How to cite this paper
Sadeghi, M & Shafabakhsh, G. (2018). Estimation of intercity freight origin-destination matrix using simulated annealing algorithm.Uncertain Supply Chain Management, 6(1), 13-24.
Refrences
Al-Battaineh, O., & Kaysi, I. (2005). Commodity-based truck origin-destination matrix estimation using input-output data and genetic algorithms.Transportation Research Record: Journal of the Transportation Research Board, 1923, 37-45.
Horowitz, A., Creasey, T., Pendyala, R., & Chen, M. (2014). Analytical Travel Forecasting Approaches for Project-level Planning and Design (No. Project 08-83).
Bell, M. G. (1991). The estimation of origin-destination matrices by constrained generalised least squares. Transportation Research Part B: Methodological, 25(1), 13-22.
Cascetta, E., & Nguyen, S. (1988). A unified framework for estimating or updating origin/destination matrices from traffic counts. Transportation Research Part B: Methodological, 22(6), 437-455.
Cerny, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of optimization theory and applications, 45(1), 41-51.
Cohen, H. (1995). Future directions for freight modeling. In Proceedings of the urban goods and freight forecasting conference.
Chang, K. T., Khatib, Z., & Ou, Y. (2002). Effects of zoning structure and network detail on traffic demand modeling. Environment and Planning B: Planning and design, 29(1), 37-52.
Crainic, T., Dufour, G., Florian, M., Larin, D., & Leve, Z. (2001). Demand matrix adjustment for multimodal freight networks. Transportation Research Record: Journal of the Transportation Research Board, (1771), 140-147.
Flaskou, M., Dulebenets, M. A., Golias, M. M., Mishra, S., & Rock, R. M. (2015). Analysis of Freight Corridors Using GPS Data on Trucks.Transportation Research Record: Journal of the Transportation Research Board, (2478), 113-122.
Jayaraman, V., & Ross, A. (2003). A simulated annealing methodology to distribution network design and management. European Journal of Operational Research, 144(3), 629-645.
Jansuwan, S., Ryu, S., & Chen, A. (2016). A two-stage approach for estimating a statewide truck trip table. Transportation Research Part A: Policy and Practice.
Khan, T., & Anderson, M. (2016). Accurately Estimating Origin/Destination Matrices in Situations with Limited Traffic Counts: Case Study Huntsville, AL. International Journal of Traffic and Transportation Engineering, 5(3), 64-72.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
Lim, R., Qian, Z. S., & Zhang, H. M. (2014). Development of a Freight Demand Model with an Application to California. International Journal of Transportation Science and Technology, 3(1), 19-38.
List, G. F., & Turnquist, M. A. (1994). Estimating truck travel patterns in urban areas. Transportation Research Record, (1430), 1-9.
List, G., Konieczny, L., Durnford, C., & Papayanoulis, V. (2002). Best-practice truck-flow estimation model for the New York City region.Transportation Research Record: Journal of the Transportation Research Board, (1790), 97-103.
Ma, X., McCormack, E., & Wang, Y. (2011). Processing commercial global positioning system data to develop a web-based truck performance measures program. Transportation Research Record: Journal of the Transportation Research Board, (2246), 92-100.
Maher, M. J. (1983). Inferences on trip matrices from observations on link volumes: a Bayesian statistical approach. Transportation Research Part B: Methodological, 17(6), 435-447.
Martínez, L., Viegas, J., & Silva, E. (2007). Zoning decisions in transport planning and their impact on the precision of results. Transportation Research Record: Journal of the Transportation Research Board, (1994), 58-65.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6), 1087-1092.
Pinjari, A., Short, J., Pierce, D., Park, L., Murray, D., Mysore, V., ... & Irmania, A. (2013). Truck GPS Data for Freight Performance Measurement, Modeling and Planning.
Poorjafari, V., Yue, W. L., & Holyoak, N. (2014). Application of simulated annealing in transit schedule synchronization. International Journal of Modeling and Optimization, 4(6), 476.
Réos, A., Nozick, L., & Turnquist, M. (2002). Value of different categories of information in estimating freight origin-destination tables. Transportation Research Record: Journal of the Transportation Research Board, (1783), 42-48.
Shabani, K., & Figliozzi, M. (2012, January). A statistical study of commodity freight value/tonnage trends in the United States. InTransportation Research Board 91st Annual Meeting Compendium of Papers, Washington DC, United States.
Spiess, H. (1987). A maximum likelihood model for estimating origin-destination matrices. Transportation Research Part B: Methodological, 21(5), 395-412.
Tamin, O. Z., & Willumsen, L. G. (1989). Transport demand model estimation from traffic counts. Transportation, 16(1), 3-26.
Van Zuylen, H. J., & Willumsen, L. G. (1980). The most likely trip matrix estimated from traffic counts. Transportation Research Part B: Methodological, 14(3), 281-293.
Wang, Y., Ma, X., Liu, Y., Gong, K., Henricakson, K. C., Xu, M., & Wang, Y. (2016). A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice. PloS one,11(1), e0146850.
Woch, M., & Łebkowski, P. (2009). Sequential simulated annealing for the vehicle routing problem with time windows. Decision Making in Manufacturing and Services, 3(1-2), 87-100.
Zargari, S. A., & Hamedani, S. Y. (2006). Estimation of freight OD matrix using waybill data and traffic counts in Iran roads. Iranian Journal of Science & Technology, Transaction B, Engineering, 30(B1).
Zhang, Y., Bowden, R. O., & Allen, A. J. (2004). Intermodal freight transportation planning using commodity flow data (No. Final Research Report). United States Department of Transportation, Research and Special Programs Administration.
Horowitz, A., Creasey, T., Pendyala, R., & Chen, M. (2014). Analytical Travel Forecasting Approaches for Project-level Planning and Design (No. Project 08-83).
Bell, M. G. (1991). The estimation of origin-destination matrices by constrained generalised least squares. Transportation Research Part B: Methodological, 25(1), 13-22.
Cascetta, E., & Nguyen, S. (1988). A unified framework for estimating or updating origin/destination matrices from traffic counts. Transportation Research Part B: Methodological, 22(6), 437-455.
Cerny, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of optimization theory and applications, 45(1), 41-51.
Cohen, H. (1995). Future directions for freight modeling. In Proceedings of the urban goods and freight forecasting conference.
Chang, K. T., Khatib, Z., & Ou, Y. (2002). Effects of zoning structure and network detail on traffic demand modeling. Environment and Planning B: Planning and design, 29(1), 37-52.
Crainic, T., Dufour, G., Florian, M., Larin, D., & Leve, Z. (2001). Demand matrix adjustment for multimodal freight networks. Transportation Research Record: Journal of the Transportation Research Board, (1771), 140-147.
Flaskou, M., Dulebenets, M. A., Golias, M. M., Mishra, S., & Rock, R. M. (2015). Analysis of Freight Corridors Using GPS Data on Trucks.Transportation Research Record: Journal of the Transportation Research Board, (2478), 113-122.
Jayaraman, V., & Ross, A. (2003). A simulated annealing methodology to distribution network design and management. European Journal of Operational Research, 144(3), 629-645.
Jansuwan, S., Ryu, S., & Chen, A. (2016). A two-stage approach for estimating a statewide truck trip table. Transportation Research Part A: Policy and Practice.
Khan, T., & Anderson, M. (2016). Accurately Estimating Origin/Destination Matrices in Situations with Limited Traffic Counts: Case Study Huntsville, AL. International Journal of Traffic and Transportation Engineering, 5(3), 64-72.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680.
Lim, R., Qian, Z. S., & Zhang, H. M. (2014). Development of a Freight Demand Model with an Application to California. International Journal of Transportation Science and Technology, 3(1), 19-38.
List, G. F., & Turnquist, M. A. (1994). Estimating truck travel patterns in urban areas. Transportation Research Record, (1430), 1-9.
List, G., Konieczny, L., Durnford, C., & Papayanoulis, V. (2002). Best-practice truck-flow estimation model for the New York City region.Transportation Research Record: Journal of the Transportation Research Board, (1790), 97-103.
Ma, X., McCormack, E., & Wang, Y. (2011). Processing commercial global positioning system data to develop a web-based truck performance measures program. Transportation Research Record: Journal of the Transportation Research Board, (2246), 92-100.
Maher, M. J. (1983). Inferences on trip matrices from observations on link volumes: a Bayesian statistical approach. Transportation Research Part B: Methodological, 17(6), 435-447.
Martínez, L., Viegas, J., & Silva, E. (2007). Zoning decisions in transport planning and their impact on the precision of results. Transportation Research Record: Journal of the Transportation Research Board, (1994), 58-65.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6), 1087-1092.
Pinjari, A., Short, J., Pierce, D., Park, L., Murray, D., Mysore, V., ... & Irmania, A. (2013). Truck GPS Data for Freight Performance Measurement, Modeling and Planning.
Poorjafari, V., Yue, W. L., & Holyoak, N. (2014). Application of simulated annealing in transit schedule synchronization. International Journal of Modeling and Optimization, 4(6), 476.
Réos, A., Nozick, L., & Turnquist, M. (2002). Value of different categories of information in estimating freight origin-destination tables. Transportation Research Record: Journal of the Transportation Research Board, (1783), 42-48.
Shabani, K., & Figliozzi, M. (2012, January). A statistical study of commodity freight value/tonnage trends in the United States. InTransportation Research Board 91st Annual Meeting Compendium of Papers, Washington DC, United States.
Spiess, H. (1987). A maximum likelihood model for estimating origin-destination matrices. Transportation Research Part B: Methodological, 21(5), 395-412.
Tamin, O. Z., & Willumsen, L. G. (1989). Transport demand model estimation from traffic counts. Transportation, 16(1), 3-26.
Van Zuylen, H. J., & Willumsen, L. G. (1980). The most likely trip matrix estimated from traffic counts. Transportation Research Part B: Methodological, 14(3), 281-293.
Wang, Y., Ma, X., Liu, Y., Gong, K., Henricakson, K. C., Xu, M., & Wang, Y. (2016). A Two-Stage Algorithm for Origin-Destination Matrices Estimation Considering Dynamic Dispersion Parameter for Route Choice. PloS one,11(1), e0146850.
Woch, M., & Łebkowski, P. (2009). Sequential simulated annealing for the vehicle routing problem with time windows. Decision Making in Manufacturing and Services, 3(1-2), 87-100.
Zargari, S. A., & Hamedani, S. Y. (2006). Estimation of freight OD matrix using waybill data and traffic counts in Iran roads. Iranian Journal of Science & Technology, Transaction B, Engineering, 30(B1).
Zhang, Y., Bowden, R. O., & Allen, A. J. (2004). Intermodal freight transportation planning using commodity flow data (No. Final Research Report). United States Department of Transportation, Research and Special Programs Administration.