In this paper, a new robust approach is presented to handle demand uncertainty in cell formation and layout design process. Unlike the scenario based approaches, which use predefined scenarios to represent data uncertainty, in this paper, an interval approach is implemented to address data uncertainty for the part demands, which is more realistic and practical. The objective is to minimize the total inter- and intra-cell material handling cost. The proposed model gives machine cells and determines inter-and intra-cell layouts in such a way that the decision maker can control the robustness of the layout against the level of conservatism. An illustrative example is solved by CPLEX 10 to demonstrate the performance of the proposed method. The results reveal that when the level of conservatism is changed the optimal layout can vary, significantly.