor.2020.04.017
Akintoye, A. (1995). Just-in-Time application and implementation for building material management. Construction Management and Economics, 13(2), 105-113. https://doi.org/10.1080/01446199500000013
Al-Bazi, A., & Dawood, N. (2012). Simulation-based genetic algorithms for construction supply chain management: Off-site precast concrete production as a case study. OR Insight, 25(3), 165-184. https://doi.org/10.1057/ori.2012.7
Al-Bazi, A., & Dawood, N. (2017). Simulation-based optimisation using simulated annealing for crew allocation in the precast industry. Architectural Engineering and Design Management, 14(1-2), 109-126. https://doi.org/10.1080/17452007.2017.1313721
Anandh, K. S., Prasanna, K., Priya, M. G. S., & Simon, S. M. (2020). An industrial study of just in time (JIT) management in precast construction projects 1st International Conference on Mathematical Techniques and Applications: Icmta2020,
Anvari, B., Angeloudis, P., & Ochieng, W. Y. (2016). A multi-objective GA-based optimisation for holistic Manufacturing, transportation and Assembly of precast construction. Automation in Construction, 71, 226-241. https://doi.org/10.1016/j.autcon.2016.08.007
Baker, P. (2004). Aligning Distribution Center Operations to Supply Chain Strategy. The International Journal of Logistics Management, 15(1), 111-123. https://doi.org/10.1108/09574090410700266
Bamana, F., Lehoux, N., & Cloutier, C. (2019). Simulation of a construction project: assessing impact of Just-in-Time and lean principles. Journal of Construction Engineering and Management, 145(5), 05019005. https://doi.org/10.1061/(asce)co.1943-7862.0001654
Budianto, B., Surachman, S., Hadiwidjojo, D., & Rofiaty, R. (2021). The effect of manufacturing agility competencies on lean manufacturing in increasing operational performance. Uncertain Supply Chain Management, 9(1), 195-204. https://doi.org/10.5267/j.uscm.2020.10.001
Chan, W.-H., & Lu, M. (2005). Logistics and operations simulation in precast viaduct construction: case study. In Computing in Civil Engineering (2005) (pp. 1-12). https://doi.org/doi:10.1061/40794(179)130
Chan, W. T., & Wee, T. H. (2003). A multi-heuristic GA for schedule repair in precast plant production. Proceedings of the Thirteenth International Conference on Automated Planning and Scheduling, Trento, Italy, 236-245.
Chen, J.-H., Hsu, S.-C., Chen, C.-L., Tai, H.-W., & Wu, T.-H. (2020). Exploring the association rules of work activities for producing precast components. Automation in Construction, 111. https://doi.org/10.1016/j.autcon.2019.103059
Chen, J.-H., Yang, L.-R., & Tai, H.-W. (2016). Process reengineering and improvement for building precast production. Automation in Construction, 68, 249-258. https://doi.org/10.1016/j.autcon.2016.05.015
Chen, S., Feng, K., Lu, W., Wang, Y., Chen, X., & Wang, S. (2019). A Discrete Event Simulation-based analysis of precast concrete supply chain strategies considering suppliers; Production and Transportation Capabilities. In ICCREM 2019 (pp. 12-24). https://doi.org/doi:10.1061/9780784482308.002
Cossio, J. G., & Cossio, A. G. (2012, 2012/07/18). Application of just in time to the fabrication and installation of prefabricated concrete facades in buildings. 20th Annual Conference of the International Group for Lean Construction, San Diego, California, USA.
Dan, Y., Liu, G., & Fu, Y. (2021). Optimized flowshop scheduling for precast production considering process connection and blocking. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103575
Hirano, H. (1989). JIT Implementation Manual Volume 1.
Hu, H. (2011). A study of resource planning for precast production. Architectural Science Review, 50(2), 106-114. https://doi.org/10.3763/asre.2007.5016
Jiradamkerng, W. (2013). Evaluation of EZStrobe simulation system as a tool in productivity analysis - a case study: precast concrete hollow-core slab installation. Engineering Journal, 17(2), 75-84. https://doi.org/10.4186/ej.2013.17.2.75
Kim, T., Kim, Y.-w., & Cho, H. (2020). Dynamic production scheduling model under due date uncertainty in precast concrete construction. Journal of Cleaner Production, 257. https://doi.org/10.1016/j.jclepro.2020.120527
Ko, C.-H. (2010). An integrated framework for reducing precast fabrication inventory. Journal of Civil Engineering and Management, 16(3), 418-427. https://doi.org/10.3846/jcem.2010.48
Ko, C.-H. (2011). Production control in precast fabrication: considering demand variability in production schedules. Canadian Journal of Civil Engineering, 38(2), 191-199. https://doi.org/10.1139/l10-123
Ko, C.-H., & Chen, Y.-C. (2012). Evaluating production time buffer for precast fabrication. Journal of Engineering, Project, and Production Management, 2(2), 101.
Ko, C.-H., & Wang, S.-F. (2010). GA-based decision support systems for precast production planning. Automation in Construction, 19(7), 907-916. https://doi.org/10.1016/j.autcon.2010.06.004
Ko, C.-H., & Wang, S.-F. (2011). Precast production scheduling using multi-objective genetic algorithms. Expert Systems with Applications, 38(7), 8293-8302. https://doi.org/10.1016/j.eswa.2011.01.013
Kong, L., Li, H., Luo, H., Ding, L., & Zhang, X. (2018). Sustainable performance of just-in-time (JIT) management in time-dependent batch delivery scheduling of precast construction. Journal of Cleaner Production, 193, 684-701. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.05.037
Leu, S.-S., & Hwang, S.-T. (2002). GA-based resource-constrained flow-shop scheduling model for mixed precast production. Automation in Construction, 11(4), 439-452. https://doi.org/https://doi.org/10.1016/S0926-5805(01)00083-8
Li, X., Li, Z., & Wu, G. (2017). Lean precast production system based on the CONWIP method. KSCE Journal of Civil Engineering, 22(7), 2167-2177. https://doi.org/10.1007/s12205-017-2009-4
Liu, D., Li, X., Chen, J., & Jin, R. (2020). Real-Time optimization of precast concrete component transportation and storage. Advances in Civil Engineering, 2020, 1-18. https://doi.org/10.1155/2020/5714910
Liu, L. Y. (1995, 3-6 Dec. 1995). Simulating construction operations of precast-concrete parking structures. Winter Simulation Conference Proceedings, 1995.,
Luo, L., Jin, X., Shen, G. Q., Wang, Y., Liang, X., Li, X., & Li, C. Z. (2020). Supply chain management for prefabricated building projects in Hong Kong. Journal of Management in Engineering, 36(2). https://doi.org/10.1061/(asce)me.1943-5479.0000739
Lyu, Z., Lin, P., Guo, D., & Huang, G. Q. (2020). Towards zero-warehousing smart manufacturing from zero-inventory Just-In-Time production. Robotics and Computer-Integrated Manufacturing, 64. https://doi.org/10.1016/j.rcim.2020.101932
Masood, R., Lim, J. B. P., & González, V. A. (2021). Performance of the supply chains for New Zealand prefabricated house-building. Sustainable Cities and Society, 64. https://doi.org/10.1016/j.scs.2020.102537
Metham, M., & Benjaoran, V. (2018). Incentive contracts for road construction to reduce greenhouse gas emissions. Engineering Journal, 22(5), 105-122. https://doi.org/10.4186/ej.2018.22.5.105
Modak, N. M., Panda, S., & Sana, S. S. (2015). Optimal just-in-time buffer inventory for preventive maintenance with imperfect quality items. Tékhne, 13(2), 135-144. https://doi.org/10.1016/j.tekhne.2016.02.002
Pheng, L. S., & Chuan, C. J. (2001). Just-in-Time management of precast concrete components. 127(6), 494-501. https://doi.org/doi:10.1061/(ASCE)0733-9364(2001)127:6(494)
Pheng, L. S., & Hui, M. S. (1999). The application of JIT philosophy to construction: a case study in site layout. Construction Management and Economics, 17(5), 657-668. https://doi.org/10.1080/014461999371268
Si, T., Li, H. X., Hosseini, M. R., Ji, Y., & Liu, C. (2020). A solution to Just-in-Time delivery for off-site construction: a conceptual model. Construction Research Congress 2020: Computer Applications,
Singh, G., & Ahuja, I. S. (2012). Just-in-time manufacturing: literature review and directions. International Journal of Business Continuity and Risk Management, 3(1). https://doi.org/10.1504/ijbcrm.2012.045519
Terdpaopong, K., Puapradit, A., & Malisuwan, U. (2021). The effect of lean on the operational performance of medium-sized Thai manufacturing companies. Uncertain Supply Chain Management, 9(3), 647-658. https://doi.org/10.5267/j.uscm.2021.5.005
Wan, G., & Yen, B. P. C. (2009). Single machine scheduling to minimize total weighted earliness subject to minimal number of tardy jobs. European Journal of Operational Research, 195(1), 89-97. https://doi.org/10.1016/j.ejor.2008.01.029
Wang, Z., & Hu, H. (2017). Improved precast production–scheduling model considering the whole supply chain. Journal Of Computing In Civil Engineering, 31(4). https://doi.org/10.1061/(asce)cp.1943-5487.0000667
Wang, Z., & Hu, H. (2018). Dynamic response to demand variability for precast production rescheduling with multiple lines. International Journal of Production Research, 56(16), 5386-5401. https://doi.org/10.1080/00207543.2017.1414970
Wang, Z., Hu, H., & Gong, J. (2018a). Framework for modeling operational uncertainty to optimize offsite production scheduling of precast components. Automation in Construction, 86, 69-80. https://doi.org/10.1016/j.autcon.2017.10.026
Wang, Z., Hu, H., & Gong, J. (2018b). Simulation based multiple disturbances evaluation in the precast supply chain for improved disturbance prevention. Journal of Cleaner Production, 177, 232-244. https://doi.org/10.1016/j.jclepro.2017.12.188
Wang, Z., Liu, Y., Hu, H., & Dai, L. (2021). Hybrid rescheduling optimization model under disruptions in precast production considering real-world environment. Journal of Construction Engineering and Management, 147(4). https://doi.org/10.1061/(asce)co.1943-7862.0001976
Wang, Z., Wang, T., Hu, H., Gong, J., Ren, X., & Xiao, Q. (2020). Blockchain-based framework for improving supply chain traceability and information sharing in precast construction. Automation in Construction, 111. https://doi.org/10.1016/j.autcon.2019.103063
Wilujeng, S., Sarwoko, E., & Nikmah, F. (2022). Triple-A strategy: For supply chain performance of Indonesian SMEs. Uncertain Supply Chain Management, 10(1), 95-100. https://doi.org/10.5267/j.uscm.2021.10.007
Xiong, F., Chu, M., Li, Z., Du, Y., & Wang, L. (2021). Just-in-time scheduling for a distributed concrete precast flow shop system. Computers & Operations Research, 129. https://doi.org/10.1016/j.cor.2020.105204
Zhai, Y., Zhong, R. Y., & Huang, G. Q. (2015). Towards operational hedging for logistics uncertainty management in prefabrication construction. IFAC-PapersOnLine, 48(3), 1128-1133. https://doi.org/https://doi.org/10.1016/j.ifacol.2015.06.235
Zhang, H., & Yu, L. (2020). Dynamic transportation planning for prefabricated component supply chain. Engineering, Construction and Architectural Management, 27(9), 2553-2576. https://doi.org/10.1108/ecam-12-2019-0674
Zhou, H., Cheung, W., & Leung, L. C. (2009). Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm. European Journal of Operational Research, 194(3), 637-649. https://doi.org/10.1016/j.ejor.2007.10.063
Ahmadian, M. M., Salehipour, A., & Cheng, T. C. E. (2021). A meta-heuristic to solve the just-in-time job-shop scheduling problem. European Journal of Operational Research, 288(1), 14-29. https://doi.org/10.1016/j.ejor.2020.04.017
Akintoye, A. (1995). Just-in-Time application and implementation for building material management. Construction Management and Economics, 13(2), 105-113. https://doi.org/10.1080/01446199500000013
Al-Bazi, A., & Dawood, N. (2012). Simulation-based genetic algorithms for construction supply chain management: Off-site precast concrete production as a case study. OR Insight, 25(3), 165-184. https://doi.org/10.1057/ori.2012.7
Al-Bazi, A., & Dawood, N. (2017). Simulation-based optimisation using simulated annealing for crew allocation in the precast industry. Architectural Engineering and Design Management, 14(1-2), 109-126. https://doi.org/10.1080/17452007.2017.1313721
Anandh, K. S., Prasanna, K., Priya, M. G. S., & Simon, S. M. (2020). An industrial study of just in time (JIT) management in precast construction projects 1st International Conference on Mathematical Techniques and Applications: Icmta2020,
Anvari, B., Angeloudis, P., & Ochieng, W. Y. (2016). A multi-objective GA-based optimisation for holistic Manufacturing, transportation and Assembly of precast construction. Automation in Construction, 71, 226-241. https://doi.org/10.1016/j.autcon.2016.08.007
Baker, P. (2004). Aligning Distribution Center Operations to Supply Chain Strategy. The International Journal of Logistics Management, 15(1), 111-123. https://doi.org/10.1108/09574090410700266
Bamana, F., Lehoux, N., & Cloutier, C. (2019). Simulation of a construction project: assessing impact of Just-in-Time and lean principles. Journal of Construction Engineering and Management, 145(5), 05019005. https://doi.org/10.1061/(asce)co.1943-7862.0001654
Budianto, B., Surachman, S., Hadiwidjojo, D., & Rofiaty, R. (2021). The effect of manufacturing agility competencies on lean manufacturing in increasing operational performance. Uncertain Supply Chain Management, 9(1), 195-204. https://doi.org/10.5267/j.uscm.2020.10.001
Chan, W.-H., & Lu, M. (2005). Logistics and operations simulation in precast viaduct construction: case study. In Computing in Civil Engineering (2005) (pp. 1-12). https://doi.org/doi:10.1061/40794(179)130
Chan, W. T., & Wee, T. H. (2003). A multi-heuristic GA for schedule repair in precast plant production. Proceedings of the Thirteenth International Conference on Automated Planning and Scheduling, Trento, Italy, 236-245.
Chen, J.-H., Hsu, S.-C., Chen, C.-L., Tai, H.-W., & Wu, T.-H. (2020). Exploring the association rules of work activities for producing precast components. Automation in Construction, 111. https://doi.org/10.1016/j.autcon.2019.103059
Chen, J.-H., Yang, L.-R., & Tai, H.-W. (2016). Process reengineering and improvement for building precast production. Automation in Construction, 68, 249-258. https://doi.org/10.1016/j.autcon.2016.05.015
Chen, S., Feng, K., Lu, W., Wang, Y., Chen, X., & Wang, S. (2019). A Discrete Event Simulation-based analysis of precast concrete supply chain strategies considering suppliers; Production and Transportation Capabilities. In ICCREM 2019 (pp. 12-24). https://doi.org/doi:10.1061/9780784482308.002
Cossio, J. G., & Cossio, A. G. (2012, 2012/07/18). Application of just in time to the fabrication and installation of prefabricated concrete facades in buildings. 20th Annual Conference of the International Group for Lean Construction, San Diego, California, USA.
Dan, Y., Liu, G., & Fu, Y. (2021). Optimized flowshop scheduling for precast production considering process connection and blocking. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103575
Hirano, H. (1989). JIT Implementation Manual Volume 1.
Hu, H. (2011). A study of resource planning for precast production. Architectural Science Review, 50(2), 106-114. https://doi.org/10.3763/asre.2007.5016
Jiradamkerng, W. (2013). Evaluation of EZStrobe simulation system as a tool in productivity analysis - a case study: precast concrete hollow-core slab installation. Engineering Journal, 17(2), 75-84. https://doi.org/10.4186/ej.2013.17.2.75
Kim, T., Kim, Y.-w., & Cho, H. (2020). Dynamic production scheduling model under due date uncertainty in precast concrete construction. Journal of Cleaner Production, 257. https://doi.org/10.1016/j.jclepro.2020.120527
Ko, C.-H. (2010). An integrated framework for reducing precast fabrication inventory. Journal of Civil Engineering and Management, 16(3), 418-427. https://doi.org/10.3846/jcem.2010.48
Ko, C.-H. (2011). Production control in precast fabrication: considering demand variability in production schedules. Canadian Journal of Civil Engineering, 38(2), 191-199. https://doi.org/10.1139/l10-123
Ko, C.-H., & Chen, Y.-C. (2012). Evaluating production time buffer for precast fabrication. Journal of Engineering, Project, and Production Management, 2(2), 101.
Ko, C.-H., & Wang, S.-F. (2010). GA-based decision support systems for precast production planning. Automation in Construction, 19(7), 907-916. https://doi.org/10.1016/j.autcon.2010.06.004
Ko, C.-H., & Wang, S.-F. (2011). Precast production scheduling using multi-objective genetic algorithms. Expert Systems with Applications, 38(7), 8293-8302. https://doi.org/10.1016/j.eswa.2011.01.013
Kong, L., Li, H., Luo, H., Ding, L., & Zhang, X. (2018). Sustainable performance of just-in-time (JIT) management in time-dependent batch delivery scheduling of precast construction. Journal of Cleaner Production, 193, 684-701. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.05.037
Leu, S.-S., & Hwang, S.-T. (2002). GA-based resource-constrained flow-shop scheduling model for mixed precast production. Automation in Construction, 11(4), 439-452. https://doi.org/https://doi.org/10.1016/S0926-5805(01)00083-8
Li, X., Li, Z., & Wu, G. (2017). Lean precast production system based on the CONWIP method. KSCE Journal of Civil Engineering, 22(7), 2167-2177. https://doi.org/10.1007/s12205-017-2009-4
Liu, D., Li, X., Chen, J., & Jin, R. (2020). Real-Time optimization of precast concrete component transportation and storage. Advances in Civil Engineering, 2020, 1-18. https://doi.org/10.1155/2020/5714910
Liu, L. Y. (1995, 3-6 Dec. 1995). Simulating construction operations of precast-concrete parking structures. Winter Simulation Conference Proceedings, 1995.,
Luo, L., Jin, X., Shen, G. Q., Wang, Y., Liang, X., Li, X., & Li, C. Z. (2020). Supply chain management for prefabricated building projects in Hong Kong. Journal of Management in Engineering, 36(2). https://doi.org/10.1061/(asce)me.1943-5479.0000739
Lyu, Z., Lin, P., Guo, D., & Huang, G. Q. (2020). Towards zero-warehousing smart manufacturing from zero-inventory Just-In-Time production. Robotics and Computer-Integrated Manufacturing, 64. https://doi.org/10.1016/j.rcim.2020.101932
Masood, R., Lim, J. B. P., & González, V. A. (2021). Performance of the supply chains for New Zealand prefabricated house-building. Sustainable Cities and Society, 64. https://doi.org/10.1016/j.scs.2020.102537
Metham, M., & Benjaoran, V. (2018). Incentive contracts for road construction to reduce greenhouse gas emissions. Engineering Journal, 22(5), 105-122. https://doi.org/10.4186/ej.2018.22.5.105
Modak, N. M., Panda, S., & Sana, S. S. (2015). Optimal just-in-time buffer inventory for preventive maintenance with imperfect quality items. Tékhne, 13(2), 135-144. https://doi.org/10.1016/j.tekhne.2016.02.002
Pheng, L. S., & Chuan, C. J. (2001). Just-in-Time management of precast concrete components. 127(6), 494-501. https://doi.org/doi:10.1061/(ASCE)0733-9364(2001)127:6(494)
Pheng, L. S., & Hui, M. S. (1999). The application of JIT philosophy to construction: a case study in site layout. Construction Management and Economics, 17(5), 657-668. https://doi.org/10.1080/014461999371268
Si, T., Li, H. X., Hosseini, M. R., Ji, Y., & Liu, C. (2020). A solution to Just-in-Time delivery for off-site construction: a conceptual model. Construction Research Congress 2020: Computer Applications,
Singh, G., & Ahuja, I. S. (2012). Just-in-time manufacturing: literature review and directions. International Journal of Business Continuity and Risk Management, 3(1). https://doi.org/10.1504/ijbcrm.2012.045519
Terdpaopong, K., Puapradit, A., & Malisuwan, U. (2021). The effect of lean on the operational performance of medium-sized Thai manufacturing companies. Uncertain Supply Chain Management, 9(3), 647-658. https://doi.org/10.5267/j.uscm.2021.5.005
Wan, G., & Yen, B. P. C. (2009). Single machine scheduling to minimize total weighted earliness subject to minimal number of tardy jobs. European Journal of Operational Research, 195(1), 89-97. https://doi.org/10.1016/j.ejor.2008.01.029
Wang, Z., & Hu, H. (2017). Improved precast production–scheduling model considering the whole supply chain. Journal Of Computing In Civil Engineering, 31(4). https://doi.org/10.1061/(asce)cp.1943-5487.0000667
Wang, Z., & Hu, H. (2018). Dynamic response to demand variability for precast production rescheduling with multiple lines. International Journal of Production Research, 56(16), 5386-5401. https://doi.org/10.1080/00207543.2017.1414970
Wang, Z., Hu, H., & Gong, J. (2018a). Framework for modeling operational uncertainty to optimize offsite production scheduling of precast components. Automation in Construction, 86, 69-80. https://doi.org/10.1016/j.autcon.2017.10.026
Wang, Z., Hu, H., & Gong, J. (2018b). Simulation based multiple disturbances evaluation in the precast supply chain for improved disturbance prevention. Journal of Cleaner Production, 177, 232-244. https://doi.org/10.1016/j.jclepro.2017.12.188
Wang, Z., Liu, Y., Hu, H., & Dai, L. (2021). Hybrid rescheduling optimization model under disruptions in precast production considering real-world environment. Journal of Construction Engineering and Management, 147(4). https://doi.org/10.1061/(asce)co.1943-7862.0001976
Wang, Z., Wang, T., Hu, H., Gong, J., Ren, X., & Xiao, Q. (2020). Blockchain-based framework for improving supply chain traceability and information sharing in precast construction. Automation in Construction, 111. https://doi.org/10.1016/j.autcon.2019.103063
Wilujeng, S., Sarwoko, E., & Nikmah, F. (2022). Triple-A strategy: For supply chain performance of Indonesian SMEs. Uncertain Supply Chain Management, 10(1), 95-100. https://doi.org/10.5267/j.uscm.2021.10.007
Xiong, F., Chu, M., Li, Z., Du, Y., & Wang, L. (2021). Just-in-time scheduling for a distributed concrete precast flow shop system. Computers & Operations Research, 129. https://doi.org/10.1016/j.cor.2020.105204
Zhai, Y., Zhong, R. Y., & Huang, G. Q. (2015). Towards operational hedging for logistics uncertainty management in prefabrication construction. IFAC-PapersOnLine, 48(3), 1128-1133. https://doi.org/https://doi.org/10.1016/j.ifacol.2015.06.235
Zhang, H., & Yu, L. (2020). Dynamic transportation planning for prefabricated component supply chain. Engineering, Construction and Architectural Management, 27(9), 2553-2576. https://doi.org/10.1108/ecam-12-2019-0674
Zhou, H., Cheung, W., & Leung, L. C. (2009). Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm. European Journal of Operational Research, 194(3), 637-649. https://doi.org/10.1016/j.ejor.2007.10.063