How to cite this paper
Mashud, A., Khan, M., Uddin, M & Islam, M. (2018). A non-instantaneous inventory model having different deterioration rates with stock and price dependent demand under partially backlogged shortages.Uncertain Supply Chain Management, 6(1), 49-64.
Refrences
Abad, P. L. (1996). Optimal pricing and lot-sizing under conditions of perishability and partial backordering. Management Science, 42(8), 1093-1104.
Avinadav, T., Herbon, A., & Spiegel, U. (2013). Optimal inventory policy for a perishable item with demand function sensitive to price and time. International Journal of Production Economics, 144(2), 497-506.
Taleizadeh, A. A., Stojkovska, I., & Pentico, D. W. (2015). An economic order quantity model with partial backordering and incremental discount. Computers & Industrial Engineering, 82, 21-32.
Bhunia, A., & Shaikh, A. (2011). A deterministic model for deteriorating items with displayed inventory level dependent demand rate incorporating marketing decisions with transportation cost. International Journal of Industrial Engineering Computations, 2(3), 547-562.
Bhunia, A., Shaikh, A., Maiti, A., & Maiti, M. (2013). A two warehouse deterministic inventory model for deteriorating items with a linear trend in time dependent demand over finite time horizon by elitist real-coded genetic algorithm. International Journal of Industrial Engineering Computations, 4(2), 241-258.
Gilding, B. H. (2014). Inflation and the optimal inventory replenishment schedule within a finite planning horizon. European Journal of Operational Research, 234(3), 683-693.
Bhunia, A., & Shaikh, A. (2014). A deterministic inventory model for deteriorating items with selling price dependent demand and three-parameter Weibull distributed deterioration. International Journal of Industrial Engineering Computations, 5(3), 497-510.
Bhunia, A. K., Mahato, S. K., Shaikh, A. A., & Jaggi, C. K. (2014). A deteriorating inventory model with displayed stock-level-dependent demand and partially backlogged shortages with all unit discount facilities via particle swarm optimisation. International Journal of Systems Science: Operations & Logistics, 1(3), 164-180.
Bhunia, A., Shaikh, A., Pareek, S., & Dhaka, V. (2015). A memo on stock model with partial backlogging under delay in payments. Uncertain Supply Chain Management, 3(1), 11-20.
Bhunia, A. K., & Shaikh, A. A. (2015). An application of PSO in a two-warehouse inventory model for deteriorating item under permissible delay in payment with different inventory policies. Applied Mathematics and Computation, 256, 831-850.
Bhunia, A. K., & Shaikh, A. A. (2016). Investigation of two-warehouse inventory problems in interval environment under inflation via particle swarm optimization. Mathematical and Computer Modelling of Dynamical Systems, 22(2), 160-179.
Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 5(4), 323-326.
Datta, T., & Pal, A. (1990). A note on an inventory-level-dependent demand rate. Journal of the
Operational Research Society, 41, 971–975.
Ghare, P.M., & Schrader, G.F. (1963). An inventory model for exponentially deteriorating items. Journal of Industrial Engineering 14, 238–243.
Giri, B. C., Jalan, A. K., & Chaudhuri, K. S. (2003). Economic order quantity model with Weibull deterioration distribution, shortage and ramp-type demand. International Journal of Systems Science, 34(4), 237-243.
Goyal, S. K., & Gunasekaran, A. (1995). An integrated production-inventory-marketing model for deteriorating items. Computers & Industrial Engineering, 28(4), 755-762.
Gupta, R., & Vrat, P. (1986). Inventory model for stock-dependent consumption rate. Opsearch, 23(1), 19-24.
Harris, F. W. (1913). How Many Parts to Make at Once, Factory. The Magazine of Management, 10, 135–136.
Lee, Y. P., & Dye, C. Y. (2012). An inventory model for deteriorating items under stock-dependent demand and controllable deterioration rate. Computers & Industrial Engineering, 63(2), 474-482.
Levin, R. I., McLaughlin, C. P., Lamone, R. P., & Kottas, J. F. (1972). Productions/operations management: contemporary policy for managing operating systems. New York: McGraw-Hill.
Mandal, B. N., & Phaujdar, S. (1989). An inventory model for deteriorating items and stock-dependent consumption rate. Journal of the operational Research Society, 40, 483-488.
Manna, S. K., & Chaudhuri, K. S. (2006). An EOQ model with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages. European Journal of Operational Research, 171(2), 557-566.
Min, J., Zhou, Y. W., Liu, G. Q., & Wang, S. D. (2012). An EPQ model for deteriorating items with inventory-level-dependent demand and permissible delay in payments. International Journal of Systems Science, 43(6), 1039-1053.
Kurdi, M. (2015). A structural optimization framework for multidisciplinary design. Journal of Optimization, 1–14.
El-Hadidy, M. A. A. (2016). On maximum discounted effort reward search problem. Asia-Pacific Journal of Operational Research, 33(03), 1650019.
Padmanabhan, G., & Vrat, P. (1995). EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, 86(2), 281-292.
Ray, J., & Chaudhuri, K. S. (1997). An EOQ model with stock-dependent demand, shortage, inflation and time discounting. International Journal of Production Economics, 53(2), 171-180.
Ray, J., Goswami, A., & Chaudhuri, K. S. (1998). On an inventory model with two levels of storage and stock-dependent demand rate. International Journal of Systems Science, 29(3), 249-254.
Pal, S., Goswami, A., & Chaudhuri, K. S. (1993). A deterministic inventory model for deteriorating items with stock-dependent demand rate. International Journal of Production Economics, 32(3), 291-299. Pal, P., Bhunia, A. K., & Goyal, S. K. (2007). On optimal partially integrated production and marketing policy with variable demand under flexibility and reliability considerations via Genetic Algorithm. Applied mathematics and computation, 188(1), 525-537.
Shaikh, A. A., Mashud, A. H. M., Uddin, M. S., & Khan, M. A. A. (2017). Non-instantaneous deterioration inventory model with price and stock dependent demand for fully backlogged shortages under inflation. International Journal of Business Forecasting and Marketing Intelligence, 3(2), 152-164.
Subramanyam, E. S., & Kumaraswamy, S. (1981). EOQ formula under varying marketing policies and conditions. AIIE Transactions, 13(4), 312-314.
Sana, S. S. (2010). Optimal selling price and lotsize with time varying deterioration and partial backlogging. Applied Mathematics and Computation, 217(1), 185-194.
Sarker, B. R., Mukherjee, S., & Balan, C. V. (1997). An order-level lot size inventory model with inventory-level dependent demand and deterioration. International Journal of Production Economics, 48(3), 227-236.
Sarkar, B. (2012a). An EOQ model with delay in payments and time varying deterioration rate. Mathematical and Computer Modelling, 55(3), 367-377.
Sarkar, B. (2013). A production-inventory model with probabilistic deterioration in two-echelon supply chain management. Applied Mathematical Modelling, 37(5), 3138-3151. Sett, B. K., Sarkar, B., & Goswami, A. (2012). A two-warehouse inventory model with increasing demand and time varying deterioration. Scientia Iranica, 19(6), 1969-1977.
Taleizadeh, A. A., & Pentico, D. W. (2013). An economic order quantity model with a known price increase and partial backordering. European Journal of Operational Research, 228(3), 516-525.
Skouri, K., Konstantaras, I., Papachristos, S., & Ganas, I. (2009). Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate. European Journal of Operational Research, 192(1), 79-92.
Urban, T. L. (1992). Deterministic inventory models incorporating marketing decisions. Computers & industrial engineering, 22(1), 85-93.
Wu, K.S., Ouyang, L.Y., Yang, C.T., 2006. An optimal replenishment policy for noninstantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics 101, 369–384.
Avinadav, T., Herbon, A., & Spiegel, U. (2013). Optimal inventory policy for a perishable item with demand function sensitive to price and time. International Journal of Production Economics, 144(2), 497-506.
Taleizadeh, A. A., Stojkovska, I., & Pentico, D. W. (2015). An economic order quantity model with partial backordering and incremental discount. Computers & Industrial Engineering, 82, 21-32.
Bhunia, A., & Shaikh, A. (2011). A deterministic model for deteriorating items with displayed inventory level dependent demand rate incorporating marketing decisions with transportation cost. International Journal of Industrial Engineering Computations, 2(3), 547-562.
Bhunia, A., Shaikh, A., Maiti, A., & Maiti, M. (2013). A two warehouse deterministic inventory model for deteriorating items with a linear trend in time dependent demand over finite time horizon by elitist real-coded genetic algorithm. International Journal of Industrial Engineering Computations, 4(2), 241-258.
Gilding, B. H. (2014). Inflation and the optimal inventory replenishment schedule within a finite planning horizon. European Journal of Operational Research, 234(3), 683-693.
Bhunia, A., & Shaikh, A. (2014). A deterministic inventory model for deteriorating items with selling price dependent demand and three-parameter Weibull distributed deterioration. International Journal of Industrial Engineering Computations, 5(3), 497-510.
Bhunia, A. K., Mahato, S. K., Shaikh, A. A., & Jaggi, C. K. (2014). A deteriorating inventory model with displayed stock-level-dependent demand and partially backlogged shortages with all unit discount facilities via particle swarm optimisation. International Journal of Systems Science: Operations & Logistics, 1(3), 164-180.
Bhunia, A., Shaikh, A., Pareek, S., & Dhaka, V. (2015). A memo on stock model with partial backlogging under delay in payments. Uncertain Supply Chain Management, 3(1), 11-20.
Bhunia, A. K., & Shaikh, A. A. (2015). An application of PSO in a two-warehouse inventory model for deteriorating item under permissible delay in payment with different inventory policies. Applied Mathematics and Computation, 256, 831-850.
Bhunia, A. K., & Shaikh, A. A. (2016). Investigation of two-warehouse inventory problems in interval environment under inflation via particle swarm optimization. Mathematical and Computer Modelling of Dynamical Systems, 22(2), 160-179.
Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE Transactions, 5(4), 323-326.
Datta, T., & Pal, A. (1990). A note on an inventory-level-dependent demand rate. Journal of the
Operational Research Society, 41, 971–975.
Ghare, P.M., & Schrader, G.F. (1963). An inventory model for exponentially deteriorating items. Journal of Industrial Engineering 14, 238–243.
Giri, B. C., Jalan, A. K., & Chaudhuri, K. S. (2003). Economic order quantity model with Weibull deterioration distribution, shortage and ramp-type demand. International Journal of Systems Science, 34(4), 237-243.
Goyal, S. K., & Gunasekaran, A. (1995). An integrated production-inventory-marketing model for deteriorating items. Computers & Industrial Engineering, 28(4), 755-762.
Gupta, R., & Vrat, P. (1986). Inventory model for stock-dependent consumption rate. Opsearch, 23(1), 19-24.
Harris, F. W. (1913). How Many Parts to Make at Once, Factory. The Magazine of Management, 10, 135–136.
Lee, Y. P., & Dye, C. Y. (2012). An inventory model for deteriorating items under stock-dependent demand and controllable deterioration rate. Computers & Industrial Engineering, 63(2), 474-482.
Levin, R. I., McLaughlin, C. P., Lamone, R. P., & Kottas, J. F. (1972). Productions/operations management: contemporary policy for managing operating systems. New York: McGraw-Hill.
Mandal, B. N., & Phaujdar, S. (1989). An inventory model for deteriorating items and stock-dependent consumption rate. Journal of the operational Research Society, 40, 483-488.
Manna, S. K., & Chaudhuri, K. S. (2006). An EOQ model with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages. European Journal of Operational Research, 171(2), 557-566.
Min, J., Zhou, Y. W., Liu, G. Q., & Wang, S. D. (2012). An EPQ model for deteriorating items with inventory-level-dependent demand and permissible delay in payments. International Journal of Systems Science, 43(6), 1039-1053.
Kurdi, M. (2015). A structural optimization framework for multidisciplinary design. Journal of Optimization, 1–14.
El-Hadidy, M. A. A. (2016). On maximum discounted effort reward search problem. Asia-Pacific Journal of Operational Research, 33(03), 1650019.
Padmanabhan, G., & Vrat, P. (1995). EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, 86(2), 281-292.
Ray, J., & Chaudhuri, K. S. (1997). An EOQ model with stock-dependent demand, shortage, inflation and time discounting. International Journal of Production Economics, 53(2), 171-180.
Ray, J., Goswami, A., & Chaudhuri, K. S. (1998). On an inventory model with two levels of storage and stock-dependent demand rate. International Journal of Systems Science, 29(3), 249-254.
Pal, S., Goswami, A., & Chaudhuri, K. S. (1993). A deterministic inventory model for deteriorating items with stock-dependent demand rate. International Journal of Production Economics, 32(3), 291-299. Pal, P., Bhunia, A. K., & Goyal, S. K. (2007). On optimal partially integrated production and marketing policy with variable demand under flexibility and reliability considerations via Genetic Algorithm. Applied mathematics and computation, 188(1), 525-537.
Shaikh, A. A., Mashud, A. H. M., Uddin, M. S., & Khan, M. A. A. (2017). Non-instantaneous deterioration inventory model with price and stock dependent demand for fully backlogged shortages under inflation. International Journal of Business Forecasting and Marketing Intelligence, 3(2), 152-164.
Subramanyam, E. S., & Kumaraswamy, S. (1981). EOQ formula under varying marketing policies and conditions. AIIE Transactions, 13(4), 312-314.
Sana, S. S. (2010). Optimal selling price and lotsize with time varying deterioration and partial backlogging. Applied Mathematics and Computation, 217(1), 185-194.
Sarker, B. R., Mukherjee, S., & Balan, C. V. (1997). An order-level lot size inventory model with inventory-level dependent demand and deterioration. International Journal of Production Economics, 48(3), 227-236.
Sarkar, B. (2012a). An EOQ model with delay in payments and time varying deterioration rate. Mathematical and Computer Modelling, 55(3), 367-377.
Sarkar, B. (2013). A production-inventory model with probabilistic deterioration in two-echelon supply chain management. Applied Mathematical Modelling, 37(5), 3138-3151. Sett, B. K., Sarkar, B., & Goswami, A. (2012). A two-warehouse inventory model with increasing demand and time varying deterioration. Scientia Iranica, 19(6), 1969-1977.
Taleizadeh, A. A., & Pentico, D. W. (2013). An economic order quantity model with a known price increase and partial backordering. European Journal of Operational Research, 228(3), 516-525.
Skouri, K., Konstantaras, I., Papachristos, S., & Ganas, I. (2009). Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate. European Journal of Operational Research, 192(1), 79-92.
Urban, T. L. (1992). Deterministic inventory models incorporating marketing decisions. Computers & industrial engineering, 22(1), 85-93.
Wu, K.S., Ouyang, L.Y., Yang, C.T., 2006. An optimal replenishment policy for noninstantaneous deteriorating items with stock-dependent demand and partial backlogging. International Journal of Production Economics 101, 369–384.