With ever increasing demand for manufactured products of hard alloys and metals with high surface finish and complex shape geometry, more interest is now being paid to non-traditional machining (NTM) processes, where energy in its direct form is used to remove material from workpiece surface. Compared to conventional machining processes, NTM processes possess almost unlimited capabilities and there is a strong believe that use of NTM processes would go on increasing in diverse range of applications. Presence of a large number of NTM processes along with complex characteristics and capabilities, and lack of experts in NTM process selection domain compel for development of a structured approach for NTM process selection for a given machining application. Past researchers have already attempted to solve NTM process selection problems using various complex mathematical approaches which often require a profound knowledge in mathematics/artificial intelligence from the part of process engineers. In this paper, four NTM process selection problems are solved using an integrated PROMETHEE (preference ranking organization method for enrichment evaluation) and GAIA (geometrical analysis for interactive aid) method which would act as a visual decision aid to the process engineers. The observed results are quite satisfactory and exactly match with the expected solutions.