How to cite this paper
Yadav, R., Pareek, S., Mittal, M & Mehta, S. (2018). Effects of imperfect quality items in the asymmetric information structure in supply chain model.Uncertain Supply Chain Management, 6(3), 287-298.
Refrences
Abad, P. L. (1994). Supplier pricing and lot sizing when demand is price sensitive. European Journal of Operational Research, 78(3), 334–354.
Abad, P. L. & Jaggi, C.K. (2003).Joint approach for setting unit price and the length of the credit period for a seller when end demand is price sensitive. International Journal of Production Economics, 83(2), 115–122.
Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: theory and algorithms. John Wiley & Sons.
Cárdenas-Barrón, L.E. (2000) Observation on: economic production quantity model for items with imperfect quality. International journal of Production Economics, 67(2), 201.
Chan, C. K., & Kingsman, B. G. (2007). Coordination in a single-vendor multi-buyer supply chain by synchronizing delivery and production cycles. Transportation Research Part E: Logistics and Transportation Review, 43(2), 90-111.
Chiang, C.W., Fitzsimmons, J., Huang, Z. & Li, Susan X. (1994). A game theoretic approach to quantity discount problem. Decision Sciences, 25(1),153–168.
Corbett, C.J., & de Groote, X. (2000). A supplier’s optimal quantity discount policy under asymmetric information. Management Science, 46(3), 444–450
Dai, T., & Qi, X. (2007). An acquisition policy for a multi-supplier system with a finite-time horizon. Computers & operations research, 34(9), 2758-2773.
Esmaeili, M., Aryanezhad, M. B., & Zeephongsekul, P. (2009). A game theory approach in seller–buyer supply chain. European Journal of Operational Research, 195(2), 442-448.
Esmaeili, M., & Zeephongsekul, P. (2010). Seller–buyer models of supply chain management with an asymmetric information structure. International Journal of Production Economics, 123(1), 146-154.
Freeland, J. R. (1980). Coordination strategies for production and marketing in a functionally decentralized firm. AIIE Transactions, 12(2), 126-132.
Cachon, G. P., & Lariviere, M. A. (2005). Supply chain coordination with revenue-sharing contracts: strengths and limitations. Management science, 51(1), 30-44.
Goyal, S. K., & Cárdenas-Barrón, L. E. (2002). Note on: economic production quantity model for items with imperfect quality–a practical approach. International Journal of Production Economics, 77(1), 85-87.
Harsanyi, J. (1967) Games with incomplete information played by ‘Bayesian’ players. Part I.The basic model. Management Science, 14(3), 159–189.
Harsanyi, J. (1968a) Games with incomplete information played by ‘Bayesian’ players. Part II. Bayesian equilibrium points. Management Science, 14(5), 320–334
Harsanyi, J. (1968b) Games with incomplete information played by‘Bayesian’ players. Part III. The basic probability distribution of the game. Management Science, 14(7), 486-502.
Van den Heuvel, W., Borm, P., & Hamers, H. (2007). Economic lot-sizing games. European Journal of Operational Research, 176(2), 1117-1130.
Jaggi, C.K., Goel, S.K., & Mittal, M. (2013). Credit financing in economic ordering policies for defective items with allowable shortages. Applied Mathematics and Computation, 219(10), 5268-5282.
Jung, H., & Klein, C. M. (2005). Optimal inventory policies for an economic order quantity model with decreasing cost functions. European Journal of Operational Research, 165(1), 108-126.
Jung, H., & Klein, C. M. (2001). Optimal inventory policies under decreasing cost functions via geometric programming. European Journal of Operational Research, 132(3), 628-642.
Lau, A. H. L., & Lau, H. S. (2005). Some two-echelon supply-chain games: Improving from deterministic-symmetric-information to stochastic-asymmetric-information models. European Journal of Operational Research, 161(1), 203-223.
Lau, A. H. L., Lau, H. S., & Zhou, Y. W. (2007). A stochastic and asymmetric-information framework for a dominant-manufacturer supply chain. European Journal of Operational Research, 176(1), 295-316.
Lee, W. J. (1993). Determining order quantity and selling price by geometric programming: optimal solution, bounds, and sensitivity. Decision Sciences, 24(1), 76-87.
Lee, W. J., & Kim, D. (1993). Optimal and heuristic decision strategies for integrated production and marketing planning. Decision Sciences, 24(6), 1203-1214.
Kim, D., & Lee, W. J. (1998). Optimal coordination strategies for production and marketing decisions. Operations Research Letters, 22(1), 41-47.
Lee, W. J., Kim, D., & Cabot, A. V. (1996). Optimal demand rate, lot sizing, and process reliability improvement decisions. IIE transactions, 28(11), 941-952.
Maddah, B., & Jaber, M. Y. (2008). Economic order quantity for items with imperfect quality: revisited. International Journal of Production Economics, 112(2), 808-815.
Papachristos, S., & Konstantaras, I. (2006). Economic ordering quantity models for items with imperfect quality. International Journal of Production Economics, 100(1), 148-154.
Reyes, P. M. (2005). A mathematical example of the two-echelon inventory model with asymmetric market information. Applied Mathematics and Computation, 162(1), 257-264.
Sadjadi, S. J., Oroujee, M., & Aryanezhad, M. B. (2005). Optimal production and marketing planning. Computational Optimization and Applications, 30(2), 195-203.
Salameh, M. K., & Jaber, M. Y. (2000). Economic production quantity model for items with imperfect quality. International journal of production economics, 64(1), 59-64.
Sarmah, S. P., Acharya, D., & Goyal, S. K. (2006). Buyer vendor coordination models in supply chain management. European journal of operational research, 175(1), 1-15.
Schwaller, R. L. (1988). EOQ under inspection costs. Production and Inventory Management Journal, 29(3), 22.
Sucky, E. (2005). Inventory management in supply chains: A bargaining problem. International Journal of Production Economics, 93, 253-262.
Sucky, E. (2006). A bargaining model with asymmetric information for a single supplier–single buyer problem. European Journal of Operational Research, 171(2), 516-535.
Weng, Z. K. (1995). Channel coordination and quantity discounts. Management science, 41(9), 1509-1522.
Zhang, X., & Zeephongsekul, P. (2013). Asymmetric information supply chain models with credit option. Industrial Engineering and Management Systems, 12(3), 264-273.
Abad, P. L. & Jaggi, C.K. (2003).Joint approach for setting unit price and the length of the credit period for a seller when end demand is price sensitive. International Journal of Production Economics, 83(2), 115–122.
Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: theory and algorithms. John Wiley & Sons.
Cárdenas-Barrón, L.E. (2000) Observation on: economic production quantity model for items with imperfect quality. International journal of Production Economics, 67(2), 201.
Chan, C. K., & Kingsman, B. G. (2007). Coordination in a single-vendor multi-buyer supply chain by synchronizing delivery and production cycles. Transportation Research Part E: Logistics and Transportation Review, 43(2), 90-111.
Chiang, C.W., Fitzsimmons, J., Huang, Z. & Li, Susan X. (1994). A game theoretic approach to quantity discount problem. Decision Sciences, 25(1),153–168.
Corbett, C.J., & de Groote, X. (2000). A supplier’s optimal quantity discount policy under asymmetric information. Management Science, 46(3), 444–450
Dai, T., & Qi, X. (2007). An acquisition policy for a multi-supplier system with a finite-time horizon. Computers & operations research, 34(9), 2758-2773.
Esmaeili, M., Aryanezhad, M. B., & Zeephongsekul, P. (2009). A game theory approach in seller–buyer supply chain. European Journal of Operational Research, 195(2), 442-448.
Esmaeili, M., & Zeephongsekul, P. (2010). Seller–buyer models of supply chain management with an asymmetric information structure. International Journal of Production Economics, 123(1), 146-154.
Freeland, J. R. (1980). Coordination strategies for production and marketing in a functionally decentralized firm. AIIE Transactions, 12(2), 126-132.
Cachon, G. P., & Lariviere, M. A. (2005). Supply chain coordination with revenue-sharing contracts: strengths and limitations. Management science, 51(1), 30-44.
Goyal, S. K., & Cárdenas-Barrón, L. E. (2002). Note on: economic production quantity model for items with imperfect quality–a practical approach. International Journal of Production Economics, 77(1), 85-87.
Harsanyi, J. (1967) Games with incomplete information played by ‘Bayesian’ players. Part I.The basic model. Management Science, 14(3), 159–189.
Harsanyi, J. (1968a) Games with incomplete information played by ‘Bayesian’ players. Part II. Bayesian equilibrium points. Management Science, 14(5), 320–334
Harsanyi, J. (1968b) Games with incomplete information played by‘Bayesian’ players. Part III. The basic probability distribution of the game. Management Science, 14(7), 486-502.
Van den Heuvel, W., Borm, P., & Hamers, H. (2007). Economic lot-sizing games. European Journal of Operational Research, 176(2), 1117-1130.
Jaggi, C.K., Goel, S.K., & Mittal, M. (2013). Credit financing in economic ordering policies for defective items with allowable shortages. Applied Mathematics and Computation, 219(10), 5268-5282.
Jung, H., & Klein, C. M. (2005). Optimal inventory policies for an economic order quantity model with decreasing cost functions. European Journal of Operational Research, 165(1), 108-126.
Jung, H., & Klein, C. M. (2001). Optimal inventory policies under decreasing cost functions via geometric programming. European Journal of Operational Research, 132(3), 628-642.
Lau, A. H. L., & Lau, H. S. (2005). Some two-echelon supply-chain games: Improving from deterministic-symmetric-information to stochastic-asymmetric-information models. European Journal of Operational Research, 161(1), 203-223.
Lau, A. H. L., Lau, H. S., & Zhou, Y. W. (2007). A stochastic and asymmetric-information framework for a dominant-manufacturer supply chain. European Journal of Operational Research, 176(1), 295-316.
Lee, W. J. (1993). Determining order quantity and selling price by geometric programming: optimal solution, bounds, and sensitivity. Decision Sciences, 24(1), 76-87.
Lee, W. J., & Kim, D. (1993). Optimal and heuristic decision strategies for integrated production and marketing planning. Decision Sciences, 24(6), 1203-1214.
Kim, D., & Lee, W. J. (1998). Optimal coordination strategies for production and marketing decisions. Operations Research Letters, 22(1), 41-47.
Lee, W. J., Kim, D., & Cabot, A. V. (1996). Optimal demand rate, lot sizing, and process reliability improvement decisions. IIE transactions, 28(11), 941-952.
Maddah, B., & Jaber, M. Y. (2008). Economic order quantity for items with imperfect quality: revisited. International Journal of Production Economics, 112(2), 808-815.
Papachristos, S., & Konstantaras, I. (2006). Economic ordering quantity models for items with imperfect quality. International Journal of Production Economics, 100(1), 148-154.
Reyes, P. M. (2005). A mathematical example of the two-echelon inventory model with asymmetric market information. Applied Mathematics and Computation, 162(1), 257-264.
Sadjadi, S. J., Oroujee, M., & Aryanezhad, M. B. (2005). Optimal production and marketing planning. Computational Optimization and Applications, 30(2), 195-203.
Salameh, M. K., & Jaber, M. Y. (2000). Economic production quantity model for items with imperfect quality. International journal of production economics, 64(1), 59-64.
Sarmah, S. P., Acharya, D., & Goyal, S. K. (2006). Buyer vendor coordination models in supply chain management. European journal of operational research, 175(1), 1-15.
Schwaller, R. L. (1988). EOQ under inspection costs. Production and Inventory Management Journal, 29(3), 22.
Sucky, E. (2005). Inventory management in supply chains: A bargaining problem. International Journal of Production Economics, 93, 253-262.
Sucky, E. (2006). A bargaining model with asymmetric information for a single supplier–single buyer problem. European Journal of Operational Research, 171(2), 516-535.
Weng, Z. K. (1995). Channel coordination and quantity discounts. Management science, 41(9), 1509-1522.
Zhang, X., & Zeephongsekul, P. (2013). Asymmetric information supply chain models with credit option. Industrial Engineering and Management Systems, 12(3), 264-273.