In Australia, Bioenergy plays an important role in modern power systems, where many biomass resources provide greenhouse gas neutral and electricity at a variety of scales. By 2050, the Biomass energy is projected to have a 40-50 % share as an alternative source of energy. In addition to conversion of biomass, barriers and uncertainties in the production, supply may hinder biomass energy development. The sugarcane is an essential ingredient in the production of Bioenergy, across the whole spectrum ranging from the first generation to second generation, e.g., production of energy from the lignocellulosic component of the sugarcane initially regarded as waste (bagasse and cane residue). Sustainable recovery of the Lignocellulosic component of sugarcane from the field through a structured process is largely unknown and associated with high capital outlay that have stifled the growth of bioenergy sector. In this context, this paper develops a new scheduler to optimise the recovery of lignocellulosic component of sugarcane and cane, transport and harvest systems with reducing the associated costs and operational time. An Optimisation Algorithm called Limited Discrepancy Search has been adapted and integrated with the developed scheduling transport algorithms. The developed algorithms are formulated and coded by Optimization Programming Language (OPL) to obtain the optimised cane and cane residues transport schedules. Computational experiments demonstrate that high-quality solutions are obtainable for industry-scale instances. To provide insightful decisions, sensitivity analysis is conducted in terms of different scenarios and criteria.