How to cite this paper
Tripathi, R & Kaur, M. (2017). EOQ model for non- decreasing time dependent deterioration and Decaying demand under non-increasing time shortages.Uncertain Supply Chain Management, 5(4), 327-336.
Refrences
Abad, P.L. (1996). Optimal pricing and lot sizing under conditions of perishability and partial backordering. Management Sciences, 42(8), 1093-1104.
Bhaula, B., & Kumar, M. R. (2014). An economic order quantity model for Weibull deteriorating items with stock dependent consumption rate and shortages under inflation. International Journal of Computing and Technology, 1(5), 196-204.
Chung, K. J., & Ting, P. S. (1993). A heuristic for replenishment of deteriorating items with a linear trend in demand. Journal of the Operational Research Society, 44(12), 1235-1241.
Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE transactions, 5(4), 323-326.
Chakrabarti, T., & Chaudhuri, K. S. (1997). An EOQ model for deteriorating items with a linear trend in demand and shortages in all cycles. International Journal of Production Economics, 49(3), 205-213.
Chang, H.J., & Dye, C.Y. (1999). An EOQ model for deteriorating items with time varying demand and partial backlogging. Journal of Operational Research Society, 50(11), 1176-1182.
Dave, U., & Patel, L.K. (1981) (T, Si) policy inventory model for deteriorating items with time proportional demand. Journal of Operational Research Society, 32(2), 137-142.
Dye, C. Y., Ouyang, L. Y., & Hsieh, T. P. (2007). Deterministic inventory model for deteriorating items with capacity constraint and time-proportional backlogging rate. European Journal of Operational Research, 178(3), 789-807.
Dye, C.Y. (2004). A note on “An EOQ model for items with Weibull distributed deterioration, shortage and power demand pattern. International journal of Information and Management Sciences, 15(2), 81-84.
Ghare, P.M., & Schrader, G.P. (1963). A model for an exponentially decaying inventory. International Journal of Industrial Engineering, 14, 238-243.
Hariga, M.A. (1996). Optimal EOQ models for deteriorating items with time – varying demand. Journal of the Operational Research Society, 47(10), 1228-1246.
Hariga, M.A., & Benkherouf, L. (1994). Optimal and heuristic inventory replenishment models for deteriorating with exponential time varying demand. European Journal of Operational Research, 79, 123-137.
Khanra, S., Ghosh, S. K., & Chaudhuri, K. S. (2011). An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment. Applied Mathematics and Computation, 218(1), 1-9.
Jaggi, C., Khanna, A., & Nidhi, N. (2016). Effects of inflation and time value of money on an inventory system with deteriorating items and partially backlogged shortages. International Journal of Industrial Engineering Computations, 7(2), 267-282.
Khanna, A., Mittal, M., Gautam, P., & Jaggi, C. (2016). Credit financing for deteriorating imperfect quality items with allowable shortages. Decision Science Letters, 5(1), 45-60.
Lee, W.C., & Wu, J.W. (2002). An EOQ model for items with Weibull distribution deterioration, shortages and power demand. International Journal of information and Management Sciences, 13(2), 19-34.
Mahata, G. C. (2012). An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain. Expert systems with Applications, 39(3), 3537-3550.
Mishra, V.K., & Singh, L.S. (2010) Determining inventory model with time dependent demand and partial backlogging. Applied Mathematical Sciences, 4(72), 3611-3619.
Mitra, A., Cox, J. F., & Jesse Jr, R. R. (1984). A note on determining order quantities with a linear trend in demand. Journal of the Operational Research Society, 35(2), 141-144.
Raafat, F. (1991). Survey of literature on continuously deteriorating inventory model. Journal of Operational Research Society, 42(1), 27-37.
Ritche, E. (1984). The EOQ for linear increasing demand: a simple optimal solution. Journal of Operational Research Society, 35(10), 949-952.
Sachan, R.S. (1984). On (T, Si) policy inventory model for deteriorating items with time proportional demand. Journal of Operational Research Society, 25(11), 1013-1019.
Skouri, K., Konstantaras, I., Papachristos, S., & Ganas, I. (2009). Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate. European Journal of Operational Research, 192(1), 79-92.
Sicilia, J., Rosa, M.G., De-la, Acosta, J.F., & Pablo, D.A.L.D. (2014). An inventory model for deteriorating items with shortages and time – varying demand. International Journal of Production Economics, 155, 155-162.
Sicilia, J., González-De-la-Rosa, M., Febles-Acosta, J., & Alcaide-López-de-Pablo, D. (2014). Optimal policy for an inventory system with power demand, backlogged shortages and production rate proportional to demand rate. International Journal of Production Economics, 155, 163-171.
Silver, E. A., & Meal, H. C. (1969). A simple modification of the EOQ for the case of a varying demand rate. Production and Inventory Management, 10(4), 52-65.
Singh, T. J., Singh, S. R., & Dutt, R. (2009). An EOQ model for perishable items with power demand and partial backlogging. International Journal of Production Economics, 15(1), 65-72.
Taleizadeh, A. A., Mohammadi, B., Cárdenas-Barrón, L. E., & Samimi, H. (2013). An EOQ model for perishable product with special sale and shortage. International Journal of Production Economics, 145(1), 318-338.
Teng, J. T., Chern, M. S., Yang, H. L., & Wang, Y. J. (1999). Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand. Operations Research Letters, 24(1), 65-72.
Teng, J., & Yang, H. (2007). Deterministic inventory lot-size models with time-varying demand and cost under generalized holding costs. International journal of information and management sciences, 18(2), 113.
Teng, J. T., Min, J., & Pan, Q. (2012). Economic order quantity model with trade credit financing for non-decreasing demand. Omega, 40(3), 328-335.
Tripathi, R., & Kumar, M. (2014). A new model for deteriorating items with inflation under permissible delay in payments. International Journal of Industrial Engineering Computations, 5(3), 365-374.
Tripathi, R. P. (2013). EOQ model with stock level dependent demand rate and inflation under trade credits. International Journal of Management Science and Engineering Management, 8(2), 102-108.
Tripathi, R.P. (2014). Economic order quantity (EOQ) model for deteriorating items with non- instantaneous receipt under trade credits. International Journal of Operations Research, 12(2), 47-56.
Wu, K.S. (2002).Deterministic inventory model for item with time-varying demand, Weibull distribution deterioration and shortages. Yugoslav Journal of Operational Research, 12(1), 67-71.
Yang, H.L. (2012). Two ware-house partial backlogging inventory models with three parameter Weibull distribution deterioration under inflation. International Journal of Production Economics, 138(1), 107-116.
Bhaula, B., & Kumar, M. R. (2014). An economic order quantity model for Weibull deteriorating items with stock dependent consumption rate and shortages under inflation. International Journal of Computing and Technology, 1(5), 196-204.
Chung, K. J., & Ting, P. S. (1993). A heuristic for replenishment of deteriorating items with a linear trend in demand. Journal of the Operational Research Society, 44(12), 1235-1241.
Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE transactions, 5(4), 323-326.
Chakrabarti, T., & Chaudhuri, K. S. (1997). An EOQ model for deteriorating items with a linear trend in demand and shortages in all cycles. International Journal of Production Economics, 49(3), 205-213.
Chang, H.J., & Dye, C.Y. (1999). An EOQ model for deteriorating items with time varying demand and partial backlogging. Journal of Operational Research Society, 50(11), 1176-1182.
Dave, U., & Patel, L.K. (1981) (T, Si) policy inventory model for deteriorating items with time proportional demand. Journal of Operational Research Society, 32(2), 137-142.
Dye, C. Y., Ouyang, L. Y., & Hsieh, T. P. (2007). Deterministic inventory model for deteriorating items with capacity constraint and time-proportional backlogging rate. European Journal of Operational Research, 178(3), 789-807.
Dye, C.Y. (2004). A note on “An EOQ model for items with Weibull distributed deterioration, shortage and power demand pattern. International journal of Information and Management Sciences, 15(2), 81-84.
Ghare, P.M., & Schrader, G.P. (1963). A model for an exponentially decaying inventory. International Journal of Industrial Engineering, 14, 238-243.
Hariga, M.A. (1996). Optimal EOQ models for deteriorating items with time – varying demand. Journal of the Operational Research Society, 47(10), 1228-1246.
Hariga, M.A., & Benkherouf, L. (1994). Optimal and heuristic inventory replenishment models for deteriorating with exponential time varying demand. European Journal of Operational Research, 79, 123-137.
Khanra, S., Ghosh, S. K., & Chaudhuri, K. S. (2011). An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment. Applied Mathematics and Computation, 218(1), 1-9.
Jaggi, C., Khanna, A., & Nidhi, N. (2016). Effects of inflation and time value of money on an inventory system with deteriorating items and partially backlogged shortages. International Journal of Industrial Engineering Computations, 7(2), 267-282.
Khanna, A., Mittal, M., Gautam, P., & Jaggi, C. (2016). Credit financing for deteriorating imperfect quality items with allowable shortages. Decision Science Letters, 5(1), 45-60.
Lee, W.C., & Wu, J.W. (2002). An EOQ model for items with Weibull distribution deterioration, shortages and power demand. International Journal of information and Management Sciences, 13(2), 19-34.
Mahata, G. C. (2012). An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain. Expert systems with Applications, 39(3), 3537-3550.
Mishra, V.K., & Singh, L.S. (2010) Determining inventory model with time dependent demand and partial backlogging. Applied Mathematical Sciences, 4(72), 3611-3619.
Mitra, A., Cox, J. F., & Jesse Jr, R. R. (1984). A note on determining order quantities with a linear trend in demand. Journal of the Operational Research Society, 35(2), 141-144.
Raafat, F. (1991). Survey of literature on continuously deteriorating inventory model. Journal of Operational Research Society, 42(1), 27-37.
Ritche, E. (1984). The EOQ for linear increasing demand: a simple optimal solution. Journal of Operational Research Society, 35(10), 949-952.
Sachan, R.S. (1984). On (T, Si) policy inventory model for deteriorating items with time proportional demand. Journal of Operational Research Society, 25(11), 1013-1019.
Skouri, K., Konstantaras, I., Papachristos, S., & Ganas, I. (2009). Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate. European Journal of Operational Research, 192(1), 79-92.
Sicilia, J., Rosa, M.G., De-la, Acosta, J.F., & Pablo, D.A.L.D. (2014). An inventory model for deteriorating items with shortages and time – varying demand. International Journal of Production Economics, 155, 155-162.
Sicilia, J., González-De-la-Rosa, M., Febles-Acosta, J., & Alcaide-López-de-Pablo, D. (2014). Optimal policy for an inventory system with power demand, backlogged shortages and production rate proportional to demand rate. International Journal of Production Economics, 155, 163-171.
Silver, E. A., & Meal, H. C. (1969). A simple modification of the EOQ for the case of a varying demand rate. Production and Inventory Management, 10(4), 52-65.
Singh, T. J., Singh, S. R., & Dutt, R. (2009). An EOQ model for perishable items with power demand and partial backlogging. International Journal of Production Economics, 15(1), 65-72.
Taleizadeh, A. A., Mohammadi, B., Cárdenas-Barrón, L. E., & Samimi, H. (2013). An EOQ model for perishable product with special sale and shortage. International Journal of Production Economics, 145(1), 318-338.
Teng, J. T., Chern, M. S., Yang, H. L., & Wang, Y. J. (1999). Deterministic lot-size inventory models with shortages and deterioration for fluctuating demand. Operations Research Letters, 24(1), 65-72.
Teng, J., & Yang, H. (2007). Deterministic inventory lot-size models with time-varying demand and cost under generalized holding costs. International journal of information and management sciences, 18(2), 113.
Teng, J. T., Min, J., & Pan, Q. (2012). Economic order quantity model with trade credit financing for non-decreasing demand. Omega, 40(3), 328-335.
Tripathi, R., & Kumar, M. (2014). A new model for deteriorating items with inflation under permissible delay in payments. International Journal of Industrial Engineering Computations, 5(3), 365-374.
Tripathi, R. P. (2013). EOQ model with stock level dependent demand rate and inflation under trade credits. International Journal of Management Science and Engineering Management, 8(2), 102-108.
Tripathi, R.P. (2014). Economic order quantity (EOQ) model for deteriorating items with non- instantaneous receipt under trade credits. International Journal of Operations Research, 12(2), 47-56.
Wu, K.S. (2002).Deterministic inventory model for item with time-varying demand, Weibull distribution deterioration and shortages. Yugoslav Journal of Operational Research, 12(1), 67-71.
Yang, H.L. (2012). Two ware-house partial backlogging inventory models with three parameter Weibull distribution deterioration under inflation. International Journal of Production Economics, 138(1), 107-116.