Capacity waste management is highly essential because under utilization of capacity is often referred to as a major reason for lower productivity among industries around the world. For better estimation of capacity and its utilization and then for its improved management; newer techniques are being devised in industrial sector. The current case of capacity waste problem has been taken up as a Six Sigma project, where we try to analyze critical factors responsible for the capacity waste. Decisions on critical factor selection in analysis phase of Six Sigma are always very crucial. The paper discusses an approach for selection of capacity waste factors at an automotive industry using fuzzy logic based AHP method. The fuzzy AHP is a well recognized tool to undertake the fuzziness of the data involved in choosing the preferences of the different decision variables engaged in the process of capacity waste factors selection. In this context, we have explored six crucial parameters for selection of capacity waste factors. Final ranking is calculated through priority vector thus obtained and it is seen that conveyor malfunction is found to be the key factor for capacity waste among all alternatives at the selected site.