How to cite this paper
Zabihi, A & Gharakhani, M. (2018). A literature survey of HUB location problems and methods with emphasis on the marine transportations.Uncertain Supply Chain Management, 6(1), 91-116.
Refrences
Abdinnour-Helm, S., & Venkataramanan, M. (1998). Solution approaches to hub location problems. Annals of Operations Research, 78, 31-50.
Adibi, A., & Razmi, J. (2015). 2-Stage stochastic programming approach for hub location problem under uncertainty: A case study of air network of Iran. Journal of Air Transport Management, 47, 172-178.
Ahmadi, T., Karimi, H., Davoudpour, H., & Hosseinijou, S. A. (2015). A robust decision-making approach for p-hub median location problems based on two-stage stochastic programming and mean-variance theory: a real case study. The International Journal of Advanced Manufacturing Technology, 77(9-12), 1943-1953.
Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European Journal of Operational Research, 190(1), 1-21.
Alumur, S. A., Nickel, S., Saldanha-da-Gama, F., & Seçerdin, Y. (2015). Multi-period hub network design problems with modular capacities. Annals of Operations Research, 1-24.
An, Y., Zhang, Y., & Zeng, B. (2015). The reliable hub-and-spoke design problem: Models and algorithms. Transportation Research Part B: Methodological, 77, 103-122.
Aros-Vera, F., Marianov, V., & Mitchell, J. E. (2013). p-Hub approach for the optimal park-and-ride facility location problem. European Journal of Operational Research, 226(2), 277-285.
Asgari, N., Farahani, R. Z., & Goh, M. (2013). Network design approach for hub ports-shipping companies competition and cooperation. Transportation Research Part A: Policy and Practice, 48, 1-18.
Azizi, N., Chauhan, S., Salhi, S., & Vidyarthi, N. (2016). The impact of hub failure in hub-and-spoke networks: Mathematical formulations and solution techniques. Computers & Operations Research, 65, 174-188.
Bashiri, M., Mirzaei, M., & Randall, M. (2013). Modeling fuzzy capacitated p-hub center problem and a genetic algorithm solution. Applied Mathematical Modelling, 37(5), 3513-3525.
Boukani, F. H., Moghaddam, B. F., & Pishvaee, M. S. (2014). Robust optimization approach to capacitated single and multiple allocation hub location problems. Computational and Applied Mathematics, 1-16.
Bray, S., Caggiani, L., & Ottomanelli, M. (2015). Measuring transport systems efficiency under uncertainty by fuzzy sets theory based Data Envelopment Analysis: theoretical and practical comparison with traditional DEA model. Transportation Research Procedia, 5, 186-200.
Brimberg, J., Mladenović, N., Todosijević, R., & Urošević, D. (2015). General variable neighborhood search for the uncapacitated single allocation p-hub center problem. Optimization Letters, 1-12.
Campbell, A. M., Lowe, T. J., & Zhang, L. (2007). The p-hub center allocation problem. European journal of operational research, 176(2), 819-835.
Campbell, J. F. (1991). Hub location problems and the p-hub median problem. University of Missouri – St. Louis: Center for Business and Industrial Studies.
Campbell, J. F. (1994). Integer programming formulations of discrete hub location problems. European Journal of Operational Research, 72(2), 387-405.
Campbell, J. F. (2009). Hub location for time definite transportation. Computers & Operations Research, 36(12), 3107-3116.
Campbell, J. F. (2013). Modeling economies of scale in transportation hub networks. Paper presented at the System Sciences (HICSS), 2013 46th Hawaii International Conference on.
Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2002). Hub location problems. Facility Location: Applications and Theory, 1, 373-407.
Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2005a). Hub arc location problems: part I—introduction and results. Management Science, 51(10), 1540-1555.
Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2005b). Hub arc location problems: part II—formulations and optimal algorithms. Management Science, 51(10), 1556-1571.
Campbell, J. F., & O'Kelly, M. E. (2012). Twenty-five years of hub location research. Transportation Science, 46(2), 153-169.
Carello, G., Della Croce, F., Ghirardi, M., & Tadei, R. (2004). Solving the hub location problem in telecommunication network design: A local search approach. Networks, 44(2), 94-105.
Çiftçi, M. E., & Şevkli, M. (2015). A new hub and spoke system proposal: A case study for Turkey's aviation industry. Journal of Air Transport Management, 47, 190-198.
Corberán, Á., Peiró, J., Campos, V., Glover, F., & Martí, R. (2016). Strategic oscillation for the capacitated hub location problem with modular links. Journal of Heuristics, 22(2), 221-244.
Correia, I., Nickel, S., & Saldanha-da-Gama, F. (2014). Multi-product capacitated single-allocation hub location problems: formulations and inequalities. Networks and Spatial Economics, 14(1), 1-25.
Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton landmarks in mathematics and physics: Princeton University Press, Princeton.
Daskin, M. S. (1995). Network and Discrete Location Wiley. Northwestern University.
Davari, S., Zarandi, M. F., & Turksen, I. (2013). The incomplete hub-covering location problem considering imprecise location of demands. Scientia Iranica, 20(3), 983-991.
de Camargo, R. S., de Miranda, G., & Løkketangen, A. (2013). A new formulation and an exact approach for the many-to-many hub location-routing problem. Applied Mathematical Modelling, 37(12), 7465-7480.
de Sá, E. M., Contreras, I., & Cordeau, J.-F. (2015). Exact and heuristic algorithms for the design of hub networks with multiple lines. European Journal of Operational Research, 246(1), 186-198.
de Sá, E. M., de Camargo, R. S., & de Miranda, G. (2013). An improved Benders decomposition algorithm for the tree of hubs location problem. European Journal of Operational Research, 226(2), 185-202.
Drezner, Z., & Hamacher, H. W. (2001). Facility location: applications and theory: Springer Science & Business Media.
Ebery, J., Krishnamoorthy, M., Ernst, A., & Boland, N. (2000). The capacitated multiple allocation hub location problem: Formulations and algorithms. European Journal of Operational Research, 120(3), 614-631.
Ebrahimi-Zade, A., Hosseini-Nasab, H., & Zahmatkesh, A. (2016). Multi-period hub set covering problems with flexible radius: A modified genetic solution. Applied Mathematical Modelling, 40(4), 2968-2982.
Eghbali, M., Abedzadeh, M., & Setak, M. (2014). Multi-objective reliable hub covering location considering customer convenience using NSGA-II. International Journal of System Assurance Engineering and Management, 5(3), 450-460.
Ernst, A. T., Hamacher, H., Jiang, H., Krishnamoorthy, M., & Woeginger, G. (2009). Uncapacitated single and multiple allocation p-hub center problems. Computers & Operations Research, 36(7), 2230-2241.
Ernst, A. T., & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Science, 4(3), 139-154.
Estrada-Romeu, M., & Robusté, F. (2015). Stopover and hub-and-spoke shipment strategies in less-than-truckload carriers. Transportation Research Part E: Logistics and Transportation Review, 76, 108-121.
Fang, C.-h., Li, S.-x., & Wu, Y.-f. (2016). Multiple Allocation Hub Location Problem with Flow-Dependent Set-up Cost. Paper presented at the Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation.
Farahani, R. Z., & Hekmatfar, M. (2009). Facility location: concepts, models, algorithms and case studies: Springer-Verlag Berlin Heidelberg.
Gelareh, S., Maculan, N., Mahey, P., & Monemi, R. (2013). Hub-and-spoke network design and fleet deployment for string planning of liner shipping. Applied Mathematical Modelling, 37(5), 3307-3321.
Gelareh, S., Monemi, R. N., Mahey, P., Maculan, N., & Pisinger, D. (2013). Single string planning problem arising in liner shipping industries: A heuristic approach. Computers & Operations Research, 40(10), 2357-2373.
Gelareh, S., Monemi, R. N., & Nickel, S. (2015). Multi-period hub location problems in transportation. Transportation Research Part E: Logistics and Transportation Review, 75, 67-94.
Gelareh, S., & Nickel, S. (2008). A benders decomposition for hub location problems arising in public transport Operations Research Proceedings 2007 (pp. 129-134): Springer.
Gelareh, S., & Nickel, S. (2011). Hub location problems in transportation networks. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1092-1111.
Gelareh, S., Nickel, S., & Pisinger, D. (2010). Liner shipping hub network design in a competitive environment. Transportation Research Part E: Logistics and Transportation Review, 46(6), 991-1004.
Ghaderi, A., & Rahmaniani, R. (2015). Meta-heuristic solution approaches for robust single allocation p-hub median problem with stochastic demands and travel times. The International Journal of Advanced Manufacturing Technology, 1-21.
Ghaffari-Nasab, N., Ghazanfari, M., & Teimoury, E. (2015a). Hub-and-spoke logistics network design for third party logistics service providers. International Journal of Management Science and Engineering Management, 1-13.
Ghaffari-Nasab, N., Ghazanfari, M., & Teimoury, E. (2015b). Robust optimization approach to the design of hub-and-spoke networks. The International Journal of Advanced Manufacturing Technology, 76(5-8), 1091-1110.
Ghodratnama, A., Tavakkoli-Moghaddam, R., & Azaron, A. (2013). A fuzzy possibilistic bi-objective hub covering problem considering production facilities, time horizons and transporter vehicles. The International Journal of Advanced Manufacturing Technology, 66(1-4), 187-206.
Ghodratnama, A., Tavakkoli-Moghaddam, R., & Azaron, A. (2015). Robust and fuzzy goal programming optimization approaches for a novel multi-objective hub location-allocation problem: A supply chain overview. Applied Soft Computing, 37, 255-276.
Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations research, 12(3), 450-459.
Hakimi, S. L. (1965). Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Operations Research, 13(3), 462-475.
He, S. Y., Kuo, Y.-H., & Wu, D. (2016). Incorporating institutional and spatial factors in the selection of the optimal locations of public electric vehicle charging facilities: A case study of Beijing, China. Transportation Research Part C: Emerging Technologies, 67, 131-148.
He, Y., Wu, T., Zhang, C., & Liang, Z. (2015). An improved MIP heuristic for the intermodal hub location problem. Omega, 57, 203-211.
Hosapujari, A. B., & Verma, A. (2013). Development of a Hub and Spoke Model for Bus Transit Route Network Design. Procedia-Social and Behavioral Sciences, 104, 835-844.
Hult, E., Jiang, H., & Ralph, D. (2014). Exact computational approaches to a stochastic uncapacitated single allocation p-hub center problem. Computational Optimization and Applications, 59(1-2), 185-200.
Jiang, X., Lee, L. H., Chew, E. P., Han, Y., & Tan, K. C. (2012). A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port. European Journal of Operational Research, 221(1), 64-73.
Kara, B., & Tansel, B. (2003). The single-assignment hub covering problem: Models and linearizations. Journal of the Operational Research Society, 54(1), 59-64.
Karimi, H., & Setak, M. (2014). Proprietor and customer costs in the incomplete hub location-routing network topology. Applied Mathematical Modelling, 38(3), 1011-1023.
Kim, J.-G., & Tcha, D.-W. (1992). Optimal design of a two-level hierarchical network with tree-star configuration. Computers & Industrial Engineering, 22(3), 273-281.
Klincewicz, J. G. (1998). Hub location in backbone/tributary network design: a review. Location Science, 6(1), 307-335.
Klincewicz, J. G. (1998). Hub location in backbone/tributary network design: a review. Location Science, 6(1–4), 307-335. doi:http://dx.doi.org/10.1016/S0966-8349(98)00042-4
Krishnamoorthy, M., Mills, G., & Sier, D. (1994). Strategic configuration of the mail processing network: location–allocation modeling-stage 1 CSIRO Technical Report DMS-C94/9: Division of Mathematics and Statistics Australia.
Lee, Y., Lim, B. H., & Park, J. S. (1996). A hub location problem in designing digital data service networks: Lagrangian relaxation approach. Location Science, 4(3), 185-194.
Liang, H. (2013). The hardness and approximation of the star p-hub center problem. Operations Research Letters, 41(2), 138-141.
Lin, C.-C., & Lin, S.-W. (2016). Two-stage approach to the intermodal terminal location problem. Computers & Operations Research, 67, 113-119.
Lin, J.-R., Yang, T.-H., & Chang, Y.-C. (2013). A hub location inventory model for bicycle sharing system design: Formulation and solution. Computers & Industrial Engineering, 65(1), 77-86.
Lopes, M. C., de Queiroz, T. A., de Andrade, C. E., & Miyazawa, F. (2015). Solving a Variant of the Hub Location-Routing Problem LISS 2014 (pp. 395-400): Springer.
Lüer-Villagra, A., & Marianov, V. (2013). A competitive hub location and pricing problem. European Journal of Operational Research, 231(3), 734-744.
Lumsden, K., Dallari, F., & Ruggeri, R. (1999). Improving the efficiency of the hub and spoke system for the SKF European distribution network. International Journal of Physical Distribution & Logistics Management, 29(1), 50-66.
Mahmutogullari, A. I., & Kara, B. Y. (2016). Hub location under competition. European Journal of Operational Research, 250(1), 214-225.
Marić, M., Stanimirović, Z., & Stanojević, P. (2013). An efficient memetic algorithm for the uncapacitated single allocation hub location problem. Soft Computing, 17(3), 445-466.
Martí, R., Corberán, Á., & Peiró, J. (2015). Scatter search for an uncapacitated p-hub median problem. Computers & Operations Research, 58, 53-66.
Martins de Sá, E., Contreras, I., Cordeau, J.-F., Saraiva de Camargo, R., & de Miranda, G. (2015). The hub line location problem. Transportation Science, 49(3), 500-518.
Meier, J. F., & Clausen, U. (2015). Some Numerical Studies for a Complicated Hub Location Problem Quantitative Approaches in Logistics and Supply Chain Management (pp. 33-43): Springer.
Meng, Q., & Wang, X. (2011). Intermodal hub-and-spoke network design: incorporating multiple stakeholders and multi-type containers. Transportation Research Part B: Methodological, 45(4), 724-742.
Meraklı, M., & Yaman, H. (2016). Robust intermodal hub location under polyhedral demand uncertainty. Transportation Research Part B: Methodological, 86, 66-85.
Mohammadi, M., Jolai, F., & Tavakkoli-Moghaddam, R. (2013). Solving a new stochastic multi-mode p-hub covering location problem considering risk by a novel multi-objective algorithm. Applied Mathematical Modelling, 37(24), 10053-10073.
Mohammadi, M., Torabi, S., & Tavakkoli-Moghaddam, R. (2014). Sustainable hub location under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 62, 89-115.
Mokhtari, N., & Abbasi, M. (2014). Applying VNPSO Algorithm to Solve the Many-to-Many Hub Location-Routing Problem in a Large scale. European Online Journal of Natural and Social Sciences, 3(4 (s)), 647.
Nickel, S., Schöbel, A., & Sonneborn, T. (2001). Hub location problems in urban traffic networks Mathematical methods on optimization in transportation systems (pp. 95-107): Springer.
Nikokalam-Mozafar, S. H., Ashjari, B., Tavakkoli-Moghaddam, R., Omidvar, A., & Zhou, Z. (2014). Solving a multi-objective chance-constrained hub covering location problem by discrete invasive weed optimization. Cogent Engineering, 1(1), 991526.
O'Kelly, M. E. (1986a). Activity levels at hub facilities in interacting networks. Geographical Analysis, 18(4), 343-356.
O'kelly, M. E. (1986b). The location of interacting hub facilities. Transportation Science, 20(2), 92-106.
O'kelly, M. E. (1987). A quadratic integer program for the location of interacting hub facilities. European Journal of Operational Research, 32(3), 393-404.
O’Kelly, M. E. (2015). Network hub structure and resilience. Networks and Spatial Economics, 15(2), 235-251.
O’Kelly, M. E., Luna, H. P. L., De Camargo, R. S., & de Miranda Jr, G. (2015). Hub location problems with price sensitive demands. Networks and Spatial Economics, 15(4), 917-945.
Parvaresh, F., Husseini, S. M., Golpayegany, S. H., & Karimi, B. (2014). Hub network design problem in the presence of disruptions. Journal of Intelligent Manufacturing, 25(4), 755-774.
Pasandideh, S. H. R., Niaki, S. T. A., & Sheikhi, M. (2015). A bi-objective hub maximal covering location problem considering time-dependent reliability and the second type of coverage. International Journal of Management Science and Engineering Management, 1-8.
Peiró, J., Corberán, Á., & Martí, R. (2014). GRASP for the uncapacitated r-allocation p-hub median problem. Computers & Operations Research, 43, 50-60.
Peker, M., & Kara, B. Y. (2015). The P-Hub maximal covering problem and extensions for gradual decay functions. Omega, 54, 158-172.
Plum, C. E., Pisinger, D., & Sigurd, M. M. (2014). A service flow model for the liner shipping network design problem. European Journal of operational research, 235(2), 378-386.
Puerto, J., Ramos, A., & Rodríguez-Chía, A. M. (2013). A specialized branch & bound & cut for Single-Allocation Ordered Median Hub Location problems. Discrete Applied Mathematics, 161(16), 2624-2646.
Puerto, J., Ramos, A., Rodríguez-Chía, A. M., & Sanchez-Gil, M. (2015). Ordered median hub location problems with capacity constraints. Transportation Research Part C: Emerging Technologies.
Qin, Z., & Gao, Y. (2014). Uncapacitated p-hub location problem with fixed costs and uncertain flows. Journal of Intelligent Manufacturing, 1-12.
Rabbani, M., & Kazemi, S. (2015). Solving uncapacitated multiple allocation p-hub center problem by Dijkstra’s algorithm-based genetic algorithm and simulated annealing. International Journal of Industrial Engineering Computations, 6(3), 405-418.
Rahimi, Y., Tavakkoli-Moghaddam, R., Mohammadi, M., & Sadeghi, M. (2016). Multi-objective hub network design under uncertainty considering congestion: An M/M/c/K queue system. Applied Mathematical Modelling, 40(5), 4179-4198.
Rahmani, Y., Ramdane Cherif-Khettaf, W., & Oulamara, A. (2016). The two-echelon multi-products location-routing problem with pickup and delivery: formulation and heuristic approaches. International Journal of Production Research, 54(4), 999-1019.
Rastani, S., Setak, M., & Karimi, H. (2015). Capacity selection for hubs and hub links in hub location problems. International Journal of Management Science and Engineering Management, 1-11.
Rieck, J., Ehrenberg, C., & Zimmermann, J. (2014). Many-to-many location-routing with inter-hub transport and multi-commodity pickup-and-delivery. European journal of operational research, 236(3), 863-878.
Rodríguez-Martín, I., Salazar-González, J.-J., & Yaman, H. (2014). A branch-and-cut algorithm for the hub location and routing problem. Computers & Operations Research, 50, 161-174.
Saberi, M., & Mahmassani, H. S. (2013). Modeling the airline hub location and optimal market problems with continuous approximation techniques. Journal of Transport Geography, 30, 68-76.
Sadeghi, M., Jolai, F., Tavakkoli-Moghaddam, R., & Rahimi, Y. (2015). A new stochastic approach for a reliable p-hub covering location problem. Computers & Industrial Engineering, 90, 371-380.
Sarıçiçek, İ., & Akkuş, Y. (2015). Unmanned Aerial Vehicle hub-location and routing for monitoring geographic borders. Applied Mathematical Modelling, 39(14), 3939-3953.
Sasaki, M., Campbell, J. F., Krishnamoorthy, M., & Ernst, A. T. (2014). A Stackelberg hub arc location model for a competitive environment. Computers & Operations Research, 47, 27-41.
Shahabi, M., & Unnikrishnan, A. (2014). Robust hub network design problem. Transportation Research Part E: Logistics and Transportation Review, 70, 356-373.
Shanbhag, S., Kandoor, A. R., Wang, C., Mettu, R., & Wolf, T. (2015). VHub: Single-stage virtual network mapping through hub location. Computer Networks, 77, 169-180.
Stanojević, P., Marić, M., & Stanimirović, Z. (2015). A hybridization of an evolutionary algorithm and a parallel branch and bound for solving the capacitated single allocation hub location problem. Applied Soft Computing, 33, 24-36.
Su, D.-T., Hsieh, C.-H., & Tai, H.-H. (2016). Container hub-port vulnerability: Hong Kong, Kaohsiung and Xiamen. Journal of Marine Engineering & Technology, 15(1), 19-30.
Sun, Z., & Zheng, J. (2016). Finding potential hub locations for liner shipping. Transportation Research Part B: Methodological.
Suzuki, A., & Drezner, Z. (1996). The p-center location problem in an area. Location Science, 4(1), 69-82.
Ting, C.-J., & Wang, H.-J. (2014). A threshold accepting algorithm for the uncapacitated single allocation hub location problem. Journal of the Chinese Institute of Engineers, 37(3), 300-312.
Todosijević, R., Urošević, D., Mladenović, N., & Hanafi, S. (2015). A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem. Optimization Letters, 1-13.
Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations research, 19(6), 1363-1373.
UNCTAD. (2009). Review Of Maritime Transport 2008. Retrieved from Geneva and New York:
Wagner, B. (2008). Model formulations for hub covering problems. Journal of the Operational Research Society, 932-938.
Wang, S., Meng, Q., & Sun, Z. (2013). Container routing in liner shipping. Transportation Research Part E: Logistics and Transportation Review, 49(1), 1-7. doi:http://dx.doi.org/10.1016/j.tre.2012.06.009
Wasner, M., & Zäpfel, G. (2004). An integrated multi-depot hub-location vehicle routing model for network planning of parcel service. International Journal of Production Economics, 90(3), 403-419.
Xavier, A. E., Gesteira, C. M., & Xavier, V. L. (2015). Solving the continuous multiple allocation p-hub median problem by the hyperbolic smoothing approach. Optimization, 64(12), 2631-2647.
Yaman, H., & Elloumi, S. (2012). Star p-hub center problem and star p-hub median problem with bounded path lengths. Computers & Operations Research, 39(11), 2725-2732.
Yaman, H., Kara, B. Y., & Tansel, B. Ç. (2007). The latest arrival hub location problem for cargo delivery systems with stopovers. Transportation Research Part B: Methodological, 41(8), 906-919.
Yang, K., Liu, Y.-K., & Yang, G.-Q. (2013a). Solving fuzzy p-hub center problem by genetic algorithm incorporating local search. Applied Soft Computing, 13(5), 2624-2632.
Yang, K., & Liu, Y. (2015). Developing equilibrium optimization methods for hub location problems. Soft Computing, 19(8), 2337-2353.
Yang, K., Liu, Y., & Yang, G. (2013b). An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem. Computers & Industrial Engineering, 64(1), 133-142.
Yang, K., Liu, Y., & Yang, G. (2014). Optimizing fuzzy p-hub center problem with generalized value-at-risk criterion. Applied Mathematical Modelling, 38(15), 3987-4005.
Yang, T. H., & Chiu, T. Y. (2016). Airline hub-and-spoke system design under stochastic demand and hub congestion. Journal of Industrial and Production Engineering, 33(2), 69-76.
Yang, T.-H., & Huang, Y. (2015). Hub-and-spoke airline network design under competitive market. Journal of Industrial and Production Engineering, 32(3), 186-195.
Yang, Y.-C., & Chen, S.-L. (2016). Determinants of global logistics hub ports: Comparison of the port development policies of Taiwan, Korea, and Japan. Transport Policy, 45, 179-189.
Yıldız, B., & Karaşan, O. E. (2015). Regenerator Location Problem and survivable extensions: A hub covering location perspective. Transportation Research Part B: Methodological, 71, 32-55.
Yoon, M.-g., Baek, Y.-H., & Tcha, D.-w. (2000). Optimal design model for a distributed hierarchical network with fixed-charged facilities. Management Science and Financial Engineering, 6(2), 29-45.
Yoon, M.-G., & Current, J. (2008). The hub location and network design problem with fixed and variable arc costs: formulation and dual-based solution heuristic. Journal of the Operational Research Society, 59(1), 80-89.
Zabihi, A., Gharakhani, M., & Afshinfar, A. (2016). A multi criteria decision-making model for selecting hub port for Iranian marine industry. Uncertain Supply Chain Management, 4, 195–206.
Zade, A. E., Sadegheih, A., & Lotfi, M. M. (2014). A modified NSGA-II solution for a new multi-objective hub maximal covering problem under uncertain shipments. Journal of Industrial Engineering International, 10(4), 185-197.
Zarandi, M. F., Davari, S., & Sisakht, S. H. (2013). The Q-coverage multiple allocation hub covering problem with mandatory dispersion. Scientia Iranica, 19(3), 902-911.
Zarandi, M. F., Davari, S., & Sisakht, S. H. (2015). An empirical comparison of simulated annealing and iterated local search for the hierarchical single allocation hub median location problem. Scientia Iranica. Transaction E, Industrial Engineering, 22(3), 1203.
Zhao, Y., Zhou, J., & Xing, Q. (2016). A continuous hub location model with service constraints for shipping network design. Journal of Interdisciplinary Mathematics, 19(4), 681-695.
Zheng, J., Meng, Q., & Sun, Z. (2014). Impact analysis of maritime cabotage legislations on liner hub-and-spoke shipping network design. European journal of operational research, 234(3), 874-884.
Zheng, J., Meng, Q., & Sun, Z. (2015). Liner hub-and-spoke shipping network design. Transportation Research Part E: Logistics and Transportation Review, 75, 32-48.
Adibi, A., & Razmi, J. (2015). 2-Stage stochastic programming approach for hub location problem under uncertainty: A case study of air network of Iran. Journal of Air Transport Management, 47, 172-178.
Ahmadi, T., Karimi, H., Davoudpour, H., & Hosseinijou, S. A. (2015). A robust decision-making approach for p-hub median location problems based on two-stage stochastic programming and mean-variance theory: a real case study. The International Journal of Advanced Manufacturing Technology, 77(9-12), 1943-1953.
Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European Journal of Operational Research, 190(1), 1-21.
Alumur, S. A., Nickel, S., Saldanha-da-Gama, F., & Seçerdin, Y. (2015). Multi-period hub network design problems with modular capacities. Annals of Operations Research, 1-24.
An, Y., Zhang, Y., & Zeng, B. (2015). The reliable hub-and-spoke design problem: Models and algorithms. Transportation Research Part B: Methodological, 77, 103-122.
Aros-Vera, F., Marianov, V., & Mitchell, J. E. (2013). p-Hub approach for the optimal park-and-ride facility location problem. European Journal of Operational Research, 226(2), 277-285.
Asgari, N., Farahani, R. Z., & Goh, M. (2013). Network design approach for hub ports-shipping companies competition and cooperation. Transportation Research Part A: Policy and Practice, 48, 1-18.
Azizi, N., Chauhan, S., Salhi, S., & Vidyarthi, N. (2016). The impact of hub failure in hub-and-spoke networks: Mathematical formulations and solution techniques. Computers & Operations Research, 65, 174-188.
Bashiri, M., Mirzaei, M., & Randall, M. (2013). Modeling fuzzy capacitated p-hub center problem and a genetic algorithm solution. Applied Mathematical Modelling, 37(5), 3513-3525.
Boukani, F. H., Moghaddam, B. F., & Pishvaee, M. S. (2014). Robust optimization approach to capacitated single and multiple allocation hub location problems. Computational and Applied Mathematics, 1-16.
Bray, S., Caggiani, L., & Ottomanelli, M. (2015). Measuring transport systems efficiency under uncertainty by fuzzy sets theory based Data Envelopment Analysis: theoretical and practical comparison with traditional DEA model. Transportation Research Procedia, 5, 186-200.
Brimberg, J., Mladenović, N., Todosijević, R., & Urošević, D. (2015). General variable neighborhood search for the uncapacitated single allocation p-hub center problem. Optimization Letters, 1-12.
Campbell, A. M., Lowe, T. J., & Zhang, L. (2007). The p-hub center allocation problem. European journal of operational research, 176(2), 819-835.
Campbell, J. F. (1991). Hub location problems and the p-hub median problem. University of Missouri – St. Louis: Center for Business and Industrial Studies.
Campbell, J. F. (1994). Integer programming formulations of discrete hub location problems. European Journal of Operational Research, 72(2), 387-405.
Campbell, J. F. (2009). Hub location for time definite transportation. Computers & Operations Research, 36(12), 3107-3116.
Campbell, J. F. (2013). Modeling economies of scale in transportation hub networks. Paper presented at the System Sciences (HICSS), 2013 46th Hawaii International Conference on.
Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2002). Hub location problems. Facility Location: Applications and Theory, 1, 373-407.
Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2005a). Hub arc location problems: part I—introduction and results. Management Science, 51(10), 1540-1555.
Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2005b). Hub arc location problems: part II—formulations and optimal algorithms. Management Science, 51(10), 1556-1571.
Campbell, J. F., & O'Kelly, M. E. (2012). Twenty-five years of hub location research. Transportation Science, 46(2), 153-169.
Carello, G., Della Croce, F., Ghirardi, M., & Tadei, R. (2004). Solving the hub location problem in telecommunication network design: A local search approach. Networks, 44(2), 94-105.
Çiftçi, M. E., & Şevkli, M. (2015). A new hub and spoke system proposal: A case study for Turkey's aviation industry. Journal of Air Transport Management, 47, 190-198.
Corberán, Á., Peiró, J., Campos, V., Glover, F., & Martí, R. (2016). Strategic oscillation for the capacitated hub location problem with modular links. Journal of Heuristics, 22(2), 221-244.
Correia, I., Nickel, S., & Saldanha-da-Gama, F. (2014). Multi-product capacitated single-allocation hub location problems: formulations and inequalities. Networks and Spatial Economics, 14(1), 1-25.
Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton landmarks in mathematics and physics: Princeton University Press, Princeton.
Daskin, M. S. (1995). Network and Discrete Location Wiley. Northwestern University.
Davari, S., Zarandi, M. F., & Turksen, I. (2013). The incomplete hub-covering location problem considering imprecise location of demands. Scientia Iranica, 20(3), 983-991.
de Camargo, R. S., de Miranda, G., & Løkketangen, A. (2013). A new formulation and an exact approach for the many-to-many hub location-routing problem. Applied Mathematical Modelling, 37(12), 7465-7480.
de Sá, E. M., Contreras, I., & Cordeau, J.-F. (2015). Exact and heuristic algorithms for the design of hub networks with multiple lines. European Journal of Operational Research, 246(1), 186-198.
de Sá, E. M., de Camargo, R. S., & de Miranda, G. (2013). An improved Benders decomposition algorithm for the tree of hubs location problem. European Journal of Operational Research, 226(2), 185-202.
Drezner, Z., & Hamacher, H. W. (2001). Facility location: applications and theory: Springer Science & Business Media.
Ebery, J., Krishnamoorthy, M., Ernst, A., & Boland, N. (2000). The capacitated multiple allocation hub location problem: Formulations and algorithms. European Journal of Operational Research, 120(3), 614-631.
Ebrahimi-Zade, A., Hosseini-Nasab, H., & Zahmatkesh, A. (2016). Multi-period hub set covering problems with flexible radius: A modified genetic solution. Applied Mathematical Modelling, 40(4), 2968-2982.
Eghbali, M., Abedzadeh, M., & Setak, M. (2014). Multi-objective reliable hub covering location considering customer convenience using NSGA-II. International Journal of System Assurance Engineering and Management, 5(3), 450-460.
Ernst, A. T., Hamacher, H., Jiang, H., Krishnamoorthy, M., & Woeginger, G. (2009). Uncapacitated single and multiple allocation p-hub center problems. Computers & Operations Research, 36(7), 2230-2241.
Ernst, A. T., & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Science, 4(3), 139-154.
Estrada-Romeu, M., & Robusté, F. (2015). Stopover and hub-and-spoke shipment strategies in less-than-truckload carriers. Transportation Research Part E: Logistics and Transportation Review, 76, 108-121.
Fang, C.-h., Li, S.-x., & Wu, Y.-f. (2016). Multiple Allocation Hub Location Problem with Flow-Dependent Set-up Cost. Paper presented at the Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation.
Farahani, R. Z., & Hekmatfar, M. (2009). Facility location: concepts, models, algorithms and case studies: Springer-Verlag Berlin Heidelberg.
Gelareh, S., Maculan, N., Mahey, P., & Monemi, R. (2013). Hub-and-spoke network design and fleet deployment for string planning of liner shipping. Applied Mathematical Modelling, 37(5), 3307-3321.
Gelareh, S., Monemi, R. N., Mahey, P., Maculan, N., & Pisinger, D. (2013). Single string planning problem arising in liner shipping industries: A heuristic approach. Computers & Operations Research, 40(10), 2357-2373.
Gelareh, S., Monemi, R. N., & Nickel, S. (2015). Multi-period hub location problems in transportation. Transportation Research Part E: Logistics and Transportation Review, 75, 67-94.
Gelareh, S., & Nickel, S. (2008). A benders decomposition for hub location problems arising in public transport Operations Research Proceedings 2007 (pp. 129-134): Springer.
Gelareh, S., & Nickel, S. (2011). Hub location problems in transportation networks. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1092-1111.
Gelareh, S., Nickel, S., & Pisinger, D. (2010). Liner shipping hub network design in a competitive environment. Transportation Research Part E: Logistics and Transportation Review, 46(6), 991-1004.
Ghaderi, A., & Rahmaniani, R. (2015). Meta-heuristic solution approaches for robust single allocation p-hub median problem with stochastic demands and travel times. The International Journal of Advanced Manufacturing Technology, 1-21.
Ghaffari-Nasab, N., Ghazanfari, M., & Teimoury, E. (2015a). Hub-and-spoke logistics network design for third party logistics service providers. International Journal of Management Science and Engineering Management, 1-13.
Ghaffari-Nasab, N., Ghazanfari, M., & Teimoury, E. (2015b). Robust optimization approach to the design of hub-and-spoke networks. The International Journal of Advanced Manufacturing Technology, 76(5-8), 1091-1110.
Ghodratnama, A., Tavakkoli-Moghaddam, R., & Azaron, A. (2013). A fuzzy possibilistic bi-objective hub covering problem considering production facilities, time horizons and transporter vehicles. The International Journal of Advanced Manufacturing Technology, 66(1-4), 187-206.
Ghodratnama, A., Tavakkoli-Moghaddam, R., & Azaron, A. (2015). Robust and fuzzy goal programming optimization approaches for a novel multi-objective hub location-allocation problem: A supply chain overview. Applied Soft Computing, 37, 255-276.
Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations research, 12(3), 450-459.
Hakimi, S. L. (1965). Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Operations Research, 13(3), 462-475.
He, S. Y., Kuo, Y.-H., & Wu, D. (2016). Incorporating institutional and spatial factors in the selection of the optimal locations of public electric vehicle charging facilities: A case study of Beijing, China. Transportation Research Part C: Emerging Technologies, 67, 131-148.
He, Y., Wu, T., Zhang, C., & Liang, Z. (2015). An improved MIP heuristic for the intermodal hub location problem. Omega, 57, 203-211.
Hosapujari, A. B., & Verma, A. (2013). Development of a Hub and Spoke Model for Bus Transit Route Network Design. Procedia-Social and Behavioral Sciences, 104, 835-844.
Hult, E., Jiang, H., & Ralph, D. (2014). Exact computational approaches to a stochastic uncapacitated single allocation p-hub center problem. Computational Optimization and Applications, 59(1-2), 185-200.
Jiang, X., Lee, L. H., Chew, E. P., Han, Y., & Tan, K. C. (2012). A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port. European Journal of Operational Research, 221(1), 64-73.
Kara, B., & Tansel, B. (2003). The single-assignment hub covering problem: Models and linearizations. Journal of the Operational Research Society, 54(1), 59-64.
Karimi, H., & Setak, M. (2014). Proprietor and customer costs in the incomplete hub location-routing network topology. Applied Mathematical Modelling, 38(3), 1011-1023.
Kim, J.-G., & Tcha, D.-W. (1992). Optimal design of a two-level hierarchical network with tree-star configuration. Computers & Industrial Engineering, 22(3), 273-281.
Klincewicz, J. G. (1998). Hub location in backbone/tributary network design: a review. Location Science, 6(1), 307-335.
Klincewicz, J. G. (1998). Hub location in backbone/tributary network design: a review. Location Science, 6(1–4), 307-335. doi:http://dx.doi.org/10.1016/S0966-8349(98)00042-4
Krishnamoorthy, M., Mills, G., & Sier, D. (1994). Strategic configuration of the mail processing network: location–allocation modeling-stage 1 CSIRO Technical Report DMS-C94/9: Division of Mathematics and Statistics Australia.
Lee, Y., Lim, B. H., & Park, J. S. (1996). A hub location problem in designing digital data service networks: Lagrangian relaxation approach. Location Science, 4(3), 185-194.
Liang, H. (2013). The hardness and approximation of the star p-hub center problem. Operations Research Letters, 41(2), 138-141.
Lin, C.-C., & Lin, S.-W. (2016). Two-stage approach to the intermodal terminal location problem. Computers & Operations Research, 67, 113-119.
Lin, J.-R., Yang, T.-H., & Chang, Y.-C. (2013). A hub location inventory model for bicycle sharing system design: Formulation and solution. Computers & Industrial Engineering, 65(1), 77-86.
Lopes, M. C., de Queiroz, T. A., de Andrade, C. E., & Miyazawa, F. (2015). Solving a Variant of the Hub Location-Routing Problem LISS 2014 (pp. 395-400): Springer.
Lüer-Villagra, A., & Marianov, V. (2013). A competitive hub location and pricing problem. European Journal of Operational Research, 231(3), 734-744.
Lumsden, K., Dallari, F., & Ruggeri, R. (1999). Improving the efficiency of the hub and spoke system for the SKF European distribution network. International Journal of Physical Distribution & Logistics Management, 29(1), 50-66.
Mahmutogullari, A. I., & Kara, B. Y. (2016). Hub location under competition. European Journal of Operational Research, 250(1), 214-225.
Marić, M., Stanimirović, Z., & Stanojević, P. (2013). An efficient memetic algorithm for the uncapacitated single allocation hub location problem. Soft Computing, 17(3), 445-466.
Martí, R., Corberán, Á., & Peiró, J. (2015). Scatter search for an uncapacitated p-hub median problem. Computers & Operations Research, 58, 53-66.
Martins de Sá, E., Contreras, I., Cordeau, J.-F., Saraiva de Camargo, R., & de Miranda, G. (2015). The hub line location problem. Transportation Science, 49(3), 500-518.
Meier, J. F., & Clausen, U. (2015). Some Numerical Studies for a Complicated Hub Location Problem Quantitative Approaches in Logistics and Supply Chain Management (pp. 33-43): Springer.
Meng, Q., & Wang, X. (2011). Intermodal hub-and-spoke network design: incorporating multiple stakeholders and multi-type containers. Transportation Research Part B: Methodological, 45(4), 724-742.
Meraklı, M., & Yaman, H. (2016). Robust intermodal hub location under polyhedral demand uncertainty. Transportation Research Part B: Methodological, 86, 66-85.
Mohammadi, M., Jolai, F., & Tavakkoli-Moghaddam, R. (2013). Solving a new stochastic multi-mode p-hub covering location problem considering risk by a novel multi-objective algorithm. Applied Mathematical Modelling, 37(24), 10053-10073.
Mohammadi, M., Torabi, S., & Tavakkoli-Moghaddam, R. (2014). Sustainable hub location under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 62, 89-115.
Mokhtari, N., & Abbasi, M. (2014). Applying VNPSO Algorithm to Solve the Many-to-Many Hub Location-Routing Problem in a Large scale. European Online Journal of Natural and Social Sciences, 3(4 (s)), 647.
Nickel, S., Schöbel, A., & Sonneborn, T. (2001). Hub location problems in urban traffic networks Mathematical methods on optimization in transportation systems (pp. 95-107): Springer.
Nikokalam-Mozafar, S. H., Ashjari, B., Tavakkoli-Moghaddam, R., Omidvar, A., & Zhou, Z. (2014). Solving a multi-objective chance-constrained hub covering location problem by discrete invasive weed optimization. Cogent Engineering, 1(1), 991526.
O'Kelly, M. E. (1986a). Activity levels at hub facilities in interacting networks. Geographical Analysis, 18(4), 343-356.
O'kelly, M. E. (1986b). The location of interacting hub facilities. Transportation Science, 20(2), 92-106.
O'kelly, M. E. (1987). A quadratic integer program for the location of interacting hub facilities. European Journal of Operational Research, 32(3), 393-404.
O’Kelly, M. E. (2015). Network hub structure and resilience. Networks and Spatial Economics, 15(2), 235-251.
O’Kelly, M. E., Luna, H. P. L., De Camargo, R. S., & de Miranda Jr, G. (2015). Hub location problems with price sensitive demands. Networks and Spatial Economics, 15(4), 917-945.
Parvaresh, F., Husseini, S. M., Golpayegany, S. H., & Karimi, B. (2014). Hub network design problem in the presence of disruptions. Journal of Intelligent Manufacturing, 25(4), 755-774.
Pasandideh, S. H. R., Niaki, S. T. A., & Sheikhi, M. (2015). A bi-objective hub maximal covering location problem considering time-dependent reliability and the second type of coverage. International Journal of Management Science and Engineering Management, 1-8.
Peiró, J., Corberán, Á., & Martí, R. (2014). GRASP for the uncapacitated r-allocation p-hub median problem. Computers & Operations Research, 43, 50-60.
Peker, M., & Kara, B. Y. (2015). The P-Hub maximal covering problem and extensions for gradual decay functions. Omega, 54, 158-172.
Plum, C. E., Pisinger, D., & Sigurd, M. M. (2014). A service flow model for the liner shipping network design problem. European Journal of operational research, 235(2), 378-386.
Puerto, J., Ramos, A., & Rodríguez-Chía, A. M. (2013). A specialized branch & bound & cut for Single-Allocation Ordered Median Hub Location problems. Discrete Applied Mathematics, 161(16), 2624-2646.
Puerto, J., Ramos, A., Rodríguez-Chía, A. M., & Sanchez-Gil, M. (2015). Ordered median hub location problems with capacity constraints. Transportation Research Part C: Emerging Technologies.
Qin, Z., & Gao, Y. (2014). Uncapacitated p-hub location problem with fixed costs and uncertain flows. Journal of Intelligent Manufacturing, 1-12.
Rabbani, M., & Kazemi, S. (2015). Solving uncapacitated multiple allocation p-hub center problem by Dijkstra’s algorithm-based genetic algorithm and simulated annealing. International Journal of Industrial Engineering Computations, 6(3), 405-418.
Rahimi, Y., Tavakkoli-Moghaddam, R., Mohammadi, M., & Sadeghi, M. (2016). Multi-objective hub network design under uncertainty considering congestion: An M/M/c/K queue system. Applied Mathematical Modelling, 40(5), 4179-4198.
Rahmani, Y., Ramdane Cherif-Khettaf, W., & Oulamara, A. (2016). The two-echelon multi-products location-routing problem with pickup and delivery: formulation and heuristic approaches. International Journal of Production Research, 54(4), 999-1019.
Rastani, S., Setak, M., & Karimi, H. (2015). Capacity selection for hubs and hub links in hub location problems. International Journal of Management Science and Engineering Management, 1-11.
Rieck, J., Ehrenberg, C., & Zimmermann, J. (2014). Many-to-many location-routing with inter-hub transport and multi-commodity pickup-and-delivery. European journal of operational research, 236(3), 863-878.
Rodríguez-Martín, I., Salazar-González, J.-J., & Yaman, H. (2014). A branch-and-cut algorithm for the hub location and routing problem. Computers & Operations Research, 50, 161-174.
Saberi, M., & Mahmassani, H. S. (2013). Modeling the airline hub location and optimal market problems with continuous approximation techniques. Journal of Transport Geography, 30, 68-76.
Sadeghi, M., Jolai, F., Tavakkoli-Moghaddam, R., & Rahimi, Y. (2015). A new stochastic approach for a reliable p-hub covering location problem. Computers & Industrial Engineering, 90, 371-380.
Sarıçiçek, İ., & Akkuş, Y. (2015). Unmanned Aerial Vehicle hub-location and routing for monitoring geographic borders. Applied Mathematical Modelling, 39(14), 3939-3953.
Sasaki, M., Campbell, J. F., Krishnamoorthy, M., & Ernst, A. T. (2014). A Stackelberg hub arc location model for a competitive environment. Computers & Operations Research, 47, 27-41.
Shahabi, M., & Unnikrishnan, A. (2014). Robust hub network design problem. Transportation Research Part E: Logistics and Transportation Review, 70, 356-373.
Shanbhag, S., Kandoor, A. R., Wang, C., Mettu, R., & Wolf, T. (2015). VHub: Single-stage virtual network mapping through hub location. Computer Networks, 77, 169-180.
Stanojević, P., Marić, M., & Stanimirović, Z. (2015). A hybridization of an evolutionary algorithm and a parallel branch and bound for solving the capacitated single allocation hub location problem. Applied Soft Computing, 33, 24-36.
Su, D.-T., Hsieh, C.-H., & Tai, H.-H. (2016). Container hub-port vulnerability: Hong Kong, Kaohsiung and Xiamen. Journal of Marine Engineering & Technology, 15(1), 19-30.
Sun, Z., & Zheng, J. (2016). Finding potential hub locations for liner shipping. Transportation Research Part B: Methodological.
Suzuki, A., & Drezner, Z. (1996). The p-center location problem in an area. Location Science, 4(1), 69-82.
Ting, C.-J., & Wang, H.-J. (2014). A threshold accepting algorithm for the uncapacitated single allocation hub location problem. Journal of the Chinese Institute of Engineers, 37(3), 300-312.
Todosijević, R., Urošević, D., Mladenović, N., & Hanafi, S. (2015). A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem. Optimization Letters, 1-13.
Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations research, 19(6), 1363-1373.
UNCTAD. (2009). Review Of Maritime Transport 2008. Retrieved from Geneva and New York:
Wagner, B. (2008). Model formulations for hub covering problems. Journal of the Operational Research Society, 932-938.
Wang, S., Meng, Q., & Sun, Z. (2013). Container routing in liner shipping. Transportation Research Part E: Logistics and Transportation Review, 49(1), 1-7. doi:http://dx.doi.org/10.1016/j.tre.2012.06.009
Wasner, M., & Zäpfel, G. (2004). An integrated multi-depot hub-location vehicle routing model for network planning of parcel service. International Journal of Production Economics, 90(3), 403-419.
Xavier, A. E., Gesteira, C. M., & Xavier, V. L. (2015). Solving the continuous multiple allocation p-hub median problem by the hyperbolic smoothing approach. Optimization, 64(12), 2631-2647.
Yaman, H., & Elloumi, S. (2012). Star p-hub center problem and star p-hub median problem with bounded path lengths. Computers & Operations Research, 39(11), 2725-2732.
Yaman, H., Kara, B. Y., & Tansel, B. Ç. (2007). The latest arrival hub location problem for cargo delivery systems with stopovers. Transportation Research Part B: Methodological, 41(8), 906-919.
Yang, K., Liu, Y.-K., & Yang, G.-Q. (2013a). Solving fuzzy p-hub center problem by genetic algorithm incorporating local search. Applied Soft Computing, 13(5), 2624-2632.
Yang, K., & Liu, Y. (2015). Developing equilibrium optimization methods for hub location problems. Soft Computing, 19(8), 2337-2353.
Yang, K., Liu, Y., & Yang, G. (2013b). An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem. Computers & Industrial Engineering, 64(1), 133-142.
Yang, K., Liu, Y., & Yang, G. (2014). Optimizing fuzzy p-hub center problem with generalized value-at-risk criterion. Applied Mathematical Modelling, 38(15), 3987-4005.
Yang, T. H., & Chiu, T. Y. (2016). Airline hub-and-spoke system design under stochastic demand and hub congestion. Journal of Industrial and Production Engineering, 33(2), 69-76.
Yang, T.-H., & Huang, Y. (2015). Hub-and-spoke airline network design under competitive market. Journal of Industrial and Production Engineering, 32(3), 186-195.
Yang, Y.-C., & Chen, S.-L. (2016). Determinants of global logistics hub ports: Comparison of the port development policies of Taiwan, Korea, and Japan. Transport Policy, 45, 179-189.
Yıldız, B., & Karaşan, O. E. (2015). Regenerator Location Problem and survivable extensions: A hub covering location perspective. Transportation Research Part B: Methodological, 71, 32-55.
Yoon, M.-g., Baek, Y.-H., & Tcha, D.-w. (2000). Optimal design model for a distributed hierarchical network with fixed-charged facilities. Management Science and Financial Engineering, 6(2), 29-45.
Yoon, M.-G., & Current, J. (2008). The hub location and network design problem with fixed and variable arc costs: formulation and dual-based solution heuristic. Journal of the Operational Research Society, 59(1), 80-89.
Zabihi, A., Gharakhani, M., & Afshinfar, A. (2016). A multi criteria decision-making model for selecting hub port for Iranian marine industry. Uncertain Supply Chain Management, 4, 195–206.
Zade, A. E., Sadegheih, A., & Lotfi, M. M. (2014). A modified NSGA-II solution for a new multi-objective hub maximal covering problem under uncertain shipments. Journal of Industrial Engineering International, 10(4), 185-197.
Zarandi, M. F., Davari, S., & Sisakht, S. H. (2013). The Q-coverage multiple allocation hub covering problem with mandatory dispersion. Scientia Iranica, 19(3), 902-911.
Zarandi, M. F., Davari, S., & Sisakht, S. H. (2015). An empirical comparison of simulated annealing and iterated local search for the hierarchical single allocation hub median location problem. Scientia Iranica. Transaction E, Industrial Engineering, 22(3), 1203.
Zhao, Y., Zhou, J., & Xing, Q. (2016). A continuous hub location model with service constraints for shipping network design. Journal of Interdisciplinary Mathematics, 19(4), 681-695.
Zheng, J., Meng, Q., & Sun, Z. (2014). Impact analysis of maritime cabotage legislations on liner hub-and-spoke shipping network design. European journal of operational research, 234(3), 874-884.
Zheng, J., Meng, Q., & Sun, Z. (2015). Liner hub-and-spoke shipping network design. Transportation Research Part E: Logistics and Transportation Review, 75, 32-48.